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Cache Coherence 
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Memory Consistency in SMPs 

cache-1A 100 

CPU-Memory bus 

CPU-1 CPU-2 

Suppose CPU-1 updates A to 200. 
write-back: memory and cache-2 have stale values 
write-through: cache-2 has a stale value 

Do these stale values matter? 
What is the view of shared memory for programming? 

cache-2A 100 

memoryA 100 
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Write-back Caches & SC 

• T1 is executed 

cache-2 prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

prog T1 
ST X, 1 
ST Y,11 

cache-1 memory
X = 
Y =10 
X’= 
Y’= 

X= 
Y=11 

Y = 
Y’= 
X = 
X’= 

• cache-1 writes back Y 
X = 
Y =11 
X’= 
Y’= 

X= 
Y=11 

Y = 
Y’= 
X = 
X’= 

X = 
Y =11 
X’= 
Y’= 

X= 
Y=11 

Y = 11 
Y’= 11 
X = 0 
X’= 0 

• cache-1 writes back X 

X = 
Y =11 
X’= 
Y’= 

X= 
Y=11 

Y = 11 
Y’= 11 
X = 0 
X’= 0 

• T2 executed 

X = 
Y =11 
X’= 
Y’=11 

X= 
Y=11 

Y = 
Y’= 
X = 
X’= 

• cache-2 writes 
back X’ & Y’ 

0 1 

0 1 

1 1 

0 1 

1 

0 

1 
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Write-through Caches & SC 

cache-2 
Y = 
Y’= 
X = 
X’= 

memory 
X = 
Y =10 
X’= 
Y’= 

cache-1 
X= 
Y=10 

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

prog T1 
ST X, 1 
ST Y,11 

Write-through caches don’t preserve 
sequential consistency either 

• T1 executed 
Y = 
Y’= 
X = 
X’= 

X = 
Y =11 
X’= 
Y’= 

X= 
Y=11 

• T2 executed Y = 11 
Y’= 11 
X = 
X’= 

X = 
Y =11 
X’= 
Y’= 11 

X= 
Y=11 

0 

0 0 

0 

1 1 

0 
0 

1 

0 

1 

Page 4




5

5 

Maintaining Sequential Consistency 

SC sufficient for correct producer-consumer 
and mutual exclusion code (e.g., Dekker) 

Multiple copies of a location in various caches 
can cause SC to break down. 

Hardware support is required such that 
• only one processor at a time has write 
permission for a location 

• no processor can load a stale copy of 
the location after a write 

⇒ cache coherence protocols 
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A System with Multiple Caches 

M 

L1 
P 

L1 
P 

L1 
P 

L1 
P 

L2L2 
L1 
P 

L1 
P 

Interconnect 

• Modern systems often have hierarchical caches 
• Each cache has exactly one parent but can have 
zero or more children 

• Only a parent and its children can communicate directly 
• Inclusion property is maintained between a parent 
and its children, i.e., 

a ∈ Li ⇒ a ∈ Li+1 
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Cache Coherence Protocols for SC 

write request: 
the address is invalidated (updated) in all other 
caches before (after) the write is performed 

read request: 
if a dirty copy is found in some cache, a write-back 
is performed before the memory is read 

We will focus on Invalidation protocols 
as opposed to Update protocols 

Update protocols, or write broadcast. Latency between writing a word in one 
processor 
and reading it in another is usually smaller in a write update scheme. 
But since bandwidth is more precious, most multiprocessors use a write 
invalidate scheme. 
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Warmup: Parallel I/O 

DISK 
DMA 

Physical 
Memory 

Proc. 

R/W 

Data (D) Cache 

Address (A) 

A 
D 

R/W 

DMA stands for Direct Memory Access 

Page transfers 
occur while 
Processor runs 

Either Cache or DMA can 
be the Bus Master and 
effect transfers 

Memory
Bus 
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Problems with Parallel I/O 

DISK 
DMA 

Physical 
Memory 

Proc. 
Cache 

Memory Disk: Physical memory may be 
stale if Cache is . 

