
Asanovic/Devadas

Spring 2002

6.823

Microprogramming

Krste Asanovic

Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas

Spring 2002

6.823
Instruction Set Architecture

(ISA) versus Implementation

� ISA is the hardware/software interface
� Defines set of programmer visible state
� Defines instruction format (bit encoding) and instruction

semantics
� Examples: DLX, x86, IBM 360, JVM

� Many possible implementations of one ISA
� 360 implementations: model 30 (c. 1964), z900 (c. 2001)
� x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,

Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon,
Transmeta Crusoe, SoftPC
� DLX implementations: microcoded, pipelined, superscalar
� JVM: HotSpot, PicoJava, ARM Jazelle, ...

Asanovic/Devadas

Spring 2002

6.823
ISA to Microarchitecture

Mapping

� ISA often designed for particular microarchitectural
style, e.g.,
� CISC ISAs designed for microcoded implementation
� RISC ISAs designed for hardwired pipelined implementation
� VLIW ISAs designed for fixed latency in-order pipelines
� JVM ISA designed for software interpreter

� But ISA can be implemented in any microarchitectural
style
�	 Pentium-4: hardwired pipelined CISC (x86) machine (with some

microcode support)
� This lecture: a microcoded RISC (DLX) machine
�	 Intel will probably eventually have a dynamically scheduled out-of-

order VLIW (IA-64) processor
� PicoJava: A hardware JVM processor

Asanovic/Devadas

Spring 2002

6.823
Microcoded Microarchitecture
Microcode instructions fixed

in ROM inside microcontroller

Memory

Datapath

µcontroller

AddrData

zero?
busy?

opcode

Memory (RAM) holds user program
written using macrocode

enMem
MemWrt

instructions (e.g., DLX, x86, etc.)

Asanovic/Devadas

Spring 2002

6.823
A Bus-based Datapath for DLX

A B

RegWrt
enReg

enMem

MA

addr addr

data data

rf1
rf2
rf3
32(PC)
31(Link)

RegSel

busyzero?

OpSel ldA ldB ldMA

Memory
32 GPRs
+ PC ...

32-bit RegALU

enALU

Bus

IR

Opcode

ldIR

Imm
Ext

enImm

/
2

ALU
control

/2

/
3

ExtSel MemWrt

32

rf1
rf2
rf3

Microinstruction: register to register transfer (17 control signals)
MA ← PC means RegSel = PC; enReg=yes; ldMA= yes
B ← Reg[rf2] means RegSel = rf2; enReg=yes; ldB = yes

Asanovic/Devadas

Spring 2002

6.823

Instruction Execution

Execution of a DLX instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

and the computation of the address of the
next instruction

Asanovic/Devadas

Spring 2002

6.823
Microprogram Fragments
instr fetch: 	 MA ← PC

IR ← Memory
A ← PC
PC ← A + 4
dispatch on OPcode

ALU: 	 A ← Reg[rf1]
B ← Reg[rf2]
Reg[rf3] ← func(A,B)
do instruction fetch

ALUi: A ← Reg[rf1]

can be
treated as
a macro

B ← Imm sign extention ...

Reg[rf2] ← Opcode(A,B)
do instruction fetch

Asanovic/Devadas

6.823Microprogram Fragments Spring 2002

(cont.)
LW: 	 A ← Reg[rf1]

B ← Imm
MA ← A + B
Reg[rf2] ← Memory
do instruction fetch

J: 	 A ← PC
B ← Imm
PC ← A + B
do instruction fetch

beqz:	 A ← Reg[rf1]
If zero?(A) then go to bz-taken
do instruction fetch

bz-taken:	 A ← PC
B ← Imm
PC ← A + B
do instruction fetch

Asanovic/DevadasDLX Microcontroller: Spring 2002
6.823

first attempt

µPC (state)

Opcode
zero?

Busy (memory)

next state
17 Control Signals

s

6

µProgram ROM

2(opcode+status+s) words
word = (control+s) bits

addr

data

ROM Size ?
How big is “s”?

latching the inputs
may cause a
one-cycle delay

s

Asanovic/Devadas

Spring 2002
Microprogram in the ROM 6.823

worksheet

State Op zero? busy Control points next-state

fetch0 * * *
fetch1 * * yes
fetch1 * * no
fetch2 * * *
fetch3 * * *

ALU0 * * *
ALU1 * * *
ALU2 * * *

MA ← PC
....

