
Asanovic/Devadas

Spring 2002

6.823

Influence of Technology and

Software on Instruction Sets:

Up to the dawn of IBM 360

Krste Asanovic

Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas

Spring 2002

6.823

Importance of Technology

New technologies not only provide greater
speed, size and reliability at lower cost, but
more importantly these dictate the kinds of
structures that can be considered and thus
come to shape our whole view of what a
computer is.

Bell & Newell

Asanovic/Devadas

6.823Technology is the dominant Spring 2002

factor in computer design
Technology

Transistors
Integrated circuits

Computers
VLSI (initially)
Laser disk, CD’s

Technology
Core memories
Magnetic tapes
Disks

Technology
ROMs, RAMs
VLSI
Packaging
Low Power

Computers

Computers

Asanovic/Devadas
Spring 2002But Software... 6.823

As people write programs and use computers,
our understanding of programming and program
behavior improves.

This has profound though slower impact on

computer architecture

Modern architects cannot avoid paying attention
to software and compilation issues.

Technology
Computers

Software

Asanovic/Devadas
Spring 2002The Earliest Instruction Sets 6.823

Single Accumulator - A carry-over from the calculators.
LOAD x AC ← M[x]
STORE x M[x] ← (AC)

ADD x AC ← (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC ← 2 × (AC)
SHIFT RIGHT

JUMP x PC ← x
JGE x if (AC) ≥ 0 then PC ← x

LOAD ADR x AC ← Extract address field(M[x])
STORE ADR x

Typically less than 2 dozen instructions!

Spring 2002Programming a Single Asanovic/Devadas

6.823

Accumulator Machine

Ci ← Ai + Bi, ≤ i ≤ n 1 A

n -
1

LOOP LOAD N B
JGE DONE
ADD ONE
STORE

F1 LOAD
N
A

C

F2 ADD B
F3 STORE C

JUMP LOOP N
DONE HLT ONE

How to modify the code

addresses A, B and C ?

Asanovic/DevadasSelf-Modifying Code Spring 2002
6.823

Ci ← Ai + Bi, 1≤ i ≤ n

LOOP	 LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A

F2 ADD B

F3	 STORE C

LOAD ADR F1
ADD ONE
STORE ADR F1modify the LOAD ADR F2program

for the next ADD ONE
iteration STORE ADR F2

LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

Each iteration involves

total book-
-keeping

instruction
fetches 17 14

operand
fetches 10 8

stores 5 4

DONE HLT

Processor State
 Asanovic/Devadas

Spring 2002

6.823

The information held in the processor at the end of an
instruction to provide the processing context for the next
instruction. e.g. Program Counter, Accumulator, . . .

Programmer visible state of the processor (and memory)
plays a central role in computer organization:

Software can only manipulate programmer-visible

state and can only rely on programmer-visible state

Hardware must never let software observe state
changes other than that defined in programmers
manual (e.g., interrupts not visible to running program)

Programmer’s model of machine is a contract
between hardware and software

Asanovic/Devadas

Spring 2002

6.823
Accumulator Machines

� Can describe any possible computation using
single accumulator instruction set
� Hardware is very simple
� Why did different instruction sets evolve?

Asanovic/Devadas
Spring 2002Computers in mid 50’s 6.823

� Hardware was expensive

� Programmer’s view of the machine was inseparable

from the actual hardware implementation

Example: IBM 650 - a drum machine with 44 instructions

1. 60 1234 1009

“Load the contents of location 1234 into the
distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to location
1009 for the next instruction.”

Good programmers optimized the placement of
instructions on the drum to reduce latency

2. “Branch on distribution digit equal to 8”

Asanovic/Devadas
Spring 2002Computers in mid 50’s (cont.) 6.823

� Stores were small (1000 words) and 10 to 50 times
slower than the processor

1. Instruction execution time was totally dominated
by the memory reference time.

More memory references per instruction
⇒ longer execution time per instruction

2. The ability to design complex control circuits to
execute an instruction was the central concern
as opposed to the speed of decoding or ALU.

3. No resident system software because there was no
place to keep it!

Memory

Processor
Asanovic/Devadas

Spring 2002

6.823

Bottleneck!

