
Asanovic/Devadas
Spring 2002

6.823

Krste Asanovic
Laboratory for Computer Science

Massachusetts Institute of Technology

Complex Instruction Set 
Evolution in the Sixties: 

Stack and GPR Architectures



Asanovic/Devadas
Spring 2002

6.823

The Sixties
Hardware costs started dropping

memories beyond 32K words seemed likely
separate I/O processors
large register files

Systems software development became essential
Operating Systems
I/O facilities

Separation of Programming Model from implementation 
become essential

family of computers



Asanovic/Devadas
Spring 2002

6.823The Burrough’s B5000:
An ALGOL Machine, Robert Barton, 1960

Machine implementation can be completely hidden if the 
programmer is provided only a high-level language 
interface. 

Stack machine organization because stacks are 
convenient for:

1. expression evaluation;
2. subroutine calls, recursion, nested interrupts;
3. accessing variables in block-structured languages.

B6700, a later model, had many more innovative features
tagged data
virtual memory
multiple processors and memories



Asanovic/Devadas
Spring 2002

6.823A Stack Machine

typical operations:
push                                
pop
+
*...

Instructions like + implicitly 
specify the top 2 elements 
of the stack as operands.

a

A Stack machine has a stack as a part of the processor 
state

:

stack

Processor

Main
Store

b
a

push b
c
b
a

push c b
a

pop



Asanovic/Devadas
Spring 2002

6.823

b
c

b*c
a

Evaluation of Expressions
(a + b * c) / (a + d * c - e)

/

+

* +a e

-

ac

d c

*b

Reverse Polish
a b c *  + a d c * + e - /

Evaluation Stack
push c

*

Push a
Push b

multiply



Asanovic/Devadas
Spring 2002

6.823

b*c
a

Evaluation of Expressions
(a + b * c) / (a + d * c - e)

/

+

* +a e

-

ac

d c

*b

Reverse Polish
a b c * + a d c * + e - /

Evaluation Stack
add

+
a+b*c



Asanovic/Devadas
Spring 2002

6.823

Hardware Organization 
of the Stack

Stack is part of the processor state
⇒  stack must be bounded and small

≈  number of Registers and not the size of 
main memory

Conceptually stack is unbounded
⇒   a part of the stack is included in the processor 
state; the rest is kept in the main memory



Asanovic/Devadas
Spring 2002

6.823Stack Size and 
Memory References

a b c * + a d c * + e - /
Program Stack (size = 2) Memory Refs  
push a a a
push b a, b b
push c b, c c, ss(a)
* a, b*c sf(a)
+ a+b*c
push a a+b*c, a a
push d a, d d, ss(a+b*c)
push c d, c c, ss(a)
* a, d*c sf(a)
+ a+b*c, a+d*c sf(a+b*c)
push e a+d*c, e e, ss(a+b*c)
- a+b*c, a+d*c-e sf(a+b*c)
/ (a+b*c)/(a+d*c-e)

4  stores, 4 fetches (implicit)



Asanovic/Devadas
Spring 2002

6.823Stack Operations and
Implicit Memory References

When just the top 2 elements of the stack are kept in 
registers and the rest is kept in the memory:

Each push operation ⇒ 1 memory reference.
pop operation ⇒ 1 memory reference.

No Good!

Better performance from keeping the top N elements in 
registers and by making memory references only when 
register stack overflows or underflows.

Issue - when to Load/Unload registers ?



Asanovic/Devadas
Spring 2002

6.823Stack Size and 
Expression Evaluation

a b c * + a d c * + e - /

push a R0
push b R0 R1
push c R0 R1 R2
* R0 R1
+ R0
push a R0 R1
push d R0 R1 R2
push c R0 R1 R2 R3
* R0 R1 R2
+ R0 R1
push e R0 R1 R2
- R0 R1
/ R0

a and c are
“loaded” twice
      ⇒
not the best
use of registers!



Asanovic/Devadas
Spring 2002

6.823

Register Usage in a GPR Machine
More control over register 
usage since registers can 
be named explicitly

Load Ri m
Load Ri (Rj)
Load Ri (Rj) (Rk)
⇒
- eliminates unnecessary 

Loads and Stores
- fewer Registers

but instructions may be longer!

Load R0 a
Load R1 c
Load R2 b
Mul R2 R1
Add R2 R0
Load R3 d
Mul R3 R1
Add R3 R0
Load R0 e
Sub R3 R0
Div R2 R3

(a + b * c)/(a + d * c - e)



Asanovic/Devadas
Spring 2002

6.823

• Storage for procedure calls also follows a stack 
discipline

• However, there is a need to access variables
beyond the current stack frame

- lexical addressing  < ll , d >
- display registers to speed up  
accesses to stack frames

B5000 Procedure Calls

display          stack    static  dynamic
registers                     links   link

R

Q

R

Q

P

3
2

ll = 1
automatic loading 
of display registers?