IR ← Memory
A ← PC
PC ← A + 4

A ← Reg[rf1]

B ← Reg[rf2]

Reg[rf3]← func(A,B)

fetch1
fetch1
fetch2
fetch3
?

ALU1
ALU2
fetch0

Asanovic/Devadas
Spring 2002Microprogram in the ROM 6.823

State Op zero? busy
 Control points next-state

fetch0 *
fetch1 *
fetch1 *
fetch2 *
fetch3 ALU
fetch3 ALUi
fetch3 LW
fetch3 SW
fetch3 J
fetch3 JAL
fetch3 JR
fetch3 JALR
fetch3 beqz
...
ALU0 *
ALU1 *
ALU2 *

* *
* yes
* no
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

* *

* *

* *

MA ← PC
....

IR ← Memory
A ← PC
PC ← A + 4
PC ← A + 4
PC ← A + 4
PC ← A + 4
PC ← A + 4
PC ← A + 4
PC ← A + 4
PC ← A + 4
PC ← A + 4

A ← Reg[rf1]

B ← Reg[rf2]

Reg[rf3]← func(A,B)

fetch1
fetch1
fetch2
fetch3
ALU0
ALUi0
LW0
SW0
J0
JAL0
JR0
JALR0
beqz0

ALU1
ALU2
fetch0

Asanovic/Devadas

6.823Microprogram in the ROM Spring 2002

Cont.
State Op zero? busy
 Control points next-state

ALUi0 *

ALUi1 sExt

ALUi1 uExt

ALUi2 *

...

J0 *

J1 *

J2 *

...

beqz0 *

beqz1 *

beqz1 *

beqz2 *

beqz3 *

...

* *
* *
* *
* *

* *

* *

* *

* *
yes *
no *
* *
* *

A ← Reg[rf1]

B ← sExt16(Imm)

B ← uExt16(Imm)

Reg[rf3]← Op(A,B)

A ← PC

B ← sExt26(Imm)

PC ← A+B

A ← Reg[rf1]

A ← PC

....
B ← sExt16(Imm)
PC ← A+B

ALUi1
ALUi2
ALUi2
fetch0

J1
J2
fetch0

beqz1
beqz2
fetch0
beqz3
fetch0

Asanovic/Devadas

Spring 2002

6.823
Size of Control Store
status &
opcode

size = 2(w+s) x (c + s)
Control

ROM
data

addr

Control signals

µPC

w
/

/

/ c

s

next
µPC

DLX
w = 6+2 c = 17 s = ?

no. of steps per opcode = 4 to 6 + fetch-sequence

no. of states ≈ (4 steps per op-group) x op-groups

+ common sequences
= 4 x 8 + 10 states = 42 states

⇒ s = 6
Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes

Asanovic/Devadas

Spring 2002

6.823
Reducing Size of Control Store
Control store has to be fast ⇒ expensive

� Reduce the ROM height (= address bits)
⇒ reduce inputs by extra external logic

each input bit doubles the size of the
control store

⇒ reduce states by grouping opcodes
find common sequences of actions

⇒ condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

� Reduce the ROM width
⇒ restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
⇒ encode control signals (vertical microcode)

Asanovic/Devadas
Spring 2002DLX Controller V2 6.823

absolute
Opcode

17 Control Signals

Control ROM

address

data

+1

ext

µPC (state)

jump
logic

zero

µPC µPC+1op-group

µJumpType
(next, spin, fetch,

busy

µPCSrc
Reduced ROM

height
encoding inputs

Reduce ROM
width by
encoding
next-state

by

dispatch, feqz, fnez)

