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Relaxed Memory Models 

Episode III in our multiprocessing miniseries.

Relaxed memory models.

What I really wanted here was an elephant with sunglasses relaxing


On a beach, but I couldn’t find one.
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Sequential Consistency: A Memory Model 

Sequential Consistency = 
arbitrary order-preserving interleaving 
of memory references of sequential programs 

SC is easy to understand but architects and 
compiler writers want to violate it for performance 

m 

P P P P P P 

Mark Hill written a paper which essentially says “why break your back for 
20%”. Actually people are out there breaking their backs for 1% in 
architecture these days. 
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Architectural optimizations that are correct for 
uniprocessors often result in a new memory 
model for multiprocessors 

Optimizations & Memory Models 

Data 
Cache 

Memory 

Pushout 
buffers 

load/store 
buffers 

CPU 

Load queue Processor-
Memory 
Interface 

This means that we are relaxing the ordering or relaxing atomicity. 
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Relaxed Models 

• What orderings among reads and writes 
performed by a single processor are
preserved by the model? 

– R Æ R, R Æ W, W Æ W, W Æ R 

• If there is a dependence, then program 
semantics demand that operations be ordered 

• If there is no dependence, the memory
consistency model determines what orders 
must be preserved 

– Relaxed model may allow an operation 
executed later to complete first 

dependence if they are to the same address 
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Memory Fences & Weak Memory Models 

Processors with relaxed or weak memory models 
need memory fence instructions to force serialization 
of memory accesses 

– In SC there is an implicit fence at each memory 
operation 

Processors with relaxed memory models: 
Sparc V8 (TSO, PSO): Membar 
PowerPC (WO): nc, EIEIO 

Memory fences are expensive operations, however, 
one pays for serialization only when it is required 

Sy
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Producer posting Item x: 
Rtail Å M[tail] 
M[<Rtail>] Å x 
membarSS 
Rtail Å <Rtail> + 1 
M[tail] Å <Rtail> 

Consumer: 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> == <Rtail> 
membarLL 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead> 
process(R) 

Using Memory Fences 

Producer Consumertail head 

Ensures that tail pointer
is not updated before x 
has been stored. 

Ensures that R is 
not loaded before 
x has been stored. 

Ensures that tail pointer is not updated before 
X has been stored. 

Ensures that R is not loaded before x has been stored. 
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Data-Race Free Programs 
(a.k.a. Properly Synchronized Programs) 

Process 1 
... 
Acquire(mutex); 
< critical section > 

Release(mutex); 

Process 2 
... 
Acquire(mutex); 
< critical section > 

Release(mutex); 

Synchronization variables (e.g., mutex) are separate 
from data variables 

Accesses to writable shared data variables are 
protected in critical regions 

⇒ no data races except for locks 
(Formal definition is elusive) 

In general, it cannot be proven if a program is data-
race free. 

Nondeterminator. 
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Fences in Data-Race Free Programs 

Process 1 
... 
Acquire(mutex); 
membar; 

< critical section > 
membar; 
Release(mutex); 

Process 2 
... 
Acquire(mutex); 
membar; 

< critical section > 
membar; 
Release(mutex); 

Relaxed memory models allow reordering of 
instructions by the compiler or the processor as long 
as the reordering is not done across a fence 

What about speculation and prefetching? 

Processor should not speculate or prefetch across fences. 
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Total Store Order (TSO)
IBM370, DECVAX 

• Eliminates the order W(a) Æ R(b) ≠ b 
• Advantage? 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

SC 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

TSO 

a 

Allows the buffering of writes with bypassing by reads, which occurs 
whenever the 
processor allows a read to proceed before it guarantees that 
an earlier write by the processor has been seen by all the other processors. 
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TSO vs. SC 

Processor P1 Processor P2 

x = new;  y = new; 
y_copy = y; x_copy = x; 

Under SC what values can x_copy and y_copy get ? 

Under TSO what values can x_copy and y_copy get ? 

Initially x = old, y = old 

TSO both can get old values.

SC at least one has to get the value of new.
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Partial Store Ordering (PSO)
SPARC 

• Also eliminates the order W(a) Æ W(b)  a ≠ b 
• Advantage? 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

TSO 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

PSO 

Allows pipelining or overlapping of write operations, rather than 
Forcing one operation to complete before another. 
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Weak Ordering
POWERPC 

• Also eliminates the orders R(a) Æ R(b) ≠ b 
and R(a) Æ W(b) ≠ b 

• Need non-blocking reads to exploit relaxation 
= A 

B = 
acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

PSO 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

WO 

a 
a 

Non-blocking reads, doesn’t help too much. 
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Release Consistency
Alpha, MIPS 

• Read/write that precedes acquire need not 
complete before acquire, and read/write that 
follows a release need not wait for the release 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

SC 

= A 
B = 

acquire (S) 

C = 
= D 

release (S) 
E = 

F = 

RC 

Weakest of the memory models used these days. 
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Release Consistency Example 

Processor P1 Processor P2 

data = new; while(flag != SET) { } 

flag = SET; data_copy = data; 

How do we ensure that data_copy is always set 
to new ? 