Proc P
Proc Q

Proc R
Q

R
Q



Asanovic/Devadas
Spring 2002

6.823Stack Machine Features

In addition to push, pop, 
+ etc., the instruction 
set must provide the 
capability to

• refer to any element in
the data area

• jump to any instruction in 
the code area

• move any element in 
the stack frame to the top

machinery to
carry out
+, -, etc.

stack

data

SP

DP

PC .
..

a
b
c

push a
push b
push c
*
+
push e
/

⇔

code



Asanovic/Devadas
Spring 2002

6.823

Stack versus GPR Organization
Amdahl, Blaauw and Brooks, 1964

1. The performance advantage of push down stack 
organization is derived from the presence of fast 
registers and not the way they are used.
2.“Surfacing” of data in stack which are “profitable” is 
approximately 50% because of constants and common 
sub-expressions.
3. Advantage of instruction density because of implicit 
addresses is equaled if short addresses to specify 
registers are allowed.
4. Management of finite depth stack causes complexity.
5. Recursive subroutine advantage can be realized only 
with the help of an independent stack for addressing.
6. Fitting variable length fields into fixed width word is 
awkward.



Asanovic/Devadas
Spring 2002

6.823

Stack Machines (Mostly) Died by 1980
1. Stack programs are not smaller if short (Register) 

addresses are permitted.

2. Modern compilers can manage fast register space 
better than the stack discipline.

3. Lexical addressing is a useful abstract model for
compilers but hardware support for it (i.e. display) 
is not necessary.

GPR’s and caches are better than stack and displays

Early language-directed architectures often did not
take into account the role of compilers! 

B5000, B6700, HP 3000, ICL 2900, Symbolics 3600



Asanovic/Devadas
Spring 2002

6.823Stacks post-1980
Inmos Transputers (1985-2000)
– Designed to support many parallel processes in Occam language
– Fixed-height stack design simplified implementation
– Stack trashed on context swap (fast context switches)
– Inmos T800 was world’s fastest microprocessor in late 80’s

Forth machines
– Direct support for Forth execution in small embedded real-time 

environments
– Several manufacturers (Rockwell, Patriot Scientific)

Java Virtual Machine
– Designed for software emulation not direct hardware execution
– Sun PicoJava implementation + others

Intel x87 floating-point unit
– Severely broken stack model for FP arithmetic
– Deprecated in Pentium-4 in exchange for SSE2 FP register arch.



Asanovic/Devadas
Spring 2002

6.823

• Processor State
16 General-Purpose 32-bit Registers 

- may be used as index and base registers
- Register 0 has some special properties 

4  Floating Point 64-bit Registers
A Program Status Word (PSW) 

PC, Condition codes, Control flags
• A 32-bit machine with 24-bit addresses

No instruction contains a 24-bit address !
• Data Formats 

8-bit bytes, 16-bit half-words, 32-bit words, 
64-bit doublewords

IBM 360:
A General-Purpose Register 

Machine



Asanovic/Devadas
Spring 2002

6.823

IBM 360: Implementations

Model 30 . . .  Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1µsec Conventional circuits

IBM 360 instruction set architecture completely hid the
underlying technological differences between various 
models.



Asanovic/Devadas
Spring 2002

6.823

IBM 360: Precise Interrupts

• IBM 360 ISA (Instruction Set Architecture) 
preserves sequential execution model

• Programmers view of machine was that each 
instruction either completed or signaled a fault 
before next instruction began execution

• Exception/interrupt behavior constant across 
family of implementations



Asanovic/Devadas
Spring 2002

6.823IBM 360:
Some Addressing Modes

RR R1← R1 op R2

RX

R1 ← R1 op M[X2 + B2 + D2]
a 24-bit address is formed by adding the
12-bit displacement (D) to a base register (B) 
and an Index register (X), if desired

The most common formats for arithmetic & logic 
instructions, as well as Load and Store instructions 

opcode R1 X2 B2 D2
8 4 4 124

opcode R1
8 4 4

R2



Asanovic/Devadas
Spring 2002

6.823IBM 360:
Branches & Condition Codes

Arithmetic and logic instructions set condition codes
• equal to zero
• greater than zero 
• overflow
• carry...

I/O instructions also set condition codes - channel busy

All conditional branch instructions are based on testing 
these condition code registers (CC’s)

RX and  RR formats
BC_ branch conditionally
BAL_ branch and link, i.e., R15 ← PC + 1

for subroutine calls
⇒ CC’s must be part of the PSW



Asanovic/Devadas
Spring 2002

6.823IBM 360:
Character String Operations

opcode length B1 D1 B2 D2
8 4 128 4 12

SS format: store to store instructions
M[B1 + D1] ← M[B1 + D1]  op  M[B2 + D2]

iterate “length” times
most operations on decimal and character strings 
use this format 

MVC move characters
MP multiply two packed decimal strings
CLC compare two character strings
...

a lot of memory operations per instruction
complicates exception  &  interrupt handling



