
Asanovic/Devadas
Spring 2002

6.823

Advanced Superscalar
Architectures

Krste Asanovic
Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas
Spring 2002

6.823Physical Register Renaming
(single physical register file: MIPS R10K, Alpha 21264, Pentium-4)

ld r1, (r3)
add r3, r1, #4
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r11)

ld P1, (Px)
add P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
st P6, (P1)
ld P7, (Pw)

• During decode, instructions allocated new physical destination register
• Source operands renamed to physical register with newest value
• Execution unit only sees physical register numbers

Rename

Asanovic/Devadas
Spring 2002

6.823Physical Register File

Rename
Table

• One regfile for both committed and speculative values (no data in ROB)
• During decode, instruction result allocated new physical register, source
regs translated to physical regs through rename table
• Instruction reads data from regfile at start of execute (not in decode)
• Write-back updates reg. busy bits on instructions in ROB (assoc. search)
• Snapshots of rename table taken at every branch to recover mispredicts
• On exception, renaming undone in reverse order of issue (MIPS R10000)

r1 ti
r2 tj

FU FU Store
Unit

< t, result >

FULoad
Unit FU

t1
t2
.
tn

Reg
File

Snapshots for
mispredict recovery

(ROB not shown)

Asanovic/Devadas
Spring 2002

6.823

Fetch Decode &
Rename Reorder BufferPC

Branch
Prediction

Update predictors

Commit

Speculative and Out-of-Order
Execution

Branch
Resolution

Branch
Unit ALU MEM Store

Buffer D$

Execute

In-Order

In-OrderOut-of-Order

Physical Reg. File

kill
kill

kill
kill

Asanovic/Devadas
Spring 2002

6.823Lifetime of Physical Registers

ld r1, (r3)
add r3, r1, #4
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r11)

ld P1, (Px)
add P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
st P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next write of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries

(no data in ROB)

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

ROB

Rename
Table

Physical Regs Free List

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

p
p
p

P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R1>P8 p

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3
P1

P2

x add P1 P3 r3 P2

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3
P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4P3

P4

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3
P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4P3

P4

Execute &
Commitx ld p P7 r1 P0

p

p

p<R1>

P8

x

Asanovic/Devadas
Spring 2002

6.823Physical Register Management

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

(LPRd requires third read port on Rename Table for each instruction)

<R6>P5
<R7>P6
<R3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld p P7 r1 P0

R5
P5R6
P6R7

R0
P8R1

R2
P7R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3
P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4P3

P4

Execute &
Commitp

p

p<R1>

P8

xx add P0 r3 P1

p

p<R3>

P7

Asanovic/Devadas
Spring 2002

6.823Reorder Buffer Holds
Active Instruction Window

…
ld r1, (r3)
add r3, r1, r2
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r1)
…

(Older instructions)

(Newer instructions)

Cycle t

…
ld r1, (r3)
add r3, r1, r2
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r1)
…

Commit

Fetch

Cycle t + 1

Execute

Asanovic/Devadas
Spring 2002

6.823

Superscalar Register Renaming
• During decode, instructions allocated new physical destination register
• Source operands renamed to physical register with newest value
• Execution unit only sees physical register numbers

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read Data

W
rit

e
Po

rt
s

Asanovic/Devadas
Spring 2002

6.823Superscalar Register Renaming

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
rit

e
Po

rt
s =?=?

Must check for RAW hazards between instructions issuing in
same cycle. Can be done in parallel with rename lookup.
(MIPS R10K renames 4 serially-RAW-dependent insts/cycle)

Asanovic/Devadas
Spring 2002

6.823

Memory Dependencies

st r1, (r2)
ld r3, (r4)

When can we execute the load?

Asanovic/Devadas
Spring 2002

6.823

Speculative Loads / Stores
Just like register updates, stores should not modify
the memory until after the instruction is committed
⇒ store buffer entry must carry a speculation bit and

the tag of the corresponding store instruction

• If the instruction is committed, the speculation bit of
the corresponding store buffer entry is cleared, and
store is written to cache
• If the instruction is killed, the corresponding store
buffer entry is freed

Loads work normally -- “older” store buffer entries
needs to be searched before accessing the memory
or the cache

Asanovic/Devadas
Spring 2002

6.823Load Path

• Hit in speculative store buffer has priority over hit in data
cache

• Hit to newer store has priority over hits to older stores in
speculative store buffer

