
Asanovic/Devadas

Spring 2002

6.823

Simple Instruction

Pipelining

Krste Asanovic

Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas
Spring 2002Processor Performance 6.823

Equation
Time = Instructions * Cycles * Time

Program Program Instruction Cycle

� Instructions per program depends on source code,
compiler technology, and ISA

� Microcoded DLX from last lecture had cycles per
instruction (CPI) of around 7 minimum

� Time per cycle for microcoded DLX fixed by
microcode cycle time

— mostly ROM access + next µPC select logic

Asanovic/Devadas

Spring 2002

6.823
Pipelined DLX

To pipeline DLX:

� First build unpipelined DLX with CPI=1

� Next, add pipeline registers to reduce
cycle time while maintaining CPI=1

Asanovic/Devadas

Spring 2002

6.823
A Simple Memory Model
WriteEnable

Address
ReadData

WriteData

MAGIC
RAM

Clock

Reads and writes are always completed in one cycle
� a Read can be done any time (i.e. combinational)
� a Write is performed at the rising clock edge

if it is enabled
⇒ 	 the write address, data, and enable

must be stable at the clock edge

Asanovic/Devadas

Spring 2002

6.823
Datapath for ALU Instructions

OpCode

rd1

rs1
rs2

rd2

inst<25:21>
inst<20:16>

GPRs
z

ALU

inst<15:0>

inst<31:26> <5:0>

ExtSel OpSel

ALU
Control

Imm
Ext

BSrc

clk

inst<15:11>

RegWrite

ws
wd

we

RegDst

0x4
Add

clk

addr
inst

Inst.
Memory

PC

0x4
Add

clk

addr
inst

Inst.
Memory

PC

rf2 / rf3 Reg / Imm

6 5 5 5 5 6
rf3 ← (rf1) func (rf2)

opcode rf1 rf2 immediate rf2 ← (rf1) op immediate
0 rf1 rf2 func 0 rf3

Asanovic/DevadasDatapath for Memory Spring 2002
6.823

Instructions
Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory

at some level the two memories have
to be the same

Princeton style: the same (von Neumann’s influence)
- A Load or Store instruction requires

accessing the memory more than once
during its execution

Asanovic/DevadasLoad/Store Instructions: Spring 2002
6.823

Harvard-Style Datapath

RegWrite MemWrite
0x4

Add

clk

addr
inst

Inst.
Memory

PC

WBSrc
ALU / Mem

“base”

disp

ALU
Control

z
ALU

clk

addr

wdata

rdataData
Memory

we

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

OpCode RegDst ExtSel OpSel BSrc

6 5 5 16 addressing mode
(rf1) + displacementopcode rf1 rf2 ent displacem

31 26 25 21 20 16 15 0

rf1 is the base register

rf2 is the destination of a Load or the source for a Store

Asanovic/Devadas
Spring 2002

Memory Hierarchy c.2002 6.823

Desktop & Small Server

Proc
I$

D$

0.5-2ns
2-3 clk

8~64KB

On-chip Caches

L2

<10ns
5~15 clk
0.25-2MB

SRAM/
eDRAM

Interleaved
Banks of DRAM

Hard DiskOff-chip
L3 Cache

< 25ns

15~50 clk

1~8MB

~150ns

100~300 clk

64M~1GB

~10ms seek time

~107 clk

20~100GB

Our memory model is a good approximation of
the hierarchical memory system when we hit in
the on-chip cache

Asanovic/Devadas
Spring 2002Conditional Branches 6.823

PCSrc (~j / j) RegWrite MemWrite WBSrc

0x4

clk

RegDst BSrcExtSelOpCode

Add

z

Add

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2
ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

we
ALU

ALU
Control

Asanovic/Devadas
Spring 2002Register-Indirect Jumps 6.823

PCSrc (~j / j RInd / j PCR) RegWrite MemWrite WBSrc

0x4

clk

Add

z

Add
clk

Jump & Link?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdataData
Memory

we
ALU

ALU
Control

OpCode RegDst ExtSel OpSel BSrc zero?

Asanovic/Devadas

Spring 2002
Jump & Link 6.823

0x4

clk

RegDst

RegWrite

BSrc zero?

