
1

1

Relaxed Memory Models

Episode III in our multiprocessing miniseries.

Relaxed memory models.

What I really wanted here was an elephant with sunglasses relaxing

On a beach, but I couldn’t find one.

Page 1

2

2

Sequential Consistency: A Memory Model

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

SC is easy to understand but architects and
compiler writers want to violate it for performance

m

P P P P P P

Mark Hill written a paper which essentially says “why break your back for
20%”. Actually people are out there breaking their backs for 1% in
architecture these days.

Page 2

3

3

Architectural optimizations that are correct for
uniprocessors often result in a new memory
model for multiprocessors

Optimizations & Memory Models

Data
Cache

Memory

Pushout
buffers

load/store
buffers

CPU

Load queue Processor-
Memory
Interface

This means that we are relaxing the ordering or relaxing atomicity.

Page 3

4

4

Relaxed Models

• What orderings among reads and writes
performed by a single processor are
preserved by the model?

– R Æ R, R Æ W, W Æ W, W Æ R

• If there is a dependence, then program
semantics demand that operations be ordered

• If there is no dependence, the memory
consistency model determines what orders
must be preserved

– Relaxed model may allow an operation
executed later to complete first

dependence if they are to the same address

Page 4

5

5

Memory Fences & Weak Memory Models

Processors with relaxed or weak memory models
need memory fence instructions to force serialization
of memory accesses

– In SC there is an implicit fence at each memory
operation

Processors with relaxed memory models:
Sparc V8 (TSO, PSO): Membar
PowerPC (WO): nc, EIEIO

Memory fences are expensive operations, however,
one pays for serialization only when it is required

Sy

Page 5

6

6

Producer posting Item x:
Rtail Å M[tail]
M[<Rtail>] Å x
membarSS
Rtail Å <Rtail> + 1
M[tail] Å <Rtail>

Consumer:
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail>
membarLL
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead>
process(R)

Using Memory Fences

Producer Consumertail head

Ensures that tail pointer
is not updated before x
has been stored.

Ensures that R is
not loaded before
x has been stored.

Ensures that tail pointer is not updated before
X has been stored.

Ensures that R is not loaded before x has been stored.

Page 6

7

7

Data-Race Free Programs
(a.k.a. Properly Synchronized Programs)

Process 1
...
Acquire(mutex);
< critical section >

Release(mutex);

Process 2
...
Acquire(mutex);
< critical section >

Release(mutex);

Synchronization variables (e.g., mutex) are separate
from data variables

Accesses to writable shared data variables are
protected in critical regions

⇒ no data races except for locks
(Formal definition is elusive)

In general, it cannot be proven if a program is data-
race free.

Nondeterminator.

Page 7

8

8

Fences in Data-Race Free Programs

Process 1
...
Acquire(mutex);
membar;

< critical section >
membar;
Release(mutex);

Process 2
...
Acquire(mutex);
membar;

< critical section >
membar;
Release(mutex);

Relaxed memory models allow reordering of
instructions by the compiler or the processor as long
as the reordering is not done across a fence

What about speculation and prefetching?

Processor should not speculate or prefetch across fences.

Page 8

9

9

Total Store Order (TSO)
IBM370, DECVAX

• Eliminates the order W(a) Æ R(b) ≠ b
• Advantage?

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

SC

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

TSO

a

Allows the buffering of writes with bypassing by reads, which occurs
whenever the
processor allows a read to proceed before it guarantees that
an earlier write by the processor has been seen by all the other processors.

Page 9

10

10

TSO vs. SC

Processor P1 Processor P2

x = new; y = new;
y_copy = y; x_copy = x;

Under SC what values can x_copy and y_copy get ?

Under TSO what values can x_copy and y_copy get ?

Initially x = old, y = old

TSO both can get old values.

SC at least one has to get the value of new.

Page 10

11

11

Partial Store Ordering (PSO)
SPARC

• Also eliminates the order W(a) Æ W(b) a ≠ b
• Advantage?

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

TSO

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

PSO

Allows pipelining or overlapping of write operations, rather than
Forcing one operation to complete before another.

Page 11

12

12

Weak Ordering
POWERPC

• Also eliminates the orders R(a) Æ R(b) ≠ b
and R(a) Æ W(b) ≠ b

• Need non-blocking reads to exploit relaxation
= A

B =
acquire (S)

C =
= D

release (S)
E =

F =

PSO

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

WO

a
a

Non-blocking reads, doesn’t help too much.