Asanovic/Devadas

Spring 2002

6.823

Jump Logic

µPCSrc = Case µJumpTypes

next ⇒ µPC+1

spin ⇒ if (busy) then µPC else µPC+1

fetch ⇒ absolute

dispatch ⇒ op-group

feqz ⇒ if (zero) then absolute else µPC+1

fnez ⇒ if (zero) then µPC+1 else absolute

Asanovic/Devadas

6.823Instruction Fetch & ALU: Spring 2002

DLX-Controller-2

State Control points

fetch0 MA ← PC
fetch1 IR ← Memory
fetch2 A ← PC
fetch3 PC ← A + 4
...
ALU0 A ← Reg[rf1]
ALU1 B ← Reg[rf2]

next-state

next
spin
next
dispatch

next
next

ALU2 Reg[rf3]← func(A,B) fetch

ALUi0 A ← Reg[rf1] next
ALUi1 B ← sExt16(Imm) next
ALUi2 Reg[rf3]← Op(A,B) fetch

Asanovic/Devadas

Spring 2002

6.823
Load & Store: DLX-Controller-2

State Control points next-state

LW0 A ← Reg[rf1] next
LW1 B ← sExt16(Imm) next
LW2 MA ← A+B next
LW3 Reg[rf2] ← Memory spin
LW4 fetch

SW0 A ← Reg[rf1] next
SW1 B ← sExt16(Imm) next
SW2 MA ← A+B next
SW3 Memory ← Reg[rf2] spin
SW4 fetch

Asanovic/Devadas

Spring 2002

6.823
Branches: DLX-Controller-2

State Control points

BEQZ0 A ← Reg[rf1]

BEQZ1

BEQZ2 A ← PC

BEQZ3 B ← sExt16(Imm)

BEQZ4 PC ← A+B

BNEZ0 A ← Reg[rf1]

BNEZ1

BNEZ2 A ← PC

BNEZ3 B ← sExt16(Imm)

BNEZ4 PC ← A+B

next-state

next
fnez
next
next
fetch

next
feqz
next
next
fetch

Asanovic/Devadas

Spring 2002

6.823
Jumps: DLX-Controller-2

State Control points next-state

J0 A ← PC next
J1 B ← sExt26(Imm) next
J2 PC ← A+B fetch

JR0 PC ←Reg[rf1] fetch

JAL0 A ← PC next
JAL1 Reg[31] ← A next
JAL2 B ← sExt26(Imm) next
JAL3 PC ← A+B fetch

JALR0 A ← PC next
JALR1 Reg[31] ← A next
JALR2 PC ←Reg[rf1] fetch

Asanovic/Devadas

Spring 2002

6.823

Microprogramming in IBM 360

750200025001500memory
cycle (ns)

351574Rental fee
($K/month)

200500625750µstore
cycle (ns)

BCROSBCROSTCROSCCROSµstore
technology

2.752.7544µcode size
(K µinsts)

87855250µinst width
(bits)

6432168Datapath
width (bits)

M65M50M40M30

� Only fastest models (75 and 95) were hardwired

Asanovic/Devadas
Spring 2002Horizontal vs Vertical µCode 6.823

Bits per µInstruction

µInstructions

� Horizontal µcode has longer µinstructions
� Can specify multiple parallel operations per µinstruction
� Needs fewer steps to complete each macroinstruction
� Sparser encoding ⇒ more bits

� Vertical µcode has more, narrower µinstructions
� In limit, only single datapath operation per µinstruction
� µcode branches require separate µinstruction
� More steps to complete each macroinstruction
� More compact ⇒ less bits

� Nanocoding
� Tries to combine best of horizontal and vertical µcode

Nanocoding
Asanovic/Devadas

Spring 2002

6.823

Exploits recurring µcode
next-statecontrol signal patterns

in µcode, e.g.,

ALU0 A ← Reg[rf1]

...

ALUi0 A ← Reg[rf1]

...

µcode ROM

nanoaddress

µaddress

µPC (state)

nanoinstruction ROM

17 Control Signals

data

� MC68000 had 17-bit µcode containing either 10-bit
µjump or 9-bit nanoinstruction pointer
� Nanoinstructions were 68 bits wide, decoded to give

196 control signals

Implementing Complex Instructions
Asanovic/Devadas

Spring 2002

6.823

IR A B

RegWrt
enReg

MemWrt
enMem

MA

addr addr

data data

rf1
rf2
rf3
32(PC)
31(Link)

RegSel

busyzero?

ALUop

Opcode

ldIR ldA ldB ldMA

Memory
32 GPRs
+ PC ...

