
1

1

Virtual Memory Basics

Page 1

2

2

Memory Management

• The Fifties:
- Absolute Addresses
- Dynamic address translation

• The Sixties:
- Paged memory systems and TLBs
- Atlas’ Demand paging

• Modern Virtual Memory Systems

Page 2

3

3

Types of Names for Memory Locations

• Machine language address
⇒ as specified in machine code

• Virtual address
⇒ ISA specifies translation of machine code address into virtual
address of program variable

• Physical address
⇒ operating system specifies mapping of virtual address into
name for a physical memory location

physical
address

virtual
address

machine
language
address

Address
MappingISA

Physical
Memory
(DRAM)

Translation of machine code address into virtual address
may involve a segment register.

Physical memory location => actual address signals going to DRAM chips.

Page 3

4

4

Absolute Addresses

EDSAC, early 50’s
effective address ysical memory address

Only one program ran at a time, with unrestricted access
to entire machine (RAM + I/O devices)

Addresses in a program depended upon where
the program was to be loaded in memory

But it was more convenient for programmers to
write location-independent subroutines

⇒ How could location independence be achieved?

ph=

Led to the development of loaders and linkers to statically relocate and link
Programs.

Page 4

5

5

Dynamic Address Translation

Motivation:
In the early machines, I/O operations were slow
and each word transferred involved the CPU
Higher throughput if CPU and I/O of 2 or more
programs were overlapped. How?

⇒ multiprogramming

Location independent programs:
Programming and storage management ease

⇒ need for a base register

Protection:
Independent programs should not affect
each other inadvertently

⇒ need for a bound register

Ph
ys

ic
al

 M
em

or
y

prog1

prog2

Page 5

6

6

Simple Base and Bound Translation

Load X

Program
Address
Space

Bound
Register ≤ Bound

Violation

M
ai

n
M

em
or

y

current
segment

Base
Register

+
Physical
Address

Effective Addr
Register

Base and bounds registers only visible/accessible when
processor running in kernel (a.k.a supervisor) mode

Page 6

7

7

program
segment

Separate Areas for Program and Data

Load X

Program
Address
Space

M
ai

n
M

em
or

y

data
segment

What is an advantage of this separation?
Used today on Cray vector supercomputers

Data Base
Register

≤

+

Bound
Violation

Program Bound
Register

Program
Counter
Program Base

Register

≤

+

Bound
Violation

Data Bound
Register

Effective Addr
Register

Permits sharing of program segments.

Page 7

8

8

free

Memory Fragmentation

OS
Space

16 K
24 K

24 K

32 K

24 K

user 1
user 2

user 3

free

free

OS
Space

16 K
24 K
16 K

32 K

24 K

user 1
user 2

user 3

user 5

free
user 4

8

OS
Space

16 K
24 K
16 K

32K

24 K

user 1
free

free
user 4

Users 4 & 5
arrive

Users 2 & 5
leave

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

8

user 3

K K

Called Burping the memory.

Page 8

9

9

Paged Memory Systems

What requirement does fixed-length pages plus
indirection through page table relax?

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

Processor generated address can be interpreted
as a pair <page number,offset>

A page table contains the physical address of
the base of each page

1
0

2

3

page number offset

Relaxes the contiguous allocation requirement.

Page 9

10

10

Private Address Space per User

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

• Each user has a page table
• Page table contains an entry for each user page

Ph
ys

ic
al

M

em
or

y

FREE

OS
pages

OS ensures that the page tables are disjoint.

Page 10

11

11

Where Should Page Tables Reside?

Space required by the page tables is proportional to
the address space, number of users, ...

⇒ Space requirement is large
too expensive to keep in registers

Special registers just for the current user:
- What disadvantages does this have?

may not be feasible for large page tables

Main memory:
- needs one reference to retrieve the page base
address and another to access the data word
⇒ doubles number of memory references!

Affects context-switching overhead, and needs new management
instructions.

Page 11

12

12

Page Tables in Physical Memory

VA1

User 1 VA1

User 2

Page Table, User 1

Page Table, User 2

Page 12

13

13

A Problem in Early Sixties

There were many applications whose data could not
fit in the main memory, e.g., Payroll

Paged memory system reduced fragmentation but
still required the whole program to be resident in
the main memory

Programmers moved the data back and forth from the
secondary store by overlaying it repeatedly on the
primary store

tricky programming!

Page 13

14

14

Manual Overlays

Ferranti Mercury
1956

40k bits
main

640k bits
drum

central
store

Assuming an instruction can address
all the storage on the drum

Method 1 - programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required

Method 2 - automatic initiation of I/O
transfers by software address
translation
Brooker’s interpretive coding, 1960

Method 1 problem ?
Method 2 problem ?

