
Computer System Architecture 

6.823 Midterm Examination 


Spring 2001 


Name:___________________ 

This is an open book, open notes exam. 

110 Minutes 


16 Pages 


Notes: 
•	 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
•	 The last 2 pages of the exam are for your reference only. Feel free to tear 

them off to look at. We will not grade anything you write on these pages. 
•	 Please write your name on every page in the midterm (you get 5 points 

for doing this). 

Name:_________ 5 Points 
Part A (Q1-Q4):________ 26 Points 
Part B (Q5-Q10):________ 31 Points 
Part C (Q11-Q12):________ 12 Points 
Part D (Q13-Q19):________ 27 Points 
Part E (Q20):________ 9 Points 

Total: ________ 110 Points 



Name__________________________________ 
 
 

Page 2 of 16 

Part A: Microprogramming (26 points) 
 
Ben Bitdiddle decided to add a separate PC register and a PC+4 adder to the original bus-
based DLX implementation (Lecture slide 4-2) to improve performance.  
bus-based DLX is shown in Figure 1.  e that memory can perform a read or a write 
in one cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Modified bus-based DLX machine 
 
 
 
The original microcode for Fetch, BNEZ, ADD, JR, JAL, and JALR are as follows: 
(Note that the errors in lecture slide 4-25 are fixed here and that some further 
optimizations have been added) 
 
Fetch0: ← PC, A ← PC  ADD0:  A ← Reg[rf1] 
Fetch1: ← Mem   ADD1:  B ← Reg[rf2] 
Fetch2: ← A + 4; dispatch  ADD2:  Reg[rf3] ← A + B; fetch   
 
BNEZ0: A ← Reg[rf1]   JR0:  A ← Reg[rf1] 
BNEZ1: B ← sExt16(Imm); feqz JR1:  PC ← A; fetch 
BNEZ2: A ← PC 
BNEZ3: PC ← A + B; fetch 
 
 

The modified 
Assum

MA 
IR 
PC 



Name__________________________________ 

JAL0: A ← PC JALR0: A ← PC 

JAL1: Reg[31] ← A JALR1: Reg[31] ← A 

JAL2: B ← sExt26(Imm) JALR2: PC ← Reg[rf1] ; fetch 

JAL3: PC ← A + B; fetch 


Question 1 (12 points) 
For each of the above microcode sequences, state whether it can be accelerated by 
making use of the separate PC register and PC+4 adder, and if so, give the new 
microcode sequence. 

Ben is given the following pseudo-code: 

if A is 0, B ← C 
Ben converts this pseudo-code to the DLX code shown below. Assume that Ra, Rb, and 
Rc initially hold A, B, and C values respectively and that there are no delay slots. 

BNEZ Ra, done
ADD Rb, Rc, R0

done: 

Page 3 of 16 



Name__________________________________ 

Question 2 (3 points) 
How many cycles does this code sequence take on average for the original and modified 
bus-based DLX machines?  Assume the probability that A = 0 is 0.5. 

Alyssa P. Hacker observes that the pseudo-code that Ben was given is frequently used, 
and decides to implement a new instruction called CMOV (conditional move). This new 
instruction has the following form: 

CMOV R1, R2, R3

; R1 gets the value of R3 if R2 has zero. 


(Take a careful look at register numbers!) 

Question 3 (8 points) 
Write the microcode for this new instruction. 

Question 4 (3 points) 
Using the CMOV instruction, write the DLX code for the pseudo code. Now how many 
cycles does this DLX code take to execute on average?  Again, assume the probability 
that A = 0 is 0.5. 

Page 4 of 16 



Name__________________________________ 

Part B: Pipelining (31 points) 
Ben Bitdiddle decides that it is a waste of resources to not use the register write port in 
the writeback stage of SW/SB/SH and BEQZ/BNEZ instructions. He comes up with the 
idea of adding auto-increment/decrement instructions to the DLX ISA. 

The formats of the new instructions are as follows (others are similar): 

SW rd, (rs1 += offset)
whose effects are: M[rs1 + offset] ← rd 

rs1 ← rs1 + offset *note: offset is a signed value 

BEQZ rs1++, offset
BEQZ rs1--, offset

which means to increment/decrement the value of rs1 after executing the branch. 

Question 5 (5 points) 
What does Ben have to change in the standard 5-stage pipeline presented in class (see 
attached diagram at the end of midterm) to get these new instructions to work?  Do not 
worry about control logic and assume the pipeline is fully bypassed. Explain how the 
new instructions are executed. 

Question 6 (4 points) 
Are there any extra stall conditions required?  If not, explain why not. If so, then for 
each hazard, write a code sequence that exhibits it and indicate how many stall cycles are 
caused. 