Initially data = old 

Membar Store Store Membar Load Load 
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Weaker Memory Models 

• Hard to understand and remember 
• Unstable - Modèle de l’année 

Alpha, Sparc 
PowerPC, ... 

Write-
buffers 

Store is globally 
performed 

TSO, PSO, 
RMO, ... 

RMO=WO? SMP, DSM 

Weak ordering. Interaction with cache coherence. Weak atomicity. 
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Why SC is not the right model for compilers 

• Intermediate representation is intrinsically a partial
order (data-flow graph) 

⇒ expose scope for instruction reordering
to the underlying architecture 

• Load/Store atomicity forces compilers to over-
specify requirements for completion of operations 

⇒ expose cache coherence actions 
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The CRF Model 
X. Shen, Arvind, L. Rudolph (1999) 

proc 

shared memory 

. . . 
sache 

proc 

sache 

proc 

sache 

Exposes 
• data caching via semantic caches 

Store(a,v) ≡ StoreL(a,v); 
Load(a) ≡ Reconcile(a); LoadL(a) 

• instruction reordering (controllable via Fence) 

Commit(a) 
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CRF: Load Local & Store Local 

• LoadL reads from the sache if the address is cached 
• StoreL writes into the sache and sets the state to Dirty 

proc 
LoadL(a) 

proc 
StoreL(a,v) 

shared memory 

. . . 
Cell(a,v,-) Cell(a,v,D) 
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CRF: Commit and Reconcile 

• Commit completes if the address is not cached in the 
Dirty state 

proc 
Commit(a) 

proc 
Reconcile(a) 

shared memory 

. . . 
Cell(a,-,D)? Cell(a,-,C)? 

• Reconcile completes if the address is not cached in 
Clean 

C 
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CRF: Background Operations 

proc proc 
. . . 

Cell(a,5,C) 

Cache Writeback 

proc 
. . . 

Cell(c,7,C) 

Purge 

• Cache (retrieve) a copy of an uncached address 
from memory 

Cell(b,8,D) 

Cell(a,5) Cell(c,7)Cell(b,8) 

• Purge a Clean copy 

• Writeback a Dirty copy to memory and set its 
state Clean 

C 
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CRF: Fences 

Instructions can be reordered except for 
• Data dependence 
• StoreL(a,v); Commit(a); 
• Reconcile(a); LoadL(a); 

Fencerr (a1, a2) 
LoadL(a1); 
Reconcile(a1); 

LoadL(a2); 
Reconcile(a2); 

Fencewr; Fencerw; Fenceww; 
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Producer-Consumer Synchronization 

reader 

memory 

StoreL(a,v); 

• Break down the synchronization equally between 
the producer and consumer 

• Semantically, memory behaves as the rendezvous 
between processors 

⇒ no operation involves more than one sache 

Commit(a); 
Reconcile(a); 
LoadL(a); 

writer 

writeback cache 
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CRF: A Universal Memory Model 

CRF 
Protocol 

Translation 
Scheme 

Load 
Store 

LoadL 
StoreL 

Commit 
Reconcile 

SC Program CRF Program 

A CRF protocol is automatically a protocol for
any memory model whose programs can be
translated into CRF programs 
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Translating SC into CRF 

Processor Processor 

Store(a,10); L: r1 = 
Store(flag,1); 1,L); 

r2 = oad(a); 

Initially a = 0, flag = 0 

1 2 

Load(flag); 
Jz(r

L
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Processor Processor 

Store(a,10); L: r1 = 
Fenceww(a, flag); Jz(r1,L); 
Store(flag,1); Fencerr(flag, a); 

r2 = oad(a); 

Weak ordering 

Translating SC into CRF 

1 2 

Load(flag); 

L
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Processor Processor 

StoreL(a,10); L: Reconcile(flag); 
Commit(a); r1 = LoadL(flag); 
Fenceww(a, flag); Jz(r1,L); 
StoreL(flag,1); Fencerr(flag, a); 
Commit(flag); Reconcile(a); 

r2 = LoadL(a); 

Translating SC into CRF 

1 2 
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