British Firm Ferranti, did Mercury and then Atlas

Method 1 too difficult for users

Method 2 too slow.

Page 14

15

15

Demand Paging in Atlas (1962)

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
Memory

User sees 32 x 6 x 512 words
of storage

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory

Single-level Store

Page 15

16

16

Hardware Organization of Atlas

Initial
Address
Decode

Fixed (ROM)
16 pages

0.4 ~1 µsec

Subsidiary
2 pages
1.4 µsec

Main
32 pages
1.4 µsec

Drum (4)

192 pages

Tape
8 decks

88 µsec/word

48-bit words
512-word pages

1 PAR per page frame

Compare the effective page address against all 32 PARs
match ⇒ normal access
no match ⇒ page fault

the state of the partially executed
instruction was saved

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>(Page Address Register)

Atlas Autocode example here.

Page 16

17

17

Atlas Demand Paging Scheme

On a page fault:

• input transfer into a free page is initiated

• the Page Address Register (PAR) is updated

• if no free page is left, a page is selected
to be replaced (based on usage)

• the replaced page is written on the drum
- to minimize drum latency effect, the first

empty page on the drum was selected

• the page table is updated to point to the new
location of the page on the drum

This was called the Supervisor program, which clearly
foreshadowed the operating system.

Page 17

18

18

Caching vs. Demand Paging

CPU CPUcache primary
memory

primary
memory

secondary
memory

Caching Demand paging
cache entry page-frame
cache block (~32 bytes) tes)
cache miss (1% to 20%) page miss (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~10 cycles) page miss(~5M cycles)
a miss is handled a miss is handled

in hardware mostly in software

page (~4K by

Page 18

19

19

Modern Virtual Memory Systems
illusion of a large, private, uniform store

Protection & Privacy
- several users, each with their private
address space and one or more shared
address spaces

page table ≡ name space

Demand Paging
- ability to run a program larger than
than the primary memory

⇒ What is another big benefit ?

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping
TLB

Portability on machines with different memory configurations.

Page 19

20

20

Address Translation and Protection

• Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

Virtual Page No. (VPN) offset

Page 20

21

21

Linear Page Table

Data word

Virtual address Data Pages

PT Base Register

OS changes page table
base register to point to
base of page table for
active user process

PPN
PPN

VPN

Offset

Page Table Entry (PTE) contains:
• PPN (physical page number) of
memory-resident page,

• DPN (disk page number) of
page swapped to disk, or

• non-existent page
• Status bits for protection and

usage

DPN

PPN

DPN
DPN

DPN
PPN

VPN Offset

PPN
Page Table

PPN
DPN
PPN

Page 21

22

22

Size of Linear Page Table

With 32-bit addresses, 4-KB pages, and 4-byte PTEs:
⇒ 220 PTEs, i.e, 4 MB page table per user

⇒ 4 GB of swap needed to back up full virtual address
space

Larger pages?
• more internal fragmentation (don’t use all memory in page)
• larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace” ?

Virtual address space is large but only a small fraction of the
pages are populated. So we can use a sparse representation
of the table.

Page 22

23

23

Hierarchical Page Table

Level-1
Page Table

Level-2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit L1 index 10-bit L2 index

Page 23

24

24

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference becomes

the best case is ?
the worst case is ?

Solution: Cache translations in TLB
TLB hit ⇒ Single Cycle Translation
TLB miss ⇒ Page Table Walk to refill

physical address

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

VPN offset

V R W D tag PPN

PPN offset

3 memory references
2 page faults (disk accesses) + ..

Page 24

25

25

TLB Designs

Typically 32-128 entries
Usually fully associative

– Each entry maps a large page, hence less spatial locality
across pages Î more likely that two entries conflict

– Sometimes larger TLBs are 4-8 way set-associative

Random or FIFO replacement policy
Typically only one page mapping per entry
No process information in TLB ⇒ ?

TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry
TLB Reach = ______________________________?

Page 25

26

26

Handling A TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating
system walks the page tables and reloads TLB
privileged “untranslated” ode used
for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the
page tables and reloads the TLB

If a missing (data or PT) page is encountered
during the TLB reloading, MMU gives up and
signals a Page-Fault exception for the original
instruction

addressing m

Page 26

27

27

Hierarchical Page Table Walk: SPARC v8

31 11 0

Virtual Address
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP

PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

Index 1 Index 2 Index 3 Offset

Page 27

28

28

Address Translation: putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the e is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

pag

Need to restart instruction.
Soft and hard page faults.

Page 28