Page 5 of 16 



Name__________________________________ 

Consider the following piece of C code (which is an array copy). 
bytes) arrays. Assume that n >= 0 

for (i = n; i >= 0; i--) { 
} 
b[i] = a[i]; 

The assembly code for the original DLX ISA is as follows. 

;; Ra = a, Rb = b, Rn = n 
SLLI R5, Rn, 2
ADD Ra, Ra, R5
ADD Rb, Rb, R5

loop:	
LW R6, 0(Ra)
ADDI Ra, Ra, -4
SW R6, 0(Rb)
ADDI Rb, Rb, -4
BNEZ Rn, loop
ADDI Rn, Rn, -1 

a and b are integer (4 

This DLX implementation has a single branch delay slot (without annulling). 

Question 7 (8 points) 
Using the new instructions, implement the above C code. Make the new code fairly 
efficient. We don’t care about register values at the end of execution. 

Question 8 (3 points) 
How many cycles (issue slots) does each iteration of the loop take to execute (old vs new 
pipeline)? 

Page 6 of 16 



Name__________________________________ 

Question 9 (4 points) 
Do the auto-incrementing store instructions require any special handling for interrupts? 
Explain. 

Question 10 (7 points) 
In lecture slide L7-10, a solution is proposed to handle interrupts in delay slots. On an 
interrupt, if instruction Ii is in a delay slot then save PCi-1 instead of PCi. The branch 
instruction is thus replayed. Would this scheme work with auto-increment/decrement 
branches?  If so, explain how. If not, explain why not and propose another solution that 
does work. 

Page 7 of 16 



Name__________________________________ 

Part C: Caches (12 points) 
You have just accepted a position at Caches-R-Us as a research scientist. Your first task 
is to assess the pathological performance of various cache organizations. You decide to 
start by looking at two basic caches, both with a capacity of four words. The first is a 
direct-mapped cache with one word per cache line. The second is a fully-associative 
cache also with one word per cache line and an LRU replacement policy. For both of the 
following questions assume the caches are initially empty, i.e., all lines are invalid. 

Question 11 (5 points) 
Please specify a memory access pattern that will cause the fully-associative cache to 
incur fewer misses than the direct-mapped cache. 

Question 12 (7 points) 
Does there exist a memory access pattern that causes the direct-mapped cache to incur 
fewer misses than the fully-associative cache? If so, please give one such access pattern, 
or else explain why this is not possible. 

Page 8 of 16 



Name__________________________________ 

Part D: Hacking Virtual Memory (27 points) 
Ben has hired you as a consultant for his newest microprocessor, the Bentium I. He is 
experimenting with the idea of using a 64-bit virtual address. 

Question 13 (2 points) 
How large is the page table if he only uses a single-level page table? Assume that each 
page is 4KB, each page table entry is 4 bytes, and that the Bentium is a byte-addressable 
machine. 

Ben read in a recent technical journal that many current implementations of 64-bit ISAs 
implement only part of the large virtual address space. They usually segment the virtual 
address space into three parts: one used for stack, one used for code and heap data, and 
the third one unused. For example, the Benhammer processor’s virtual address space is 
shown below: 

0xFFFFFFFFFFFFFFFF 

0xFF00000000000000 

0x00FFFFFFFFFFFFFF 

0x0000000000000000 
Reserved for Code and Heap 

Reserved for Stack 

A special circuit is used to detect whether the top eight bits of an address are all zeros or 
all ones before the address is sent to the virtual memory system. If they are not all equal, 
an invalid virtual memory address trap is raised. This scheme in effect removes the top 
seven bits from the virtual memory address, but retains a memory layout that will be 
compatible with future designs that implement a larger virtual address space. 

Page 9 of 16 



Name__________________________________ 

Question 14 (2 points) 
Ben likes the Benhammer scheme but wants an even cheaper virtual memory system, so 
in the Bentium he decides to remove the top 22 bits and only use the lower 42 bits to 
index the virtual memory. How large is the single-level page table now? 

Question 15 (5 points) 
Ben is still unsatisfied about the page table size and asks you to use a three-level 
hierarchical page table that breaks the 42-bit address into three 10-bit page indices and a 
12-bit page offset. If page table overhead is defined as (in bytes): 

PHYSICAL MEMORY USED BY PAGE TABLES FOR A USER PROCESS 
PHYSICAL MEMORY USED BY THE USER CODE, HEAP, AND STACK 

What is the smallest possible page table overhead for the three-level hierarchical scheme? 
Remember that a complete page table page (1024 PTEs) is allocated even if only one 
PTE is used. Assume a large enough physical memory that no pages are ever swapped to 
disk. 

Page 10 of 16 



Name__________________________________ 

Question 16 (5 points) 
What is the largest possible page table overhead for the three-level hierarchical scheme? 
Assume that once a user page is allocated in memory, the whole page is considered to be 
useful. 

