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Multilevel Memories 
(Improving performance using a

little “cash”) 

Page 1




2

2 

CPU-Memory Bottleneck 

MemoryCPU 

Performance of high-speed computers is usually 
limited by memory bandwidth & latency 

• Latency (time for a single access) 
Memory access time >> Processor cycle time 

• Bandwidth (number of accesses per unit time) 
if fraction m of instructions access memory, 

⇒ 1+m memory references / instruction 
⇒ CPI = 1 requires 1+m memory refs / cycle 
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Processor-DRAM Gap (latency)
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µProc
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“Moore’s Law”

[Courtesy of David Patterson, UC 
Berkeley; Used with Permission]

Four-issue superscalar executes 400 instructions during cache miss!
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Multilevel Memory 

Strategy: Hide latency using small, fast 
memories called caches. 

Caches are a mechanism to hide memory
latency based on the empirical observation
that the stream of memory references made 
by a processor exhibits locality 

PC 
… 96 

loop: ADD r2, r1, r1 100 
SUBI r3, r3, #1 104 
BNEZ r3, loop 108 

… 112 

What is the pattern 
of instruction 
memory addresses? 
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Typical Memory Reference Patterns 

Address 

Time 

Instruction 
fetches 

Stack 
accesses 

Data 
accesses 

n loop iterations 
linear sequence 
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Locality Properties of Patterns 

Two locality properties of memory references: 

– If a location is referenced it is likely to be 
referenced again in the near future. 
This is called temporal locality. 

– If a location is referenced it is likely that 
locations near it will be referenced in the near 
future. 
This is called spatial locality. 
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Caches 

Caches exploit both properties of patterns. 

– Exploit temporal locality by remembering the 
contents of recently accessed locations. 

– Exploit spatial locality by remembering blocks 
of contents of recently accessed locations. 
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Memory Hierarchy 

Small, 
Fast 

Memory 
(RF, SRAM) 

• size: Register << SRAM << DRAM why? 
• latency: Register << SRAM << DRAM why? 
• bandwidth: on-chip >> off-chip why? 

On a data access: 
hit (data ∈ fast memory) ⇒ low latency access 
miss (data ∉ fast memory) ⇒ long latency access (DRAM) 

Fast mem effective only if bandwidth reqrmnt at B << A 

CPU 
Big, Slow 
Memory 
(DRAM) 

A B 

holds frequently used data 

Due to cost

Due to size of DRAM


Due to cost and wire delays (wires on-chip cost much less, and are faster)
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Management of Memory Hierarchy 

• Software managed, e.g., registers 
– part of the software-visible processor state 
– software in complete control of storage allocation 

» but hardware might do things behind software’s back, 
e.g., register renaming 

• Hardware managed, e.g., caches 
– not part of the software-visible processor state 
– hardware automatically decides what is kept in

fast memory 
» but software may provide “hints”, e.g., don’t cache or 

prefetch 
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A Typical Memory Hierarchy c.2000 

L1 Data 
Cache 

L1 
Instruction 

Cache Unified L2 
Cache 

RF Memory 

Memory 

Memory 

Memory 

Multiported 
register file 

(part of CPU) 

Split instruction & data primary 
caches (on-chip SRAM) 

Multiple interleaved 
memory banks 

(DRAM) 

Large unified secondary cache 
(on-chip or off-chip SRAM) 

CPU 
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Inside a Cache 

CACHEProcessor Main 
Memory 

Address Address 

DataData 

Address 
Tag 

Data Block 

Data 
Byte 

Data 
Byte 

Data 
Byte 

Line100 

304 

6848 

copy of main 
memory
location 100 

copy of main 
memory
location 101 
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Cache Algorithm (Read) 

Look at Processor Address, search cache 
tags to find match. er 

Found in cache 
a.k.a. 

Not in cache 
a.k.a. MISS 

Return copy 
of data from 
cache 

Read block of data from 
Main Memory 

Wait … 

Return data to processor 
and update cache 

Which line 
do we replace? 

Then eith

HIT 
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Placement Policy 

0 1 2 3 4 5 6 70 1 2  3Set Number 

Cache 

Fully (2-way) Set Direct 
Associative Associative Mapped 

anywhere anywhere in y into 
set 0 block 4 

(12 mod 4) (12 mod 8) 

0 1 2 3 4 5 6 7 8 9 
1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9 

3 3 
0 1 

Memory 

Block Number 

block 12 
can be placed 

onl
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Direct-Mapped Cache 

Tag Data BlockV 

= 

Block 
Offset 

Tag Index 

t k 

t 

HIT Data Word or Byte 

2k 

lines 

b 
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Fully Associative Cache 

Tag Data BlockV 

= 
B

lo
ck

 
O

ffs
et

 
Ta

g 

t 

b 

HIT 

Data 
Word 
or Byte 

= 

= 

t 
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Direct Map Address Selection
higher-order vs. lower-order address bits 

tag 

= 

status data block 

word 

indexm- tag offsetb 

valid? 

hit? 

Block Address 

Selection based on lower-order 
address bits or higher-order 
address bits? 

b 
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2-Way Set-Associative Cache 

Tag Data BlockV 

= 

Block 
Offset 

Tag Index 

t k 

b 

HIT 

Tag Data BlockV 

Data 
Word 
or Byte 

= 

t 
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Highly-Associative Caches 

• For high associativity, use content-addressable 
memory (CAM) for tags 

• Overhead? 

Tag =? Data Block 
Tag =? Data Block 

Tag =? Data Block 

Set 0 
Set 1 

Set i 

Hit? DataOnly one set enabled 
Only hit data accessed 

tagt seti offsetb 

Advantage is low power because only hit data is accessed. 
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Average Read Latency using a Cache 

α is HIT RATIO: Fraction of references in cache 
1 - α is MISS RATIO: Remaining references 
Average access time for serial search: 

Average access time for parallel search: 

tc is smallest for which type of cache? 