Some early solutions:

� fast local storage in the processor, i.e., 8-16 registers
as opposed to one accumulator

� indexing capability to reduce book keeping
instructions

� complex instructions to reduce instruction fetches

� compact instructions, i.e., implicit address bits for
operands, to reduce fetches

Asanovic/Devadas

Spring 2002

6.823

Index Registers

Tom Kilburn, Manchester University, mid 50’s

One or more specialized registers to simplify address
calculation

Modify existing instructions

LOAD x, IX AC ← M[x + (IX)]

ADD x, IX AC ← (AC) + M[x + (IX)]

Add new instructions to manipulate index registers

JZi x, IX if (IX)=0 then PC ← x
else IX ← (IX) + 1

LOADi x, IX IX ← M[x] (truncated to fit IX)

Index registers have accumulator-like characteristics

Spring 2002Using Index Registers Asanovic/Devadas

6.823

Ci ← Ai + Bi 1≤ i ≤ n

LOADi -n, IX
LOOP	 JZi DONE, IX # Jump or increment IX

LOAD A, IX
ADD B, IX
STORE C, IX
JUMP LOOP

DONE HALT

� Program does not modify itself

A

LASTA

� Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 5 (2) 17 (14)
operand fetch 2 10 (8)
store 1 5 (4)

� Costs:	 Instructions are 1 to 2 bits longer
Index registers with ALU-like circuitry
Complex control

Asanovic/Devadas
Spring 2002Indexing vs. Index Registers 6.823

LOAD x, IX

Suppose instead of registers, memory locations
are used to implement index registers.

Arithmetic operations on index registers can be
performed by bringing the contents to the accumulator.

Most book keeping instructions will be avoided
but each instruction will implicitly cause several
fetches and stores.

⇒ complex control circuitry

⇒ additional memory traffic

Asanovic/Devadas
Spring 2002Operations on Index Registers 6.823

To increment index register by k
AC ← (IX) new instruction

AC ← (AC) + k

IX ← (AC) new instruction

also the AC must be saved and restored.

It may be better to increment IX directly
INCi k, IX IX ← (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x] ← (IX) (extended to fit a word)
...

IX begins to look like an accumulator
several index registers

⇒ several accumulators

⇒ General Purpose Registers

Asanovic/Devadas
Spring 2002Support for Subroutine Calls 6.823

F:call F(a1,...)
a1
a2

b1
b2

call F(b1,...)
return

Main
Program Subroutine F

A special subroutine jump instruction

M: JSR F	 F ← M + 1 and
jump to F+1

Asanovic/Devadas

6.823Indirect Addressing and Spring 2002

Subroutine Calls Subroutine

F
Caller

M

Execute F+1 fetch

M+3 Execute S1 arg
Execute S2
Execute S3 S2

Execute M

F+1

inc F by 1

inc F by 1

LOAD (F)

STORE(F)

JUMP (F)

6 Events:
S1 arg

result

F JSR

store
result

Execute M+3

AC ← M[M[x]]
Indirect addressing

LOAD (x) means

S3

Indirect addressing almost eliminates the need to write
self-modifying code (location F still needs to be modified)
⇒ Problems with recursive procedure calls

Asanovic/Devadas
Spring 2002Recursive Procedure Calls 6.823

and Reentrant Codes
Indirect Addressing through a register

LOAD R1, (R2)

Load register R1 with the contents of the
word whose address is contained in register R2

Registers Pure Code

Data

Stack

Memory

PC

SP

Asanovic/Devadas
Spring 2002Evolution of Addressing Modes 6.823

1. Single accumulator, absolute address
LOAD x

2. Single accumulator, index registers
LOAD x, IX

3. Indirection
LOAD (x)

4. Multiple accumulators, index registers, indirection
LOAD R, IX, x

or LOAD R, IX, (x) the meaning?
R ← M[M[x] + IX]

or R ← M[M[x + IX]]

5. Indirect through registers
LOAD RI, (RJ)

6. The works
LOAD RI, RJ, (RK) RJ = index, RK = base address

Asanovic/Devadas

Spring 2002

6.823
Variety of Instruction Formats
� Two address formats: the destination is same as

one of the operand sources
(Reg × Reg) to Reg RI ← RI + RJ
(Reg × Mem) to Reg RI ← RI + M[x]
...

x could be specified directly or via a register;
effective address calculation for x could include
indexing, indirection, ...

� Three operand formats: One destination and up to
two operand sources per instruction

(Reg x Reg) to Reg RI ← RJ + RK
(Reg x Mem) to Reg RI ← RJ + M[x]
...

Many different formats are possible!