WBSrc
ALU / Mem / PC

31

ExtSelOpCode

Add

z

Add

OpSel

clk

MemWritePCSrc

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdataData
Memory

we
ALU

ALU
Control

rf3 / rf2 / R31

Asanovic/Devadas
Spring 2002PC-Relative Jumps 6.823

RegWrite MemWrite WBSrc

0x4

clk

RegDst

31

OpCode

Add

z

Add

clk

PCSrc

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdataData
Memory

we
ALU

No new
datapath
required

ALU
Control

ExtSel OpSel
BSrc zero?Ext16 / Ext26

Asanovic/Devadas

Spring 2002

6.823

Hardwired Control is pure

Combinational Logic:

Unpipelined DLX

op code

zero?

combinational
logic

ExtSel
BSrc
OpSel
MemWrite
WBSrc
RegDst
RegWrite
PCSrc

Asanovic/Devadas
Spring 2002ALU Control & Immediate 6.823

Extension

Inst<31:26> (Opcode)

Decode Map

Inst<5:0> (Func)

ALUop

0?
+

OpSel
(Func, Op, +, 0?)

ExtSel
(sExt16, uExt16,

sExt26, High16)

Asanovic/Devadas
Spring 2002Hardwired Control worksheet 6.823

PCSrc RegWrite MemWrite WBSrc

0x4

clk

PCR / RInd / ~j ALU / Mem
/ PC

inst<25:21>
inst<20:16>

inst<15:11>

inst<25:0>

inst<31:26><5:0>

31

0x4
Add

z

Add

RegDst

BSrc
Reg / Imm

zero?

OpCode

clk

Add

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdataData
Memory

we
ALU

ALU
Control

ExtSel OpSelrf2 / rf3 / sExt16/uExt16/ Func/R31 sExt26/High16 Op/+ / 0?

Asanovic/DevadasHardwired Control Table Spring 2002
6.823

BSrc = Reg / Imm WBSrc = ALU / Mem / PC RegDst = rf2 / rf3 / R31
PCSrc1 = j / ~j PCSrc2 = PCR / RInd

JR
JALR

JAL
J
BEQZz=1

BEQZz=0

SW
LW
ALUiu
ALUi
ALUu
ALU

PC
Src

Reg
Dest

WB
Src

Reg
Write

Mem
Write

Op
Sel

BSrcExt
Sel

Opcode

* * o yes RIndPC R31
RInd* * o no * *

PCRsExt26 * * no yes PC R31
PCRsExt26 * * no no * *

~jsExt16 * ? no no * *
PCRsExt16 * ? no no * *

~jsExt16 Imm + yes no * *

~jImm Op no yes ALU rf2

~j* Reg Func no yes ALU rf3
~j* Reg Func no yes ALU rf3

~jsExt16 Imm Op no yes ALU rf2

~jsExt16 Imm + no yes Mem rf2
uExt16

* n
* n

0
0

Asanovic/Devadas

Spring 2002

6.823

Hardwired Unpipelined Machine

� Simple

� One instruction per cycle

� Why wasn’t this a popular machine style?

Asanovic/Devadas

Spring 2002

6.823
Unpipelined DLX

Clock period must be sufficiently long for all of the
following steps to be “completed”:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. data fetch if required
5. register write-back setup time

⇒ tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

� At the rising edge of the following clock, the
PC, the register file and the memory are updated

Asanovic/Devadas
Spring 2002Pipelined DLX Datapath 6.823

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

PC

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

IR
PC

Clock period can be reduced by dividing the execution
of an instruction into multiple cycles

tC > max {tIM, tRF, tALU, tDM, tRW} = tDM (probably)
However, CPI will increase unless instructions
are pipelined

Asanovic/Devadas
Spring 2002An Ideal Pipeline 6.823

stage stage stage
2 3 4

stage
1

� All objects go through the same stages

� No sharing of resources between any two stages

� Propagation delay through all pipeline stages is equal

� The scheduling of an object entering the pipeline is
not affected by the objects in other stages

These conditions generally hold for industrial
assembly lines. An instruction pipeline, however,
cannot satisfy the last condition. Why?

Asanovic/Devadas

Spring 2002

6.823
Pipelining History

� Some very early machines had limited pipelined
execution (e.g., Zuse Z4, WWII)
� Usually overlap fetch of next instruction with current execution

� IBM Stretch first major “supercomputer”
incorporating extensive pipelining, result
bypassing, and branch prediction
� project started in 1954, delivered in 1961
�	 didn’t meet initial performance goal of 100x faster with 10x

faster circuits
� up to 11 macroinstructions in pipeline at same time
�	 microcode engine highly pipelined also (up to 6

microinstructions in pipeline at same time)
�	 Stretch was origin of 8-bit byte and lower case characters,

carried on into IBM 360

Asanovic/Devadas

Spring 2002

6.823
How to divide the datapath

into stages

Suppose memory is significantly slower than other
stages. In particular, suppose

tIM = tDM = 10 units
tALU = 5 units
tRF = tRW = 1 unit

Since the slowest stage determines the clock, it may
be possible to combine some stages without any loss
of performance