Alyssa P. Hacker is unhappy with the large hole in the virtual address space given by the 
Benhammer scheme. She decides that a hashed page table is the way to go. Again, the 
machine has a 64-bit virtual address and 4KB pages. The hardware paging system has 
only one page table with 64 slots, each containing 8 PTEs. Alyssa decides to use X mod 
64 as the hash function to select a slot, where X is the VPN. The page table resides in 
memory and Alyssa’s design has no TLB, so each PTE read requires one memory access. 
During a page table lookup, all PTEs in each slot are searched sequentially. If there is a 
miss in the page table, a trap is raised and a software handler will refill the page table, 
with each refill requiring 10 memory accesses on average. 

Page 11 of 16 



Name__________________________________ 

Question 17 (6 points) 
Alyssa is happy with her new modification and runs a very simple benchmark that 
repeatedly loops over an array of 221 bytes, reading one byte at a time in sequential 
address order. On average in the steady state, how many memory accesses are performed 
for each byte read by the user program? Ignore the memory traffic for instruction fetch, 
assume that the array starts on a page boundary, and there are no other memory accesses 
in the user code apart from the single byte memory accesses. 

Page 12 of 16 



Name__________________________________ 

Question 18 (2 points) 
Alyssa now decides to add a one-entry TLB to the hashed paging system. What should 
the replacement policy for the TLB be?  Circle the most appropriate of the following 
choices: 

a) FIFO 
b) LRU 
c) Random 
d) Doesn’t matter, all of the above give the same performance 

Question 19 (5 points) 
Given your answer to the previous question, what is now the average number of memory 
accesses per user byte read for Alyssa’s benchmark? 

Page 13 of 16 



1 
2 
3 
4 
5 
6 
7 

Name__________________________________ 

Part E: Scoreboarding (9 points) 
The DLX floating-point unit (FPU) uses a separate register set f0-f15. 
Consider the following instruction loop. One branch delay slot is assumed. 

loop:
I lf 
I lf 
I multf 
I addf 
I seq
I beqz
I addi 

f3, f3, f1 

f1, A(r2)
f2, B(r2)
f1, f1, f2 
r5, r2, r6
r5, loop
r2, r2, 4 
RAW 

loop:
lf 
lf 
multf 
addf 
seq
beqz
addi 

r5, r2, r6 

f1, A(r2)
f2, B(r2)
f1, f1, f2
f3, f3, f1 
r5, loop
r2, r2, 4 
WAR 

loop:
lf 
lf 
multf 
addf 
seq
beqz
addi 

f3, f3, f1 

f1, A(r2)
f2, B(r2)
f1, f1, f2 
r5, r2, r6
r5, loop
r2, r2, 4 
WAW 

Question 20 (9 points) 
In the figures above, draw all the RAW, WAR, and WAW dependencies. Include 
dependencies across loop iterations. One example dependency is already given for each 
type of hazard. Please be neat so that we can clearly see the dependencies you draw. 

Page 14 of 16 



Name__________________________________ 

Fully Bypassed Datapath 

ASrc 

ALU 
PC 

0x4 
Add 

A 

B 

MD1 

Y 

MD2 

IR 

IR IR IR 

R 

Add 

RA RA 

Cdest 

wsWweW 

Stall 

nop 

addr 
inst 

Inst 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

Imm 
Ext 

addr 

wdata 

rdata
Data 
Memory 

we 

BSrc 

Page 15 of 16




Name__________________________________ 

Midterm Summary 
Part A: Microprogramming (26 points) ............................................................................ 2


Question 1 (12 points) ................................................................................................... 3


Question 2 (3 points) ..................................................................................................... 4


Question 3 (8 points) ..................................................................................................... 4


Question 4 (3 points) ..................................................................................................... 4


Part B: Pipelining (31 points)............................................................................................ 5


Question 5 (5 points) ..................................................................................................... 5


Question 6 (4 points) ..................................................................................................... 5


Question 7 (8 points) ..................................................................................................... 6


Question 8 (3 points) ..................................................................................................... 6


Question 9 (4 points) ..................................................................................................... 7


Question 10 (7 points) ................................................................................................... 7


Part C: Caches (12 points)................................................................................................. 8


Question 11 (5 points) ................................................................................................... 8


Question 12 (7 points) ................................................................................................... 8


Part D: Hacking Virtual Memory (27 points)................................................................... 9


Question 13 (2 points) ................................................................................................... 9


Question 14 (2 points) ................................................................................................. 10


Question 15 (5 points) ................................................................................................. 10


Question 16 (5 points) ................................................................................................. 11


Question 17 (6 points) ................................................................................................. 12


Question 18 (2 points) ................................................................................................. 13


Question 19 (5 points) ................................................................................................. 13


Part E: Scoreboarding (9 points).................................................................................... 14


Question 20 (9 points) ................................................................................................. 14


Midterm Summary ........................................................................................................... 16


Page 16 of 16 


