
Asanovic/Devadas
Spring 2002

6.823

Out-of-Order Execution &
Register Renaming

Krste Asanovic
Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas
Spring 2002

6.823

Scoreboard for In-order Issue
Busy[unit#] : a bit-vector to indicate unit’s availability.

(unit = Int, Add, Mult, Div)
These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
writes are pending

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available? not Busy[FU#]
RAW? WP[src1] or WP[src2]
WAR? cannot arise
WAW? WP[dest]

Asanovic/Devadas
Spring 2002

6.823Out-of-Order Dispatch

IF ID WB

ALU Mem

Fadd

Fmul

Issue

• Issue stage buffer holds multiple instructions waiting
to issue.

• Decode adds next instruction to buffer if there is
space and the instruction does not cause a WAR
or WAW hazard.

• Any instruction in buffer whose RAW hazards are
satisfied can be dispatched (for now, at most one
dispatch per cycle). On a write back (WB), new
instructions may get enabled.

Asanovic/Devadas
Spring 2002

6.823Out-of-Order Issue: an example

latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order did not allow any significant improvement !

1 2

34

5

6

Asanovic/Devadas
Spring 2002

6.823

How many Instructions can be
in the pipeline

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

Asanovic/Devadas
Spring 2002

6.823Overcoming the Lack of
Register Names

Number of registers in an ISA limits the number
of partially executed instructions in complex pipelines

Floating Point pipelines often cannot be kept filled with
small number of registers.

IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an
ingenious solution in 1967 based on on-the-fly
register renaming

Asanovic/Devadas
Spring 2002

6.823Instruction-Level Parallelism
with Renaming

In-order: 1 (2,1) 2 3 4 4 (5,3) . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

Any antidependence can be eliminated by renaming
renaming ⇒ additional storage

Can it be done in hardware? yes!

latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

1 2

34

5

6

X

Asanovic/Devadas
Spring 2002

6.823

Register Renaming

IF ID WB

ALU Mem

Fadd

Fmul

ROB

• Decode does register renaming and adds instructions
to the issue stage reorder buffer (ROB).

⇒ renaming makes WAR or WAW hazards
impossible

• Any instruction in ROB whose RAW hazards have
been satisfied can be dispatched.

⇒ Out-of order or dataflow execution

Asanovic/Devadas
Spring 2002

6.823Renaming & Out-of-order Issue
An example

• When are names in sources
replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
.
.
.

data / ti

p data
F1
F2
F3
F4
F5
F6
F7
F8

Asanovic/Devadas
Spring 2002

6.823Data-Driven Execution
Renaming
table &
reg file

Reorder
buffer

Load
Unit FU FU Store

Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the
Decode stage, which also stores the tag in the reg file
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

Asanovic/Devadas
Spring 2002

6.823

Simplifying Allocation/Deallocation

ptr2
next to

deallocate

prt1
next

available
Instruction buffer is managed circularly
• When an instruction completes its “use” bit is
marked free
• ptr2 is incremented only if the “use” bit is marked free

Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
.
.
.

tn

Asanovic/Devadas
Spring 2002

6.823IBM 360/91 Floating Point Unit
R. M. Tomasulo, 1967

Mult

p data p data1
2

p data1
2
3
4
5
6

data load
buffers
(from
memory)

1
2
3
4

Adder

p data p data1
2
3

p data

Floating
Point
Reg

store
buffers
(to memory)

...

instructions

Common bus ensures that data is
made available immediately to all
the instructions waiting for it

distribute
instruction
templates
by
functional
units

< t, result >

Asanovic/Devadas
Spring 2002

6.823

Effectiveness?
Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not show
up in the subsequent models until mid-Nineties.

Why ?