CACHEProcessor Main 
Memory 

Addr Addr 

DataData 

tc + (1 - α) tm 

CACHEProcessor Main 
Memory 

Addr 

DataData 
α tc + (1 - α) tm 
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Write Policy 

Cache hit: 
write through: write both cache & memory 

- generally higher traffic but simplifies cache coherence 
write back: write cache only (memory is written 

only when the entry is evicted) 
- a dirty bit per block can further reduce the traffic 

Cache miss: 
no write allocate: only write to main memory 
write allocate: 

fetch block into cache 

Common combinations: 
write through and no write allocate 
write back with write allocate 

(aka fetch on write) 
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Write Performance 

Tag DataV 

= 

Block 
Offset 

Tag Index 

t k 
b 

t 

HIT Data Word or Byte 

2k 

lines 

WE 
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Replacement Policy 

In an associative cache, which block from a set should 
be evicted when the set becomes full? 

• Random 

• Least Recently Used (LRU) 
• LRU cache state must be updated on every access 
• true implementation only feasible for small sets (2-way easy) 
• pseudo-LRU binary tree often used for 4-8 way 

• First In, First Out (FIFO) a.k.a. Round-Robin 
• used in highly associative caches 

This is a second-order effect. Why? 
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Causes for Cache Misses 

• Compulsory: first-reference to a block a.k.a. cold 
start misses 
- misses that would occur even with infinite cache 

• Capacity: cache is too small to hold all data needed 
by the program 
- misses that would occur even under perfect 
placement & replacement policy 

• Conflict: misses that occur because of collisions 
due to block-placement strategy 
- misses that would not occur with full associativity 

Determining the type of a miss requires running 
program traces on a cache simulator 
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Improving Cache Performance 

Average memory access time = 
Hit time + Miss rate x Miss penalty 

To improve performance: 
• reduce the miss rate (e.g., larger cache) 
• reduce the miss penalty (e.g., L2 cache) 
• reduce the hit time 

Aside: What is the simplest design strategy? 

Design the largest primary cache without slowing down the clock 
Or adding pipeline stages. 
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Word3Word0 Word1 Word2 

Block Size and Spatial Locality 

Larger block size has distinct hardware advantages 
• less tag overhead 
• exploit fast burst transfers from DRAM 
• exploit fast burst transfers over wide busses 

What are the disadvantages of increasing block size? 

2b = block size a.k.a line size (in bytes) 

Split CPU 
address 

b bits32-b bits 

Tag 

Block is unit of transfer between the cache and memory 
4 word block, 

b=2 

block address offsetb 

Larger block size will reduce compulsory misses (first miss to a block). 
Larger blocks may increase conflict misses since the number of blocks 
is smaller. 
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Victim Caches (HP 7200) 

L1 Data 
Cache 

Unified L2 
Cache 

RF 

CPU 

Victim 
FA Cache 
4 blocks 

Replaced data 
from L1 

Replaced data 
From VC 

where ? 
Hit data 
from VC 

(miss 
in L1) 

Works very well with a direct-mapped cache 
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Pseudo-Associative Caches (MIPS R1000) 

Look at Processor Address, look in indexed 
set for data. 

HIT MISS 

Return copy 
of data from 
cache 

Invert MSB of index field 

Look in “pseudo” set 

Read block of data from 
next level of cache 

MISS 
SLOW HIT 

Then either 
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Reducing (Read) Miss Penalty 

• Write buffer may hold updated value of location 
needed by a read miss 

• On a read miss, simple scheme is to wait for the write 
buffer to go empty 

• Check write buffer on read miss, if no conflicts, allow 
read miss to continue (else, return value in write buffer) 

• Doesn’t help much. Why? 

L1 Data 
Cache 

Unified 
L2 Cache 

RF 

CPU 

Write 
buffer 

Replaced dirty data from L1 in writeback cache 
OR 

All writes in writethru cache 

Deisgners of the MIPS M/1000 estimated that waiting for a four-word buffer 
to empty 
increased the read miss penalty by a factor of 1.5. 
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Block-level Optimizations 

• Tags are too large, i.e., too much overhead 
– Simple solution: Larger blocks, but miss 

penalty could be large. 
• Sub-block placement 

– A valid bit added to units smaller than the full 
block, called sub- locks 

– Only read a sub- lock on a miss 
– If a tag matches, is the word in the cache? 

100 
300 
204 

1 
1 1  0 
0 

b
b

1 1 1 
0 
1 0 1 
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Write Alternatives 

- Writes take two cycles in memory stage, one cycle 
for tag check plus one cycle for data write if hit 

- Design data RAM that can perform read and write 
in one cycle, restore old value after tag miss 

- Hold write data for store in single buffer ahead of
cache, write cache data during next store’s tag
check 
- Need to bypass from write buffer if read matches write buffer 

tag 
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Pipelining Cache Writes (Alpha 21064) 

Tag DataV 

= 

Block 
Offset 

Tag Index 

t k 
b 

t 

HIT Data Word or Byte 

2k 

lines 

WE 
Bypass 
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Effect of Cache Parameters on Perf. 

• Larger cache size 
+ reduces capacity and conflict misses 
- hit time may increase 

• Larger block size 
+ spatial locality reduces compulsory misses and 

capacity reload misses 
- fewer blocks may increase conflict miss rate 
- larger blocks may increase miss penalty 

• Higher associativity 
+ reduces conflict misses (up to around 4-8 way) 
- may increase access time 

¾ See page 427 of text for a nice summary 
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