
1

1

Multilevel Memories
(Improving performance using a

little “cash”)

Page 1

2

2

CPU-Memory Bottleneck

MemoryCPU

Performance of high-speed computers is usually
limited by memory bandwidth & latency

• Latency (time for a single access)
Memory access time >> Processor cycle time

• Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,

⇒ 1+m memory references / instruction
⇒ CPI = 1 requires 1+m memory refs / cycle

Page 2

1

Processor-DRAM Gap (latency)

Time

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

[Courtesy of David Patterson, UC
Berkeley; Used with Permission]

Four-issue superscalar executes 400 instructions during cache miss!

4

4

Multilevel Memory

Strategy: Hide latency using small, fast
memories called caches.

Caches are a mechanism to hide memory
latency based on the empirical observation
that the stream of memory references made
by a processor exhibits locality

PC
… 96

loop: ADD r2, r1, r1 100
SUBI r3, r3, #1 104
BNEZ r3, loop 108

… 112

What is the pattern
of instruction
memory addresses?

Page 4

5

5

Typical Memory Reference Patterns

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations
linear sequence

Page 5

6

6

Locality Properties of Patterns

Two locality properties of memory references:

– If a location is referenced it is likely to be
referenced again in the near future.
This is called temporal locality.

– If a location is referenced it is likely that
locations near it will be referenced in the near
future.
This is called spatial locality.

Page 6

7

7

Caches

Caches exploit both properties of patterns.

– Exploit temporal locality by remembering the
contents of recently accessed locations.

– Exploit spatial locality by remembering blocks
of contents of recently accessed locations.

Page 7

8

8

Memory Hierarchy

Small,
Fast

Memory
(RF, SRAM)

• size: Register << SRAM << DRAM why?
• latency: Register << SRAM << DRAM why?
• bandwidth: on-chip >> off-chip why?

On a data access:
hit (data ∈ fast memory) ⇒ low latency access
miss (data ∉ fast memory) ⇒ long latency access (DRAM)

Fast mem effective only if bandwidth reqrmnt at B << A

CPU
Big, Slow
Memory
(DRAM)

A B

holds frequently used data

Due to cost

Due to size of DRAM

Due to cost and wire delays (wires on-chip cost much less, and are faster)

Page 8

9

9

Management of Memory Hierarchy

• Software managed, e.g., registers
– part of the software-visible processor state
– software in complete control of storage allocation

» but hardware might do things behind software’s back,
e.g., register renaming

• Hardware managed, e.g., caches
– not part of the software-visible processor state
– hardware automatically decides what is kept in

fast memory
» but software may provide “hints”, e.g., don’t cache or

prefetch

Page 9

10

10

A Typical Memory Hierarchy c.2000

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

Multiported
register file

(part of CPU)

Split instruction & data primary
caches (on-chip SRAM)

Multiple interleaved
memory banks

(DRAM)

Large unified secondary cache
(on-chip or off-chip SRAM)

CPU

Page 10

11

11

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

Page 11

12

12

Cache Algorithm (Read)

Look at Processor Address, search cache
tags to find match. er

Found in cache
a.k.a.

Not in cache
a.k.a. MISS

Return copy
of data from
cache

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Which line
do we replace?

Then eith

HIT

Page 12

13

13

Placement Policy

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped

anywhere anywhere in y into
set 0 block 4

(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

onl

Page 13

14

14

Direct-Mapped Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

t

HIT Data Word or Byte

2k

lines

b

Page 14

15

15

Fully Associative Cache

Tag Data BlockV

=
B

lo
ck

O

ffs
et

Ta

g

t

b

HIT

Data
Word
or Byte

=

=

t

Page 15

16

16

Direct Map Address Selection
higher-order vs. lower-order address bits

tag

=

status data block

word

indexm- tag offsetb

valid?

hit?

Block Address

Selection based on lower-order
address bits or higher-order
address bits?

b

Page 16

17

17

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

Page 17

18

18

Highly-Associative Caches

• For high associativity, use content-addressable
memory (CAM) for tags

• Overhead?

Tag =? Data Block
Tag =? Data Block

Tag =? Data Block

Set 0
Set 1

Set i

Hit? DataOnly one set enabled
Only hit data accessed

tagt seti offsetb

Advantage is low power because only hit data is accessed.