Data

Load Address

Tags

Store Commit Path

Speculative
Store Buffer L1 Data Cache

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

Asanovic/Devadas
Spring 2002

6.823

Fetch Decode &
Rename Reorder BufferPC

Branch
Prediction

Update predictors

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill kill

Asanovic/Devadas
Spring 2002

6.823

In-Order Memory Queue

• Execute all loads and stores in program order
=> Load and store cannot leave ROB for execution

until all previous loads and stores have
completed execution

• Can still execute loads and stores speculatively,
and out-of-order with respect to other instructions

• Stores held in store buffer until commit

Asanovic/Devadas
Spring 2002

6.823Conservative Out-of-Order
Load Execution

st r1, (r2)
ld r3, (r4)

• Split execution of store instruction into two
phases: address calculation and data write

• Can execute load before store, if addresses
known and r4 != r2

• Each load address compared with addresses of
all previous uncommitted stores (can use partial
conservative check i.e., bottom 12 bits of address)

• Don’t execute load if any previous store address
not known

(MIPS R10K, 16 entry address queue)

Asanovic/Devadas
Spring 2002

6.823

Address Speculation

• Guess that r4 != r2
• Execute load before store address known
• Need to hold all completed but uncommitted

load/store addresses in program order
• If subsequently find r4==r2, squash load and all

following instructions
=> Large penalty for inaccurate address speculation

st r1, (r2)
ld r3, (r4)

Asanovic/Devadas
Spring 2002

6.823

Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)
ld r3, (r4)

• Guess that r4 != r2 and execute load before store
• If later find r4==r2, squash load and all following

instructions, but mark load instruction as store-wait
• Subsequent executions of the same load instruction

will wait for all previous stores to complete
• Periodically clear store-wait bits

Asanovic/Devadas
Spring 2002

6.823

Improving Instruction Fetch

Performance of speculative out-of-order
machines often limited by instruction fetch
bandwidth
– speculative execution can fetch 2-3x more

instructions than are committed
–mispredict penalties dominated by time to refill

instruction window
– taken branches are particularly troublesome

Asanovic/Devadas
Spring 2002

6.823Increasing Taken Branch Bandwidth
(Alpha 21264 I-Cache)

• Fold 2-way tags and BTB into predicted next block
• Take tag checks, inst. decode, branch predict out of loop
• Raw RAM speed on critical loop (1 cycle at ~1 GHz)
• 2-bit hysteresis counter per block prevents overtraining

Cached
Instructions

Line
Predict

Way
Predict

Tag

Way

0

Tag

Way

1

=? =?

fast fetch path

PC
Generation

PC

Branch Prediction
Instruction Decode
Validity Checks

4 insts

Hit/Miss/Way

Asanovic/Devadas
Spring 2002

6.823Tournament Branch Predictor
(Alpha 21264)

• Choice predictor learns whether best to use local or
global branch history in predicting next branch

• Global history is speculatively updated but restored on
mispredict

• Claim 90-100% success on range of applications

Local
history
table

(1,024x10b)

PC

Local
prediction
(1,024x3b)

Global Prediction
(4,096x2b)

Choice
Prediction
(4,096x2b)

Global History (12b)Prediction

Asanovic/Devadas
Spring 2002

6.823Taken Branch Limit

• Integer codes have a taken branch every 6-9
instructions

• To avoid fetch bottleneck, must execute multiple taken
branches per cycle when increasing performance

• This implies:
– predicting multiple branches per cycle
– fetching multiple non-contiguous blocks per cycle

Asanovic/Devadas
Spring 2002

6.823Branch Address Cache
(Yeh, Marr, Patt)

PC
k

Entry PC

=

match

Valid

valid

predicted

target#1

target #1
len

len#1

predicted

target#2

target #2

Extend BTB to return multiple branch predictions
per cycle

Asanovic/Devadas
Spring 2002

6.823

Fetching Multiple Basic Blocks
Requires either
–multiported cache: expensive
– interleaving: bank conflicts will occur

Merging multiple blocks to feed to decoders adds
latency increasing mispredict penalty and
reducing branch throughput

Asanovic/Devadas
Spring 2002

6.823Trace Cache
Key Idea: Pack multiple non-contiguous basic

blocks into one contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n branch
predictions

• Used in Intel Pentium-4 processor to hold decoded uops

BRBRBR

Asanovic/Devadas
Spring 2002

6.823MIPS R10000 (1995)
• 0.35µm CMOS, 4 metal layers
• Four instructions per cycle
• Out-of-order execution
• Register renaming
• Speculative execution past 4

branches
• On-chip 32KB/32KB split I/D

cache, 2-way set-associative
• Off-chip L2 cache
• Non-blocking caches

Compare with simple 5-stage
pipeline (R5K series)

• ~1.6x performance
SPECint95

• ~5x CPU logic area
• ~10x design effort