Page 12

13

13

Release Consistency
Alpha, MIPS

• Read/write that precedes acquire need not
complete before acquire, and read/write that
follows a release need not wait for the release

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

SC

= A
B =

acquire (S)

C =
= D

release (S)
E =

F =

RC

Weakest of the memory models used these days.

Page 13

14

14

Release Consistency Example

Processor P1 Processor P2

data = new; while(flag != SET) { }

flag = SET; data_copy = data;

How do we ensure that data_copy is always set
to new ?

Initially data = old

Membar Store Store Membar Load Load

Page 14

15

15

Weaker Memory Models

• Hard to understand and remember
• Unstable - Modèle de l’année

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM

Weak ordering. Interaction with cache coherence. Weak atomicity.

Page 15

16

16

Why SC is not the right model for compilers

• Intermediate representation is intrinsically a partial
order (data-flow graph)

⇒ expose scope for instruction reordering
to the underlying architecture

• Load/Store atomicity forces compilers to over-
specify requirements for completion of operations

⇒ expose cache coherence actions

Page 16

17

17

The CRF Model
X. Shen, Arvind, L. Rudolph (1999)

proc

shared memory

. . .
sache

proc

sache

proc

sache

Exposes
• data caching via semantic caches

Store(a,v) ≡ StoreL(a,v);
Load(a) ≡ Reconcile(a); LoadL(a)

• instruction reordering (controllable via Fence)

Commit(a)

Page 17

18

18

CRF: Load Local & Store Local

• LoadL reads from the sache if the address is cached
• StoreL writes into the sache and sets the state to Dirty

proc
LoadL(a)

proc
StoreL(a,v)

shared memory

. . .
Cell(a,v,-) Cell(a,v,D)

Page 18

19

19

CRF: Commit and Reconcile

• Commit completes if the address is not cached in the
Dirty state

proc
Commit(a)

proc
Reconcile(a)

shared memory

. . .
Cell(a,-,D)? Cell(a,-,C)?

• Reconcile completes if the address is not cached in
Clean

C

Page 19

20

20

CRF: Background Operations

proc proc
. . .

Cell(a,5,C)

Cache Writeback

proc
. . .

Cell(c,7,C)

Purge

• Cache (retrieve) a copy of an uncached address
from memory

Cell(b,8,D)

Cell(a,5) Cell(c,7)Cell(b,8)

• Purge a Clean copy

• Writeback a Dirty copy to memory and set its
state Clean

C

Page 20

21

21

CRF: Fences

Instructions can be reordered except for
• Data dependence
• StoreL(a,v); Commit(a);
• Reconcile(a); LoadL(a);

Fencerr (a1, a2)
LoadL(a1);
Reconcile(a1);

LoadL(a2);
Reconcile(a2);

Fencewr; Fencerw; Fenceww;

Page 21

22

22

Producer-Consumer Synchronization

reader

memory

StoreL(a,v);

• Break down the synchronization equally between
the producer and consumer

• Semantically, memory behaves as the rendezvous
between processors

⇒ no operation involves more than one sache

Commit(a);
Reconcile(a);
LoadL(a);

writer

writeback cache

Page 22

23

23

CRF: A Universal Memory Model

CRF
Protocol

Translation
Scheme

Load
Store

LoadL
StoreL

Commit
Reconcile

SC Program CRF Program

A CRF protocol is automatically a protocol for
any memory model whose programs can be
translated into CRF programs

Page 23

24

24

Translating SC into CRF

Processor Processor

Store(a,10); L: r1 =
Store(flag,1); 1,L);

r2 = oad(a);

Initially a = 0, flag = 0

1 2

Load(flag);
Jz(r

L

Page 24

25

25

Processor Processor

Store(a,10); L: r1 =
Fenceww(a, flag); Jz(r1,L);
Store(flag,1); Fencerr(flag, a);

r2 = oad(a);

Weak ordering

Translating SC into CRF

1 2

Load(flag);

L

Page 25

26

26

Processor Processor

StoreL(a,10); L: Reconcile(flag);
Commit(a); r1 = LoadL(flag);
Fenceww(a, flag); Jz(r1,L);
StoreL(flag,1); Fencerr(flag, a);
Commit(flag); Reconcile(a);

r2 = LoadL(a);

Translating SC into CRF

1 2

Page 26

