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6.823
Instruction Set Architecture 

(ISA) versus Implementation

� ISA is the hardware/software interface 
� Defines set of programmer visible state 
� Defines instruction format (bit encoding) and instruction

semantics 
� Examples: DLX, x86, IBM 360, JVM 

� Many possible implementations of one ISA 
� 360 implementations: model 30 (c. 1964), z900 (c. 2001) 
� x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,

Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon, 
Transmeta Crusoe, SoftPC 
� DLX implementations: microcoded, pipelined, superscalar 
� JVM: HotSpot, PicoJava, ARM Jazelle, ... 
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6.823
ISA to Microarchitecture

Mapping


� ISA often designed for particular microarchitectural
style, e.g., 
� CISC ISAs designed for microcoded implementation 
� RISC ISAs designed for hardwired pipelined implementation 
� VLIW ISAs designed for fixed latency in-order pipelines 
� JVM ISA designed for software interpreter 

� But ISA can be implemented in any microarchitectural
style 
�	 Pentium-4: hardwired pipelined CISC (x86) machine (with some

microcode support) 
� This lecture: a microcoded RISC (DLX) machine 
�	 Intel will probably eventually have a dynamically scheduled out-of-

order VLIW (IA-64) processor 
� PicoJava: A hardware JVM processor 
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6.823
Microcoded Microarchitecture 
Microcode instructions fixed 

in ROM inside microcontroller 

Memory 

Datapath 

µcontroller 

AddrData 

zero? 
busy? 

opcode 

Memory (RAM) holds user program 
written using macrocode 

enMem 
MemWrt 

instructions (e.g., DLX, x86, etc.)
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6.823
A Bus-based Datapath for DLX 

A B 

RegWrt 
enReg 

enMem 

MA 

addr addr 

data data 

rf1
rf2
rf3 
32(PC)
31(Link) 

RegSel 

busyzero? 

OpSel ldA ldB ldMA 

Memory 
32 GPRs 
+ PC ... 

32-bit RegALU 

enALU 

Bus 

IR 

Opcode 

ldIR 

Imm 
Ext 

enImm 

/
2 

ALU 
control 

/2 

/
3 

ExtSel MemWrt 

32 

rf1
rf2
rf3 

Microinstruction: register to register transfer (17 control signals) 
MA ← PC means RegSel = PC; enReg=yes; ldMA= yes 
B ← Reg[rf2] means RegSel = rf2; enReg=yes; ldB = yes 
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Instruction Execution 

Execution of a DLX instruction involves 

1. instruction fetch 
2. decode and register fetch 
3. ALU operation 
4. memory operation (optional) 
5. write back to register file (optional) 

and the computation of the address of the 
next instruction 
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6.823
Microprogram Fragments 
instr fetch: 	 MA ← PC 

IR ← Memory 
A ← PC 
PC ← A + 4 
dispatch on OPcode 

ALU: 	 A ← Reg[rf1] 
B ← Reg[rf2] 
Reg[rf3] ← func(A,B) 
do instruction fetch 

ALUi: A ← Reg[rf1] 

can be 
treated as 
a macro 

B ← Imm sign extention ...

Reg[rf2] ← Opcode(A,B) 
do instruction fetch 
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(cont.) 
LW: 	 A ← Reg[rf1] 

B ← Imm 
MA ← A + B 
Reg[rf2] ← Memory 
do instruction fetch 

J: 	 A ← PC 
B ← Imm 
PC ← A + B 
do instruction fetch 

beqz:	 A ← Reg[rf1] 
If zero?(A) then go to bz-taken 
do instruction fetch 

bz-taken:	 A ← PC 
B ← Imm 
PC ← A + B 
do instruction fetch 
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first attempt 

µPC (state) 

Opcode
zero? 

Busy (memory) 

next state 
17 Control Signals 

s 

6 

µProgram ROM 

2(opcode+status+s) words 
word = (control+s) bits 

addr 

data 

ROM Size ? 
How big is “s”? 

latching the inputs 
may cause a 
one-cycle delay 

s
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worksheet 

State Op zero? busy Control points next-state 

fetch0 * * * 
fetch1 * * yes 
fetch1 * * no 
fetch2 * * * 
fetch3 * * * 

ALU0 * * * 
ALU1 * * * 
ALU2 * * * 

MA ← PC 
.... 