Asanovic/Devadas

Spring 2002

6.823
Minimizing Critical Path

write
-back
phase

fetch
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

PC

0 x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IR

& execute

tC > max {tIM, tRF + tALU, tDM, tRW}

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase

⇒ increase the critical path by 10%

Asanovic/DevadasMaximum Speedup by Spring 2002
6.823

Pipelining

For the 4-stage pipeline, given

tIM = tDM = 10 units, tALU = 5 units, tRF = tRW= 1 unit
tC could be reduced from 27 units to 10 units

⇒ speedup = 2.7

However, if tIM = tDM = tALU = tRF = tRW = 5 units

The same 4-stage pipeline can reduce tC from 25 units to

10 units

⇒ speedup = 2.5

But, since tIM = tDM = tALU = tRF = tRW, it is possible to
achieve higher speedup with more stages in the pipeline.

A 5-stage pipeline can reduce tC from 25 units to
5 units
⇒ speedup = 5

Asanovic/Devadas

Spring 2002

6.823

Technology Assumptions
We will assume

• A small amount of very fast memory (caches)
backed up by a large, slower memory
• Fast ALU (at least for integers)
• Multiported Register files (slower!).

It makes the following timing assumption valid

tIM ≈ tRF ≈ tALU ≈ tDM ≈ tRW

A 5-stage pipelined Harvard-style architecture will
be the focus of our detailed design

Asanovic/Devadas5-Stage Pipelined Execution Spring 2002
6.823

fetch

PC

0x4
Add

addr

wdata

rdata
Memory

we

executedecode & Reg-fetch memory

IR
rd1

GPRs

rs1
rs2
ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Memory

we
ALU

write
-back

phase phase phase phase phase
(IF) (ID) (EX) (MA) (WB)

time t0 t1 t2 t3 t4 t5 t6 t7

instruction1 IF1 ID1 EX1 MA1 WB1

instruction2 IF2 ID2 EX2 MA2 WB2

instruction3 IF3 ID3 EX3 MA3 WB3

instruction4 IF4 ID4 EX4 MA4 WB4

instruction5 IF5 ID5 EX5 MA5 WB5

Asanovic/Devadas5-Stage Pipelined Execution Spring 2002
6.823

Resource Usage Diagram

fetch

PC

0x4
Add

addr

wdata

rdata
Memory

we

executedecode & Reg-fetch memory

IR
rd1

GPRs

rs1
rs2
ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Memory

we
ALU

write
-back

phase phase phase phase phase
(IF) (ID) (EX) (MA) (WB)

time t0 t1 t2 t3 t4 t5 t6 t7
IF I1 I2 I3 I4 I5

ID I1 I2 I3 I4 I5

EX I1 I2 I3 I4 I5

MA I1 I2 I3 I4 I5

WB I1 I2 I3 I4 I5
R
es

ou
rc

es

Asanovic/DevadasPipelined Execution: Spring 2002
6.823

ALU Instructions

not quite correct!

31PC A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR
rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

we
ALU

Asanovic/DevadasPipelined Execution: Spring 2002
6.823

Need for Several IR’s

31
IR IR IR

PC A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR
rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

we
ALU

Asanovic/Devadas

Spring 2002

6.823
IRs and Control points

31
IR IR IR

PC A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR
rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

we
ALU

Are control points connected properly?
- Load/Store instructions
- ALU instructions

Asanovic/Devadas

Spring 2002
Pipelined DLX Datapath 6.823

without jumps

31
IR IR IR

PC A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR
rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

we
ALU

ExtSel

OpSel

BSrc

RegDst

WBSrc
MemWrite

RegWrite

Asanovic/Devadas

Spring 2002

6.823

How Instructions can Interact

with each other in a Pipeline

• An instruction in the pipeline may need a resource
being used by another instruction in the pipeline

structural hazard

• An instruction may produce data that is needed by
a later instruction

data hazard

• In the extreme case, an instruction may determine
the next instruction to be executed

control hazard (branches, interrupts,...)

Asanovic/Devadas

Spring 2002

6.823
Feedback to Resolve Hazards

stage
1

stage
2

stage
3

stage
4

FB1 FB2 FB3 FB4

Controlling pipeline in this manner works provided

the instruction at stage i+1 can complete without

any interference from instructions in stages 1 to i

(otherwise deadlocks may occur)

Feedback to previous stages is used to stall or kill
instructions

