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Equation 
Time = Instructions * Cycles * Time


Program Program Instruction Cycle


� Instructions per program depends on source code, 
compiler technology, and ISA 

� Microcoded DLX from last lecture had cycles per 
instruction (CPI) of around 7 minimum 

� Time per cycle for microcoded DLX fixed by 
microcode cycle time 

— mostly ROM access + next µPC select logic 



Asanovic/Devadas

Spring 2002


6.823
Pipelined DLX 

To pipeline DLX: 

� First build unpipelined DLX with CPI=1 

� Next, add pipeline registers to reduce 
cycle time while maintaining CPI=1 
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A Simple Memory Model 
WriteEnable 

Address 
ReadData 

WriteData 

MAGIC 
RAM 

Clock 

Reads and writes are always completed in one cycle
� a Read can be done any time (i.e. combinational)
� a Write is performed at the rising clock edge 

if it is enabled 
⇒ 	 the write address, data, and enable 

must be stable at the clock edge 
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Datapath for ALU Instructions 
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Instructions 
Should program and data memory be separate? 

Harvard style: separate (Aiken and Mark 1 influence) 
- read-only program memory 
- read/write data memory 

at some level the two memories have 
to be the same 

Princeton style: the same (von Neumann’s influence) 
- A Load or Store instruction requires 

accessing the memory more than once 
during its execution 
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Harvard-Style Datapath 
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6 5 5 16 addressing mode 
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rf1 is the base register

rf2 is the destination of a Load or the source for a Store




Asanovic/Devadas 
Spring 2002

Memory Hierarchy c.2002 6.823 

Desktop & Small Server 
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Our memory model is a good approximation of 
the hierarchical memory system when we hit in 
the on-chip cache 
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Hardwired Control is pure

Combinational Logic:


Unpipelined DLX 

op code 
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Extension 

Inst<31:26> (Opcode) 

Decode Map 

Inst<5:0> (Func) 

ALUop 

0? 
+ 

OpSel 
( Func, Op, +, 0? ) 
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BSrc = Reg / Imm WBSrc = ALU / Mem / PC RegDst = rf2 / rf3 / R31 
PCSrc1 = j / ~j PCSrc2 = PCR / RInd
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~j* Reg Func no yes ALU rf3 
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* n
* n
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Hardwired Unpipelined Machine 

� Simple


� One instruction per cycle


� Why wasn’t this a popular machine style?




Asanovic/Devadas

Spring 2002


6.823
Unpipelined DLX 

Clock period must be sufficiently long for all of the 
following steps to be “completed”: 

1. instruction fetch 
2. decode and register fetch 
3. ALU operation 
4. data fetch if required 
5. register write-back setup time 

⇒ tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB 

� At the rising edge of the following clock, the 
PC, the register file and the memory are updated 
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Clock period can be reduced by dividing the execution 
of an instruction into multiple cycles 

tC > max {tIM, tRF, tALU, tDM, tRW} =  tDM (probably) 
However, CPI will increase unless instructions 
are pipelined 
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stage stage stage 
2 3 4

stage 
1 

� All objects go through the same stages 

� No sharing of resources between any two stages 

� Propagation delay through all pipeline stages is equal


� The scheduling of an object entering the pipeline is 
not affected by the objects in other stages 

These conditions generally hold for industrial 
assembly lines. An instruction pipeline, however, 
cannot satisfy the last condition. Why? 
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Pipelining History 

� Some very early machines had limited pipelined 
execution (e.g., Zuse Z4, WWII) 
� Usually overlap fetch of next instruction with current execution 

� IBM Stretch first major “supercomputer” 
incorporating extensive pipelining, result 
bypassing, and branch prediction 
� project started in 1954, delivered in 1961 
�	 didn’t meet initial performance goal of 100x faster with 10x 

faster circuits 
� up to 11 macroinstructions in pipeline at same time 
�	 microcode engine highly pipelined also (up to 6 

microinstructions in pipeline at same time) 
�	 Stretch was origin of 8-bit byte and lower case characters, 

carried on into IBM 360 
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How to divide the datapath

into stages 


Suppose memory is significantly slower than other 
stages. In particular, suppose 

tIM = tDM = 10 units 
tALU = 5 units 
tRF = tRW = 1 unit 

Since the slowest stage determines the clock, it may 
be possible to combine some stages without any loss 
of performance 
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Minimizing Critical Path 
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tC > max {tIM, tRF + tALU, tDM, tRW} 

Write-back stage takes much less time than other stages. 
Suppose we combined it with the memory phase 

⇒ increase the critical path by 10% 
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Pipelining

For the 4-stage pipeline, given 

tIM = tDM = 10 units, tALU = 5 units, tRF = tRW= 1 unit 
tC could be reduced from 27 units to 10 units 

⇒ speedup = 2.7 

However, if tIM = tDM = tALU = tRF = tRW = 5 units

The same 4-stage pipeline can reduce tC from 25 units to 

10 units 


⇒ speedup = 2.5 

But, since tIM = tDM = tALU = tRF = tRW, it is possible to 
achieve higher speedup with more stages in the pipeline. 

A 5-stage pipeline can reduce tC from 25 units to 
5 units 
⇒ speedup = 5 
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Technology Assumptions 
We will assume 

• A small amount of very fast memory (caches) 
backed up by a large, slower memory 
• Fast ALU (at least for integers) 
• Multiported Register files (slower!). 

It makes the following timing assumption valid 

tIM ≈ tRF ≈ tALU ≈ tDM ≈ tRW 

A 5-stage pipelined Harvard-style architecture will 
be the focus of our detailed design 
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Resource Usage Diagram 
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ALU Instructions 

not quite correct! 
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Need for Several IR’s 
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IRs and Control points 
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Are control points connected properly? 
- Load/Store instructions 
- ALU instructions 
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without jumps 
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How Instructions can Interact 

with each other in a Pipeline


• An instruction in the pipeline may need a resource 
being used by another instruction in the pipeline 

structural hazard 

• An instruction may produce data that is needed by 
a later instruction 

data hazard 

• In the extreme case, an instruction may determine 
the next instruction to be executed 

control hazard (branches, interrupts,...) 
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Feedback to Resolve Hazards 

stage 
1 

stage 
2 

stage 
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FB1 FB2 FB3 FB4 

Controlling pipeline in this manner works provided

the instruction at stage i+1 can complete without

any interference from instructions in stages 1 to i


(otherwise deadlocks may occur) 

Feedback to previous stages is used to stall or kill 
instructions 