IR ← Memory 
A ← PC 
PC ← A + 4 

A ← Reg[rf1]

B ← Reg[rf2]

Reg[rf3]← func(A,B)


fetch1 
fetch1 
fetch2 
fetch3 
? 

ALU1 
ALU2 
fetch0 
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State Op zero? busy 
 Control points next-state


fetch0 * 
fetch1 * 
fetch1 * 
fetch2 * 
fetch3 ALU 
fetch3 ALUi 
fetch3 LW 
fetch3 SW 
fetch3 J 
fetch3 JAL 
fetch3 JR 
fetch3 JALR 
fetch3 beqz 
... 
ALU0 * 
ALU1 * 
ALU2 * 

* * 
* yes 
* no 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 

* *

* *

* *


MA ← PC 
.... 

IR ← Memory 
A ← PC 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 
PC ← A + 4 

A ← Reg[rf1]

B ← Reg[rf2]

Reg[rf3]← func(A,B)


fetch1 
fetch1 
fetch2 
fetch3 
ALU0 
ALUi0 
LW0 
SW0 
J0 
JAL0 
JR0 
JALR0 
beqz0 

ALU1 
ALU2 
fetch0 
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Cont. 
State Op zero? busy 
 Control points next-state


ALUi0 *

ALUi1 sExt

ALUi1 uExt

ALUi2 *

...

J0 *

J1 *

J2 *

...

beqz0 *

beqz1 *

beqz1 *

beqz2 *

beqz3 *

... 

* * 
* * 
* * 
* * 

* *

* *

* *


* * 
yes * 
no * 
* * 
* * 

A ← Reg[rf1]

B ← sExt16(Imm)

B ← uExt16(Imm)

Reg[rf3]← Op(A,B)


A ← PC

B ← sExt26(Imm)

PC ← A+B


A ← Reg[rf1]

A ← PC 


.... 
B ← sExt16(Imm) 
PC ← A+B 

ALUi1 
ALUi2 
ALUi2 
fetch0 

J1 
J2 
fetch0 

beqz1 
beqz2 
fetch0 
beqz3 
fetch0 
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6.823
Size of Control Store 
status & 
opcode 

size = 2(w+s) x (c + s) 
Control 

ROM 
data 

addr 

Control signals 

µPC 

w 
/ 

/ 

/ c 

s 

next 
µPC 

DLX 
w = 6+2 c = 17 s = ?

no. of steps per opcode = 4 to 6 + fetch-sequence

no. of states ≈ (4 steps per op-group ) x op-groups 


+ common sequences 
= 4 x 8 + 10 states = 42 states 

⇒ s = 6 
Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes 
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6.823
Reducing Size of Control Store 
Control store has to be fast ⇒ expensive 

� Reduce the ROM height (= address bits) 
⇒ reduce inputs by extra external logic 

each input bit doubles the size of the 
control store 

⇒ reduce states by grouping opcodes 
find common sequences of actions 

⇒ condense input status bits 
combine all exceptions into one, i.e., 
exception/no-exception 

� Reduce the ROM width 
⇒ restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ... 
⇒ encode control signals (vertical microcode) 
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absolute 
Opcode 

17 Control Signals 

Control ROM 

address 

data 

+1 

ext 

µPC (state) 

jump 
logic 

zero 

µPC µPC+1op-group 

µJumpType 
(next, spin, fetch, 

busy 

µPCSrc 
Reduced ROM 

height 
encoding inputs 

Reduce ROM 
width by 
encoding 
next-state 

by 

dispatch, feqz, fnez )
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Jump Logic 

µPCSrc = Case µJumpTypes 

next ⇒ µPC+1 

spin ⇒ if (busy) then µPC else µPC+1 

fetch ⇒ absolute 

dispatch ⇒ op-group 

feqz ⇒ if (zero) then absolute else µPC+1 

fnez ⇒ if (zero) then µPC+1 else absolute 
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DLX-Controller-2 