Asanovic/Devadas
Spring 2002

6.823Microarchitecture
Implementation of an ISA

Structure: How components are connected. 
Static 

Sequencing: How data moves between components 
Dynamic

Controller

Data
path

control
pointsstatus

lines



Asanovic/Devadas
Spring 2002

6.823The DLX ISA
Processor State

32 32-bit GPRs, R0 always contains a 0
32 single precision FPRs, may also be viewed as

16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

Data types
8-bit byte, 2-byte half word 
32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

Load/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big-endian mode

All instructions are 32 bits

(See Chapter 2, H&P for full description)



Asanovic/Devadas
Spring 2002

6.823

A Bus-based Datapath for DLX

ExtSel

Microinstruction: register to register transfer  (17 control signals)
MA ← PC means RegSel = PC; enReg=yes; ldMA= yes
B ← Reg[rf2] means RegSel = rf2; enReg=yes;  ldB  = yes

A B

RegWrt
enReg

enMem

MA

addr addr

data data

rf1
rf2
rf3
32(PC)
31(Link)

RegSel

busyzero?

OpSel ldA ldB ldMA

Memory
32 GPRs
+ PC ...

32-bit RegALU

enALU

Bus

IR

Opcode

ldIR

Imm
Ext

enImm

/
2

ALU
control

/2

/
3

MemWrt

32

rf1
rf2
rf3



Asanovic/Devadas
Spring 2002

6.823Memory Module

We will assume that Memory operates asynchronously
and is slow as compared to Reg-to-Reg transfers

Enable
Write/ReadRAM

din dout

we

addr busy

bus



Asanovic/Devadas
Spring 2002

6.823DLX ALU Instructions

Register-Register form: 
Reg[rf3] ← function(Reg[rf1], Reg[rf2])

6 5 5 5 11
opcode rf1        rf2       rf3       function

6 5 5 16
opcode rf1        rf2            immediate

Register-Immediate form: 
Reg[rf2] ← function(Reg[rf1], SignExt(immediate))



Asanovic/Devadas
Spring 2002

6.823

Instruction Execution

Execution of a DLX instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

and the computation of the address of the 
next instruction



Asanovic/Devadas
Spring 2002

6.823Microcontrol Unit
Maurice Wilkes, 1954

Embed the control logic state table in a memory array

Matrix A Matrix B

Decoder

Next state

op       conditional
code   flip-flop

µ address

Control lines  to
ALU, MUXs, Registers



Asanovic/Devadas
Spring 2002

6.823Microprogram Fragments
instr fetch: MA ← PC

IR ← Memory
A ← PC
PC ← A + 4
dispatch on OPcode

ALU:  A ← Reg[rf1]
B ← Reg[rf2]
Reg[rf3] ← func(A,B)
do instruction fetch

ALUi:  A ← Reg[rf1]
B ← Imm sign extension ...
Reg[rf2] ← Opcode(A,B)
do instruction fetch

can be
treated as
a macro



Asanovic/Devadas
Spring 2002

6.823DLX Load/Store Instructions

Load/store byte, halfword, word to/from GPR:
LB, LBU, SB, LH, LHU, SH, LW, SW

byte and half-word can be sign or zero extended

Load/store single and double FP to/from FPR:
LF, LD, SF, SD

• Byte addressable machine
• Memory access must be data aligned
• A single addressing mode

(base) + displacement 
• Big-endian byte ordering

6 5 5 16
opcode rf1        rf2            displacement

base

0 1 2 3
31 0



Asanovic/Devadas
Spring 2002

6.823

DLX Control Instructions
Conditional branch on GPR

Unconditional register-indirect jumps

Unconditional PC-relative jumps

• PC-offset are specified in bytes
• jump-&-link (JAL) stores PC+4 into the link register (R31)
• (Real DLX has delayed branches – ignored this lecture)

6 5 5 16
opcode    rf1                   offset from PC+4 BEQZ, BNEZ

6                   26
opcode                  offset from PC+4 J, JAL

6 5 5 16
opcode    rf1 JR, JALR



Asanovic/Devadas
Spring 2002

6.823Microprogram Fragments 
(cont.)

LW:  A ← Reg[rf1]
B ← Imm
MA ← A + B
Reg[rf2] ← Memory
do instruction fetch 

J:  A ← PC
B ← Imm
PC ← A + B
do instruction fetch 

beqz: A ← Reg[rf1]
If zero?(A) then go to bz-taken
do instruction fetch 

bz-taken: A ← PC
B ← Imm
PC ← A + B
do instruction fetch 



Asanovic/Devadas
Spring 2002

6.823DLX Microcontroller: first attempt

µPC (state)

Opcode
zero?

Busy (memory)

next state
17 Control Signals

s

s

6

µProgram ROM

2(opcode+status+s) words
word = (control+s) bits

addr

data

ROM Size ?
How big is “s”?

latching the inputs
may cause a 
one-cycle delay


