
1

1

Cache Coherence

Page 1

2

2

Memory Consistency in SMPs

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-2A 100

memoryA 100

Page 2

3

3

Write-back Caches & SC

• T1 is executed

cache-2 prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

prog T1
ST X, 1
ST Y,11

cache-1 memory
X =
Y =10
X’=
Y’=

X=
Y=11

Y =
Y’=
X =
X’=

• cache-1 writes back Y
X =
Y =11
X’=
Y’=

X=
Y=11

Y =
Y’=
X =
X’=

X =
Y =11
X’=
Y’=

X=
Y=11

Y = 11
Y’= 11
X = 0
X’= 0

• cache-1 writes back X

X =
Y =11
X’=
Y’=

X=
Y=11

Y = 11
Y’= 11
X = 0
X’= 0

• T2 executed

X =
Y =11
X’=
Y’=11

X=
Y=11

Y =
Y’=
X =
X’=

• cache-2 writes
back X’ & Y’

0 1

0 1

1 1

0 1

1

0

1

Page 3

4

4

Write-through Caches & SC

cache-2
Y =
Y’=
X =
X’=

memory
X =
Y =10
X’=
Y’=

cache-1
X=
Y=10

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

prog T1
ST X, 1
ST Y,11

Write-through caches don’t preserve
sequential consistency either

• T1 executed
Y =
Y’=
X =
X’=

X =
Y =11
X’=
Y’=

X=
Y=11

• T2 executed Y = 11
Y’= 11
X =
X’=

X =
Y =11
X’=
Y’= 11

X=
Y=11

0

0 0

0

1 1

0
0

1

0

1

Page 4

5

5

Maintaining Sequential Consistency

SC sufficient for correct producer-consumer
and mutual exclusion code (e.g., Dekker)

Multiple copies of a location in various caches
can cause SC to break down.

Hardware support is required such that
• only one processor at a time has write
permission for a location

• no processor can load a stale copy of
the location after a write

⇒ cache coherence protocols

Page 5

6

6

A System with Multiple Caches

M

L1
P

L1
P

L1
P

L1
P

L2L2
L1
P

L1
P

Interconnect

• Modern systems often have hierarchical caches
• Each cache has exactly one parent but can have
zero or more children

• Only a parent and its children can communicate directly
• Inclusion property is maintained between a parent
and its children, i.e.,

a ∈ Li ⇒ a ∈ Li+1

Page 6

7

7

Cache Coherence Protocols for SC

write request:
the address is invalidated (updated) in all other
caches before (after) the write is performed

read request:
if a dirty copy is found in some cache, a write-back
is performed before the memory is read

We will focus on Invalidation protocols
as opposed to Update protocols

Update protocols, or write broadcast. Latency between writing a word in one
processor
and reading it in another is usually smaller in a write update scheme.
But since bandwidth is more precious, most multiprocessors use a write
invalidate scheme.

Page 7

8

8

Warmup: Parallel I/O

DISK
DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A
D

R/W

DMA stands for Direct Memory Access

Page transfers
occur while
Processor runs

Either Cache or DMA can
be the Bus Master and
effect transfers

Memory
Bus

Page 8

9

9

Problems with Parallel I/O

DISK
DMA

Physical
Memory

Proc.
Cache

Memory Disk: Physical memory may be
stale if Cache is .

Disk y: Cache may have data
corresponding to .

Memory
Bus

Cached portions
of page

DMA transfers

Memor

Page 9

10

10

Snoopy Cache [Goodman 1983]

• Idea: Have cache watch (or snoop upon) DMA
transfers, and then “do the right thing”

• Snoopy cache tags are dual-ported

Proc.

Cache

Snoopy read port
attached to Memory
BusData

(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

A snoopy cache works in analogy to your snoopy next door neighbor, who is
always watching to see what you're doing, and interfering with your life. In
the case of the snoopy cache, the caches are all watching the bus for
transactions that affect blocks that are in the cache at the moment. The
analogy breaks down here; the snoopy cache only does something if your
actions actually affect it, while the snoopy neighbor is always interested in
what you're up to.

Page 10

11

11

Snoopy Cache Actions

Observed Bus
Cycle

Address not cached .

Read Cycle Cached, unmodified .

Memory Disk Cached, modified .

Address not cached .

Write Cycle Cached, unmodified .

Disk y Cached, modified .