State Control points 

fetch0 MA ← PC 
fetch1 IR ← Memory 
fetch2 A ← PC 
fetch3 PC ← A + 4 
... 
ALU0 A ← Reg[rf1] 
ALU1 B ← Reg[rf2] 

next-state 

next 
spin 
next 
dispatch 

next 
next 

ALU2 Reg[rf3]← func(A,B) fetch 

ALUi0 A ← Reg[rf1] next 
ALUi1 B ← sExt16(Imm) next 
ALUi2 Reg[rf3]← Op(A,B) fetch 
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6.823
Load & Store: DLX-Controller-2 

State Control points next-state 

LW0 A ← Reg[rf1] next 
LW1 B ← sExt16(Imm) next 
LW2 MA ← A+B next 
LW3 Reg[rf2] ← Memory spin 
LW4 fetch 

SW0 A ← Reg[rf1] next 
SW1 B ← sExt16(Imm) next 
SW2 MA ← A+B next 
SW3 Memory ← Reg[rf2] spin 
SW4 fetch 
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6.823
Branches: DLX-Controller-2 

State Control points 

BEQZ0 A ← Reg[rf1]

BEQZ1


BEQZ2 A ← PC

BEQZ3 B ← sExt16(Imm)

BEQZ4 PC ← A+B


BNEZ0 A ← Reg[rf1]

BNEZ1


BNEZ2 A ← PC

BNEZ3 B ← sExt16(Imm)

BNEZ4 PC ← A+B


next-state 

next 
fnez 
next 
next 
fetch 

next 
feqz 
next 
next 
fetch 
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6.823
Jumps: DLX-Controller-2 

State Control points next-state 

J0 A ← PC next 
J1 B ← sExt26(Imm) next 
J2 PC ← A+B fetch 

JR0 PC ←Reg[rf1] fetch 

JAL0 A ← PC next 
JAL1 Reg[31] ← A next 
JAL2 B ← sExt26(Imm) next 
JAL3 PC ← A+B fetch 

JALR0 A ← PC next 
JALR1 Reg[31] ← A next 
JALR2 PC ←Reg[rf1] fetch 
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Microprogramming in IBM 360 

750200025001500memory
cycle (ns) 

351574Rental fee 
($K/month) 

200500625750µstore 
cycle (ns) 

BCROSBCROSTCROSCCROSµstore 
technology 

2.752.7544µcode size 
(K µinsts) 

87855250µinst width 
(bits) 

6432168Datapath
width (bits) 

M65M50M40M30 

� Only fastest models (75 and 95) were hardwired
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Bits per µInstruction 

# µInstructions 

� Horizontal µcode has longer µinstructions 
� Can specify multiple parallel operations per µinstruction 
� Needs fewer steps to complete each macroinstruction 
� Sparser encoding ⇒ more bits 

� Vertical µcode has more, narrower µinstructions 
� In limit, only single datapath operation per µinstruction 
� µcode branches require separate µinstruction 
� More steps to complete each macroinstruction 
� More compact ⇒ less bits 

� Nanocoding 
� Tries to combine best of horizontal and vertical µcode 
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6.823


Exploits recurring µcode 
next-statecontrol signal patterns 


in µcode, e.g., 


ALU0 A ← Reg[rf1] 

...

ALUi0 A ← Reg[rf1]

...


µcode ROM 

nanoaddress 

µaddress 

µPC (state) 

nanoinstruction ROM 

17 Control Signals 

data 

� MC68000 had 17-bit µcode containing either 10-bit 
µjump or 9-bit nanoinstruction pointer 
� Nanoinstructions were 68 bits wide, decoded to give

196 control signals 
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IR A B 

RegWrt 
enReg 

MemWrt 
enMem 

MA 

addr addr 

data data 

rf1
rf2
rf3 
32(PC)
31(Link) 

RegSel 

busyzero? 

ALUop 

Opcode 

ldIR ldA ldB ldMA 

Memory 
32 GPRs 
+ PC ... 