Disk y: Cache may have data 
corresponding to . 

Memory
Bus 

Cached portions 
of page 

DMA transfers 

Memor
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Snoopy Cache [ Goodman 1983 ] 

• Idea: Have cache watch (or snoop upon) DMA
transfers, and then “do the right thing” 

• Snoopy cache tags are dual-ported 

Proc. 

Cache 

Snoopy read port 
attached to Memory 
BusData 

(lines) 

Tags and
State 

A 

D 

R/W 

Used to drive Memory Bus 
when Cache is Bus Master 

A 

R/W 

A snoopy cache works in analogy to your snoopy next door neighbor, who is 
always watching to see what you're doing, and interfering with your life. In
the case of the snoopy cache, the caches are all watching the bus for
transactions that affect blocks that are in the cache at the moment. The 
analogy breaks down here; the snoopy cache only does something if your
actions actually affect it, while the snoopy neighbor is always interested in 
what you're up to. 
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Snoopy Cache Actions 

Observed Bus 
Cycle 

Address not cached . 

Read Cycle Cached, unmodified . 

Memory  Disk Cached, modified . 

Address not cached . 

Write Cycle Cached, unmodified . 

Disk y Cached, modified . 

Cache Action Cache State 

Memor
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Shared Memory Multiprocessor 

Use snoopy mechanism to keep all
processors’ view of memory coherent 

M1 

M2 

M3 

Snoopy 
Cache 

DMA 

Physical 
Memory 

Memory
Bus 

Snoopy 
Cache 

Snoopy 
Cache 

DISKS 
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Cache State Transition Diagram 

M: Modified Exclusive 
E: Exclusive, unmodified 
S: Shared 
I: Invalid 

M 

S 

Each cache line tag 

Address tag 
state 
bits 

Write miss 

Other processor 
intent to write 

Read 
miss 

M 1
intent to write

 

Other processor 
intent to write 

M1 write 

Read by any 
processor 

M1 write 
or read 

Other processor 
read/ Write back line 

M1 read 
E 

I 
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2 Processor Example 

M 

S 

Write miss 

Read 
miss M 1

intent to write
 

M2 intent to write 

M1 write 
M1 write 
or read 

M2 read, 
Write back line 

M1 read 

M2 intent to writeM1 

M 

S 

Write miss 

Read 
miss M 2

intent to write
 

M1 intent to write 

M2 write 
M2 write 
or read 

M1 read, 
Write back line 

M2 read 

M1 intent to writeM2 

Block b 

Block b 

E 

I 

E 

I 
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Observation 

If a line is in M or E, then no other cache has 
a valid copy of the line! 

– Memory stays coherent, multiple differing copies 
cannot exist 

M 

S 

Write miss 

Other processor 
intent to write 

Read 
miss 

M 1
intent to write

 

Other processor 
intent to write 

M1 write 

Read by any 
processor 

M1 write 
or read 

Other processor 
read/ Write back line 

M1 read 
E 

I 
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Cache Coherence State Encoding 

tag 

= 

data block 

word 

tag indexm offset 

Hit? 

block Address 

V 

Valid and dirty bits can be used 
to encode S, I, and (E, M) states 

V=0, D=x ⇒ Invalid 
V=1, D=0 ⇒ Shared (not dirty) 
V=1, D=1 ⇒ Exclusive (dirty) 

M 

What does it mean to merge E, M states? 
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Snooper Snooper Snooper Snooper 

2-Level Caches 

• Processors often have two-level caches 
• Small L1 on chip, large L2 off chip 

• Inclusion property: entries in L1 must be in L2 
invalidation in L2 ⇒ invalidation in L1 

• Snooping on L2 does not affect CPU-L1 bandwidth 

• What problem could occur? 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

Interlocks are required when both CPU-L1 and L2-Bus interactions involve 
the same address. 
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Intervention 

When a read-miss for A occurs in cache-2, 
a read request for A is placed on the bus 

• Cache-1 needs to supply & change its state to shared 
• The memory may respond to the request also! 

does memory know it has stale data? 