Page 18

19

19

Average Read Latency using a Cache

α is HIT RATIO: Fraction of references in cache
1 - α is MISS RATIO: Remaining references
Average access time for serial search:

Average access time for parallel search:

tc is smallest for which type of cache?

CACHEProcessor Main
Memory

Addr Addr

DataData

tc + (1 - α) tm

CACHEProcessor Main
Memory

Addr

DataData
α tc + (1 - α) tm

Page 19

20

20

Write Policy

Cache hit:
write through: write both cache & memory

- generally higher traffic but simplifies cache coherence
write back: write cache only (memory is written

only when the entry is evicted)
- a dirty bit per block can further reduce the traffic

Cache miss:
no write allocate: only write to main memory
write allocate:

fetch block into cache

Common combinations:
write through and no write allocate
write back with write allocate

(aka fetch on write)

Page 20

21

21

Write Performance

Tag DataV

=

Block
Offset

Tag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE

Page 21

22

22

Replacement Policy

In an associative cache, which block from a set should
be evicted when the set becomes full?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way easy)
• pseudo-LRU binary tree often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

This is a second-order effect. Why?

Page 22

23

23

Causes for Cache Misses

• Compulsory: first-reference to a block a.k.a. cold
start misses
- misses that would occur even with infinite cache

• Capacity: cache is too small to hold all data needed
by the program
- misses that would occur even under perfect
placement & replacement policy

• Conflict: misses that occur because of collisions
due to block-placement strategy
- misses that would not occur with full associativity

Determining the type of a miss requires running
program traces on a cache simulator

Page 23

24

24

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)
• reduce the hit time

Aside: What is the simplest design strategy?

Design the largest primary cache without slowing down the clock
Or adding pipeline stages.

Page 24

25

25

Word3Word0 Word1 Word2

Block Size and Spatial Locality

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag

Block is unit of transfer between the cache and memory
4 word block,

b=2

block address offsetb

Larger block size will reduce compulsory misses (first miss to a block).
Larger blocks may increase conflict misses since the number of blocks
is smaller.

Page 25

26

26

Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
Cache

RF

CPU

Victim
FA Cache
4 blocks

Replaced data
from L1

Replaced data
From VC

where ?
Hit data
from VC

(miss
in L1)

Works very well with a direct-mapped cache

Page 26

27

27

Pseudo-Associative Caches (MIPS R1000)

Look at Processor Address, look in indexed
set for data.

HIT MISS

Return copy
of data from
cache

Invert MSB of index field

Look in “pseudo” set

Read block of data from
next level of cache

MISS
SLOW HIT

Then either

Page 27

28

28

Reducing (Read) Miss Penalty

• Write buffer may hold updated value of location
needed by a read miss

• On a read miss, simple scheme is to wait for the write
buffer to go empty

• Check write buffer on read miss, if no conflicts, allow
read miss to continue (else, return value in write buffer)

• Doesn’t help much. Why?

L1 Data
Cache

Unified
L2 Cache

RF

CPU

Write
buffer

Replaced dirty data from L1 in writeback cache
OR

All writes in writethru cache

Deisgners of the MIPS M/1000 estimated that waiting for a four-word buffer
to empty
increased the read miss penalty by a factor of 1.5.

Page 28

29

29

Block-level Optimizations

• Tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss

penalty could be large.
• Sub-block placement

– A valid bit added to units smaller than the full
block, called sub- locks

– Only read a sub- lock on a miss
– If a tag matches, is the word in the cache?

100
300
204

1
1 1 0
0

b
b

1 1 1
0
1 0 1

Page 29

30

30

Write Alternatives

- Writes take two cycles in memory stage, one cycle
for tag check plus one cycle for data write if hit

- Design data RAM that can perform read and write
in one cycle, restore old value after tag miss

- Hold write data for store in single buffer ahead of
cache, write cache data during next store’s tag
check
- Need to bypass from write buffer if read matches write buffer

tag

Page 30

31

31

Pipelining Cache Writes (Alpha 21064)

Tag DataV

=

Block
Offset

Tag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE
Bypass

Page 31

32

32

Effect of Cache Parameters on Perf.

• Larger cache size
+ reduces capacity and conflict misses
- hit time may increase

• Larger block size
+ spatial locality reduces compulsory misses and

capacity reload misses
- fewer blocks may increase conflict miss rate
- larger blocks may increase miss penalty

• Higher associativity
+ reduces conflict misses (up to around 4-8 way)
- may increase access time

¾ See page 427 of text for a nice summary

Page 32