32-bit RegALU 

enALU 

Imm 
Ext 

enImm 

ExSel 

Bus 

/
6 

rf3 ← M[(rf1)] op (rf2) Reg-Memory-src ALU op 

M[(rf3)] ← M[(rf1)] op M[(rf2)] Mem-Mem ALU op 
M[(rf3)] ← (rf1) op (rf2) Reg-Memory-dst ALU op 
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DLX-Controller-2 

Mem-Mem ALU op M[(rf3)] ← M[(rf1)] op M[(rf2)] 

ALUMM0 MA ← Reg[rf1] 
ALUMM1 A ← Memory 
ALUMM2 MA ← Reg[rf2] 
ALUMM3 B ← Memory 
ALUMM4 MA ← Reg[rf3] 
ALUMM5 Memory ← func(A,B) 
ALUMM6 

next 
spin 
next 
spin 
next 
spin 
fetch 

Complex instructions usually do not require datapath 
modifications in a microprogrammed implementation 

-- only extra space for the control program 

Implementing these instructions using a hardwired controller is 
difficult without datapath modifications 
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6.823
Microcode Emulation 
� IBM initially miscalculated importance of

software compatibility when introducing 360
series 
� Honeywell started effort to steal IBM 1401

customers by offering translation software
(“Liberator”) for Honeywell H200 series machine 
� IBM retaliates with optional additional microcode

for 360 series that can emulate IBM 1401 ISA, later 
extended for IBM 7000 series 
�	 one popular program on 1401 was a 650 simulator, so some

customers ran many 650 programs on emulated 1401s (650-
>1401->360) 



Asanovic/Devadas 

6.823Microprogramming in the Spring 2002 

Seventies 
Thrived because: 

� Significantly faster ROMs than DRAMs were available 

� For complex instruction sets, datapath and controller 
were cheaper and simpler 

� New instructions , e.g., floating point, could be 
supported without datapath modifications 

� Fixing bugs in the controller was easier 

� ISA compatibility across various models could be 
achieved easily and cheaply 

Except for cheapest and fastest machines, all computers 
were microprogrammed 
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Writable Control Store (WCS) 
Implement control store with SRAM not ROM 

• MOS SRAM memories now almost as fast as control store (core 
memories/DRAMs were 10x slower) 
• Bug-free microprograms difficult to write 

User-WCS provided as option on several minicomputers 
• Allowed users to change microcode for each process 

User-WCS failed 
• Little or no programming tools support 
• Hard to fit software into small space 
• Microcode control tailored to original ISA, less useful for others 
• Large WCS part of processor state - expensive context switches 
• Protection difficult if user can change microcode 
• Virtual memory required restartable microcode 
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6.823
Performance Issues 
Microprogrammed control 

⇒ multiple cycles per instruction 

Cycle time ? 
tC > max(treg-reg, tALU, tµROM, tRAM) 

Given complex control, tALU & tRAM can be broken 
into multiple cycles. However, tµROM cannot be 
broken down. Hence 

tC > max(treg-reg, tµROM) 

Suppose 10 * tµROM < tRAM 
good performance, relative to the single-cycle 
hardwired implementation, can be achieved 
even with a CPI of 10 
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6.823
VLSI & Microprogramming 
By late seventies 
• technology assumption about ROM & RAM 
speed became invalid 

• micromachines became more complicated 
• to overcome slower ROM, micromachines 
were pipelined 
• complex instruction sets led to the need for 
subroutine and call stacks in µcode. 
• need for fixing bugs in control programs 
was in conflict with read-only nature of µROM 

⇒ WCS (B1700, QMachine, Intel432, …) 
• introduction of caches and buffers, especially for 
instructions, made multiple-cycle execution of 
reg-reg instructions unattractive 
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Microprogramming is far from extinct 

Played a crucial role in micros of the Eighties, 
Motorola 68K series 
Intel 386 and 486 

Microcode is present in most modern CISC micros in an 
assisting role (e.g. AMD Athlon, Intel Pentium-4) 
• Most instructions are executed directly, i.e., with 
hard-wired control 
• Infrequently-used and/or complicated instructions 
invoke the microcode engine 

Patchable microcode common for post-fabrication bug 

fixes, e.g. Intel Pentiums load µcode patches at bootup