Asanovic/Devadas

Spring 2002

6.823

Data Formats and

Memory Addresses

Data formats:

Bytes, Half words, words and double words
Some issues
• Byte addressing

Big Endian
vs. Little Endian

• Word alignment
Suppose the memory is organized in 32-bit words.
Can a word address begin only at 0, 4, 8, ?

0 1 2 3
3 2 1 0

0 2 4 5 6 1 3 7

Asanovic/Devadas

Spring 2002

6.823
Some Problems
� Should all addressing modes be provided for
every operand?

⇒ regular vs. irregular instruction formats

� Separate instructions to manipulate
Accumulators
Index registers
Base registers

⇒ A large number of instructions

� Instructions contained implicit memory references -
several contained more than one

⇒ very complex control

Asanovic/Devadas
Spring 2002Compatibility Problem at IBM 6.823

By early 60’s, IBM had 4 incompatible lines of computers!

701 → 7094
650 → 7074
702 → 7080
1401 → 7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:

magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche

business, scientific, real time, ...
⇒ IBM 360

Asanovic/Devadas

Spring 2002
IBM 360 : Design Premises 6.823

Amdahl, Blaauw and Brooks, 1964

� The design must lend itself to growth and
successor machines
� General method for connecting I/O devices
� Total performance - answers per month rather than
bits per microsecond ⇒ programming aids
� Machine must be capable of supervising itself
without manual intervention
� Built-in hardware fault checking and locating aids
to reduce down time
� Simple to assemble systems with redundant I/O
devices, memories etc. for fault tolerance
� Some problems required floating point words larger
than 36 bits

IBM 360:

Asanovic/Devadas

Spring 2002

6.823

A General-Purpose Register Machine

� Processor State

16 General-Purpose 32-bit Registers
- may be used as index and base registers
- Register 0 has some special properties

4 Floating Point 64-bit Registers
A Program Status Word (PSW)

PC, Condition codes, Control flags
� A 32-bit machine with 24-bit addresses

No instruction contains a 24-bit address!
� Data Formats

8-bit bytes, 16-bit half-words, 32-bit words,
64-bit double-words

Asanovic/Devadas
Spring 2002IBM 360: Implementations 6.823

Storage
Datapath
Circuit Delay
Local Store
Control Store

Model 30 . . .

8K - 64 KB

8-bit

30 nsec/level

Main Store

Read only 1µsec

Model 70
256K - 512 KB

64-bit

5 nsec/level

Transistor Registers

Conventional circuits

IBM 360 instruction set architecture completely hid the
underlying technological differences between various
models.

With minor modifications it survives today

Asanovic/Devadas

Spring 2002

6.823

IBM S/390 z900 Microprocessor

� 64-bit virtual addressing
� first 64-bit S/390 design (original S/360 was 24-bit, and S/370 was

31-bit extension)
� 1.1 GHz clock rate (announced ISSCC 2001)
� 0.18µm CMOS, 7 layers copper wiring
� 770MHz systems shipped in 2000

� Single-issue 7-stage CISC pipeline
� Redundant datapaths
� every instruction performed in two parallel datapaths and results

compared
� 256KB L1 I-cache, 256KB L1 D-cache on-chip
� 20 CPUs + 32MB L2 cache per Multi-Chip Module
� Water cooled to 10oC junction temp

Asanovic/Devadas

6.823What makes a good Spring 2002

instruction set?
Ideally, provides simple software interface yet allows

simple, fast, efficient hardware implementations

… but across 25+ year time frame

Example of difficulties:
� Current machines have register files with more storage

than entire main memory of early machines!
� On-chip test circuitry of current machines hundreds of

times more transistors than entire early computers!

Asanovic/Devadas

Spring 2002

6.823
Full Employment for Architects
Good news: “Ideal” instruction set changes continually
� Technology allows larger CPUs over time
� Technology constraints change (e.g., power is now major constraint)
� Compiler technology improves over time (e.g., register allocation)
�	 Programming style varies over time (assembly coding, HLL, object-

oriented, …)
�	 Applications and application demands vary over time (e.g.,

multimedia processing recent change in workload)

Bad news: Software compatibility imposes huge
damping coefficient on instruction set innovation
� Software investment dwarfs hardware investment
�	 Innovate at microarchitecture level, below instruction set level, this is

what most computer architects do

New instruction set can only be justified by new large
market and technological advantage
� Network processors
� Multimedia processors