32-bit RegALU

enALU

Imm
Ext

enImm

ExSel

Bus

/
6

rf3 ← M[(rf1)] op (rf2) Reg-Memory-src ALU op

M[(rf3)] ← M[(rf1)] op M[(rf2)] Mem-Mem ALU op
M[(rf3)] ← (rf1) op (rf2) Reg-Memory-dst ALU op

Asanovic/Devadas

6.823Mem-Mem ALU Instructions: Spring 2002

DLX-Controller-2

Mem-Mem ALU op M[(rf3)] ← M[(rf1)] op M[(rf2)]

ALUMM0 MA ← Reg[rf1]
ALUMM1 A ← Memory
ALUMM2 MA ← Reg[rf2]
ALUMM3 B ← Memory
ALUMM4 MA ← Reg[rf3]
ALUMM5 Memory ← func(A,B)
ALUMM6

next
spin
next
spin
next
spin
fetch

Complex instructions usually do not require datapath
modifications in a microprogrammed implementation

-- only extra space for the control program

Implementing these instructions using a hardwired controller is
difficult without datapath modifications

Asanovic/Devadas

Spring 2002

6.823
Microcode Emulation
� IBM initially miscalculated importance of

software compatibility when introducing 360
series
� Honeywell started effort to steal IBM 1401

customers by offering translation software
(“Liberator”) for Honeywell H200 series machine
� IBM retaliates with optional additional microcode

for 360 series that can emulate IBM 1401 ISA, later
extended for IBM 7000 series
�	 one popular program on 1401 was a 650 simulator, so some

customers ran many 650 programs on emulated 1401s (650-
>1401->360)

Asanovic/Devadas

6.823Microprogramming in the Spring 2002

Seventies
Thrived because:

� Significantly faster ROMs than DRAMs were available

� For complex instruction sets, datapath and controller
were cheaper and simpler

� New instructions , e.g., floating point, could be
supported without datapath modifications

� Fixing bugs in the controller was easier

� ISA compatibility across various models could be
achieved easily and cheaply

Except for cheapest and fastest machines, all computers
were microprogrammed

Asanovic/Devadas

Spring 2002

6.823

Writable Control Store (WCS)
Implement control store with SRAM not ROM

• MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 10x slower)
• Bug-free microprograms difficult to write

User-WCS provided as option on several minicomputers
• Allowed users to change microcode for each process

User-WCS failed
• Little or no programming tools support
• Hard to fit software into small space
• Microcode control tailored to original ISA, less useful for others
• Large WCS part of processor state - expensive context switches
• Protection difficult if user can change microcode
• Virtual memory required restartable microcode

Asanovic/Devadas

Spring 2002

6.823
Performance Issues
Microprogrammed control

⇒ multiple cycles per instruction

Cycle time ?
tC > max(treg-reg, tALU, tµROM, tRAM)

Given complex control, tALU & tRAM can be broken
into multiple cycles. However, tµROM cannot be
broken down. Hence

tC > max(treg-reg, tµROM)

Suppose 10 * tµROM < tRAM
good performance, relative to the single-cycle
hardwired implementation, can be achieved
even with a CPI of 10

Asanovic/Devadas

Spring 2002

6.823
VLSI & Microprogramming
By late seventies
• technology assumption about ROM & RAM
speed became invalid

• micromachines became more complicated
• to overcome slower ROM, micromachines
were pipelined
• complex instruction sets led to the need for
subroutine and call stacks in µcode.
• need for fixing bugs in control programs
was in conflict with read-only nature of µROM

⇒ WCS (B1700, QMachine, Intel432, …)
• introduction of caches and buffers, especially for
instructions, made multiple-cycle execution of
reg-reg instructions unattractive

Asanovic/Devadas
Spring 2002Modern Usage 6.823

Microprogramming is far from extinct

Played a crucial role in micros of the Eighties,
Motorola 68K series
Intel 386 and 486

Microcode is present in most modern CISC micros in an
assisting role (e.g. AMD Athlon, Intel Pentium-4)
• Most instructions are executed directly, i.e., with
hard-wired control
• Infrequently-used and/or complicated instructions
invoke the microcode engine

Patchable microcode common for post-fabrication bug

fixes, e.g. Intel Pentiums load µcode patches at bootup