Reasons
1. Exceptions not precise!
2. Effective on a very small class of programs

One more problem needed to be solved

Asanovic/Devadas
Spring 2002

6.823Precise Interrupts

It must appear as if an interrupt is taken between two
instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii
is totally complete

• no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

Asanovic/Devadas
Spring 2002

6.823Effect on Interrupts
Out-of-order Completion

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6
restore f2 restore f10

Consider interrupts

Precise interrupts are difficult to implement at high speed
- want to start execution of later instructions before

exception checks finished on earlier instructions

Asanovic/Devadas
Spring 2002

6.823Exception Handling
(In-Order Five-Stage Pipeline)

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow

Data Address
Exceptions

PC Address
Exceptions

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Kill
Writeback

Cause

EPC
Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler

PC

• Hold exception flags in pipeline until commit point (M stage)
• Exceptions in earlier pipe stages override later exceptions
• Inject external interrupts at commit point (override others)
• If exception at commit: update Cause and EPC registers, kill
all stages, inject handler PC into fetch stage

Commit
Point

Asanovic/Devadas
Spring 2002

6.823Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units (sometimes called “issue” or
“dispatch”). When execution completes, all
results and exception flags are available.

Decode: Instructions placed in appropriate
issue stage buffer (sometimes called
“issue” or “dispatch”)

Result
Buffer Commit: Instruction irrevocably updates

architectural state (sometimes called
“graduation” or “completion”).

PC

Fetch: Instruction bits retrieved from
cache.

Asanovic/Devadas
Spring 2002

6.823In-Order Commit for
Precise Exceptions

• Instructions fetched and decoded into instruction reorder buffer in-order
• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, regfile+memory) is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

Asanovic/Devadas
Spring 2002

6.823Extensions for Precise Exceptions
Instruction reorder buffer

ptr2
next to
commit

ptr1
next

available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
order ⇒ buffers can be maintained circularly
• on exception, clear reorder buffer by resetting ptr1=ptr2

(stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

Asanovic/Devadas
Spring 2002

6.823Rollback and Renaming
Register File
(now holds only
committed state)

Reorder
buffer

Load
Unit FU FU FU Store

Unit
< t, result >

t1
t2
.
.
tn

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source
register?

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Asanovic/Devadas
Spring 2002

6.823Renaming Table
Register
File

Reorder
buffer

Load
Unit FU FU FU Store

Unit
< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

r1 ti vi
r2

Renaming table is like a cache to speed up register name
look up (rename tag + valid bit per entry). It needs to be
cleared after each exception taken . When else are valid
bits cleared? ______________________________________

Asanovic/Devadas
Spring 2002

6.823

Effect of Control Transfer on
Pipelined Execution

Control transfer instructions require insertion
of bubbles in the pipeline.

The number of bubbles depends upon the number
of cycles it takes

• to determine the next instruction address, and

• to fetch the next instruction

Asanovic/Devadas
Spring 2002

6.823Branch Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch executed

Next fetch
started

Asanovic/Devadas
Spring 2002

6.823

Branch Penalties in Modern Pipelines

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline (+another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch penalty: Cycles?________ Instructions?_________

Fetch

Decode

Execute

Asanovic/Devadas
Spring 2002

6.823Average Run-Length between
Branches

Average dynamic instruction mix from SPEC92:
SPECint92 SPECfp92

ALU 39 % 13 %
FPU Add 20 %
FPU Mult 13 %
load 26 % 23 %
store 9 % 9 %
branch 16 % 8 %
other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches?

Asanovic/Devadas
Spring 2002

6.823

Reducing Control Transfer Penalties
Software solution

• loop unrolling
Increases the run length

• instruction scheduling
Compute the branch condition as early
as possible

(limited)

Hardware solution
• delay slots

replaces pipeline bubbles with useful work
(requires software cooperation)

• branch prediction & speculative execution
of instructions beyond the branch

Asanovic/Devadas
Spring 2002

6.823Branch Prediction
Motivation: branch penalties limit performance of deeply
pipelined processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures: branch history tables, branch
target buffers, etc.

Mispredict recovery mechanisms:
• In-order machines: kill instructions following

branch in pipeline
• Out-of-order machines: shadow registers and

memory buffers for each speculated branch

Asanovic/Devadas
Spring 2002

6.823

DLX Branches and Jumps
Instruction Taken known? Target known?
BEQZ/BNEZ After Reg. Fetch After Inst. Fetch
J Always Taken After Inst. Fetch
JR Always Taken After Reg. Fetch

Must know (or guess) both target address and
whether taken to execute branch/jump.