Cache-1 needs to intervene through memory 
controller to supply correct data to cache-2 

cache-1A 200 

CPU-Memory bus 

CPU-1 

Memory (stale)A 100 

cache-2 

CPU-2 
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False Sharing 

A cache block contains more than one word 

Cache-coherence is done at the block-level and not 
word-level 

Suppose M1 writes wordi and M2 writes wordk and 
both words have the same block address. 

What can happen? 

state blk addr data0 data1 ... dataN 

The block may be invalidated many times unnecessarily because 
the addresses share a common block. 
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Synchronization and Caches:
Performance Issues 

Cache-coherence protocols will cause mutex to ping-pong 
between P1’s and P2’s caches. 

Ping-ponging can be reduced by first reading the mutex 
location (non-atomically) and executing a swap only if 
it is found to be zero. 

Processor 1 
R ← 1 

L: swap(mutex, R); 
if <R> then goto L; 
<critical section> 

M[mutex] ← 0; 

Processor 2 
R ← 1 

L: swap(mutex, R); 
if <R> then goto L; 
<critical section> 

M[mutex] ← 0; 

Processor 3 
R ← 1 

L: swap(mutex, R); 
if <R> then goto L; 
<critical section> 

M[mutex] ← 0; 

CPU-Memory Bus 

mutex=1cache cache 
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Performance Related to Bus occupancy 

In general, a read-modify-write instruction requires 
two memory (bus) operations without intervening 
memory operations by other processors 

In a multiprocessor setting, bus needs to be locked 
for the entire duration of the atomic read and write 
operation 

⇒ expensive for simple buses 
⇒ very expensive for split-transaction buses 

modern processors use 
load-reserve 
store-conditional 

Split transaction bus has a read-request transaction followed by a 

Memory-reply transaction that contains the data.

Split transactions make the bus available for other masters


While the memory reads the words of the requested address.

It also normally means that the CPU must arbitrate for the bus


To request the data and memory must arbitrate for the bus to


Return the data. Each transaction must be tagged. Split

Transaction buses have higher bandwidth and higher latency.
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Load-reserve & Store-conditional 

If the snooper sees a store transaction to the address 
in the reserve register, the reserve bit is set to 0 
• Several processors may reserve ‘a’ simultaneously 
• These instructions are like ordinary loads and stores 
with respect to the bus traffic 

Special register(s) to hold reservation flag and 
address, and the outcome of store-conditional 

Load-reserve(R, a): 
<flag, adr> ← <1, a>; 
R ← M[a]; 

Store-conditional(a, R): 
if <flag, adr> == <1, a> 
then cancel other procs’ 

reservation on a; 
M[a] ← <R>; 
status ← succeed; 

else status ← fail; 
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Performance: 
Load-reserve & Store-conditional 

The total number of memory (bus) transactions is 
not necessarily reduced, but splitting an atomic 
instruction into load-reserve & store-conditional: 

• increases bus utilization (and reduces 
processor stall time), especially in split-
transaction 

• reduces cache ping-pong effect because 
processors trying to acquire a semaphore do 
not have to perform a store each time 

buses 

Page 23




24

24 

Blocking caches 
One request at a time + CC ⇒ SC 

Non-blocking caches 
Multiple requests (different addresses) concurrently + CC 

⇒ Relaxed memory models 
CC ensures that all processors observe the same order 
of loads and stores to an address 

Out-of-Order Loads/Stores & CC 

Cache 
Memorypushout (Wb-rep) 

load/store 
buffers 

CPU 

(S-req, E-req) 

(S-rep, E-rep) 

(Wb-req, Inv-req, Inv-rep) 
snooper 

(I/S/E) 
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