Cache Action Cache State

Memor

Page 11

12

12

Shared Memory Multiprocessor

Use snoopy mechanism to keep all
processors’ view of memory coherent

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

Page 12

13

13

Cache State Transition Diagram

M: Modified Exclusive
E: Exclusive, unmodified
S: Shared
I: Invalid

M

S

Each cache line tag

Address tag
state
bits

Write miss

Other processor
intent to write

Read
miss

M 1
intent to write

Other processor
intent to write

M1 write

Read by any
processor

M1 write
or read

Other processor
read/ Write back line

M1 read
E

I

Page 13

14

14

2 Processor Example

M

S

Write miss

Read
miss M 1

intent to write

M2 intent to write

M1 write
M1 write
or read

M2 read,
Write back line

M1 read

M2 intent to writeM1

M

S

Write miss

Read
miss M 2

intent to write

M1 intent to write

M2 write
M2 write
or read

M1 read,
Write back line

M2 read

M1 intent to writeM2

Block b

Block b

E

I

E

I

Page 14

15

15

Observation

If a line is in M or E, then no other cache has
a valid copy of the line!

– Memory stays coherent, multiple differing copies
cannot exist

M

S

Write miss

Other processor
intent to write

Read
miss

M 1
intent to write

Other processor
intent to write

M1 write

Read by any
processor

M1 write
or read

Other processor
read/ Write back line

M1 read
E

I

Page 15

16

16

Cache Coherence State Encoding

tag

=

data block

word

tag indexm offset

Hit?

block Address

V

Valid and dirty bits can be used
to encode S, I, and (E, M) states

V=0, D=x ⇒ Invalid
V=1, D=0 ⇒ Shared (not dirty)
V=1, D=1 ⇒ Exclusive (dirty)

M

What does it mean to merge E, M states?

Page 16

17

17

Snooper Snooper Snooper Snooper

2-Level Caches

• Processors often have two-level caches
• Small L1 on chip, large L2 off chip

• Inclusion property: entries in L1 must be in L2
invalidation in L2 ⇒ invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth

• What problem could occur?

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Interlocks are required when both CPU-L1 and L2-Bus interactions involve
the same address.

Page 17

18

18

Intervention

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

cache-1A 200

CPU-Memory bus

CPU-1

Memory (stale)A 100

cache-2

CPU-2

Page 18

19

19

False Sharing

A cache block contains more than one word

Cache-coherence is done at the block-level and not
word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

state blk addr data0 data1 ... dataN

The block may be invalidated many times unnecessarily because
the addresses share a common block.

Page 19

20

20

Synchronization and Caches:
Performance Issues

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if
it is found to be zero.

Processor 1
R ← 1

L: swap(mutex, R);
if <R> then goto L;
<critical section>

M[mutex] ← 0;

Processor 2
R ← 1

L: swap(mutex, R);
if <R> then goto L;
<critical section>

M[mutex] ← 0;

Processor 3
R ← 1

L: swap(mutex, R);
if <R> then goto L;
<critical section>

M[mutex] ← 0;

CPU-Memory Bus

mutex=1cache cache

Page 20

21

21

Performance Related to Bus occupancy

In general, a read-modify-write instruction requires
two memory (bus) operations without intervening
memory operations by other processors

In a multiprocessor setting, bus needs to be locked
for the entire duration of the atomic read and write
operation

⇒ expensive for simple buses
⇒ very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

Split transaction bus has a read-request transaction followed by a

Memory-reply transaction that contains the data.

Split transactions make the bus available for other masters

While the memory reads the words of the requested address.

It also normally means that the CPU must arbitrate for the bus

To request the data and memory must arbitrate for the bus to

Return the data. Each transaction must be tagged. Split

Transaction buses have higher bandwidth and higher latency.

Page 21

22

22

Load-reserve & Store-conditional

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0
• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve(R, a):
<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional(a, R):
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] ← <R>;
status ← succeed;

else status ← fail;

Page 22

23

23

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions is
not necessarily reduced, but splitting an atomic
instruction into load-reserve & store-conditional:

• increases bus utilization (and reduces
processor stall time), especially in split-
transaction

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform a store each time

buses

Page 23

24

24

Blocking caches
One request at a time + CC ⇒ SC

Non-blocking caches
Multiple requests (different addresses) concurrently + CC

⇒ Relaxed memory models
CC ensures that all processors observe the same order
of loads and stores to an address

Out-of-Order Loads/Stores & CC

Cache
Memorypushout (Wb-rep)

load/store
buffers

CPU

(S-req, E-req)

(S-rep, E-rep)

(Wb-req, Inv-req, Inv-rep)
snooper

(I/S/E)

Page 24

