

Asanovic/DevadasSpring 2002 6.823

Embedded Computing

Krste AsanovicLaboratory for Computer Science Massachusetts Institute of Technology

How many microprocessors do you own?

- **Average individual in developed country owns around 100 microprocessors**
	- *Almost all are embedded*
- **Maybe 10,000 processors/person by 2012! (according to Moore's Law)**

Asanovic/Devadas

Spring 2002 6.823

What is an Embedded Computer?

 A computer not used to run general-purpose programs, but instead used as a component of a system. Usually, user cannot change the computer program (except for minor upgrades).

Example applications:

- **Toasters**
- **Cellphone**
- **Digital camera (some have several processors)**
- **Games machines**
- **Set-top boxes (DVD players, personal video recorders, ...)**
- **Televisions**
- **Dishwashers**
- **Car (some have dozens of processors)**
- **Router**
- **Cellphone basestation**
- **.... many more**

Asanovic/DevadasSpring 2002 6.823

Early Embedded Computing Examples

- **MIT Whirlwind, 1946-51**
	- **developed for real-time flight simulator**
- **Intel 4004, 1971**
	- **developed for Busicom 141-PF printing calculator**

Important Parameters for Embedded Computers

Real-time performance

- *hard real-time***: if deadline missed system has failed (car brakes!)**
- *soft real-time***: missing deadline degrades performance (skipping frames on DVD playback)**

Real-world I/O performance

sensor and actuators require continuous I/O (can't batch process)

Cost

- **includes cost of supporting structures, particularly memory**
- **static code size very important (cost of ROM/RAM)**
- **often ship millions of copies (worth engineer time to optimize cost down)**

Power

expensive package and cooling affects cost, system size, weight

Asanovic/DevadasSpring 2002 6.823

What is Performance?

Latency (or response time or execution time)

time to complete one task

Bandwidth (or throughput)

–**tasks completed per unit time**

Asanovic/DevadasSpring 2002 6.823

Performance Measurement

Execution Rate

Average Rate: A > B > C

Worst-case Rate: $\, \mathbf{A} \leq \mathbf{B} \leq \mathbf{C} \,$

Which is best for desktop performance? _______

Which is best for hard real-time task? _______

Future Computing Infrastructure **Spring 2002**

Asanovic/Devadas

Asanovic/DevadasSpring 2002 6.823

Physics Review

Energy measured in Joules Power is rate of energy consumption measured in Watts (Joules/second)

Instantaneous power is Vdd * Idd

Battery Capacity Measured in Joules

- **720 Joules/gram for Lithium-Ion batteries**
- **1 instruction on Intel XScale takes ~1nJ**

Power versus Energy

- **System A has higher peak power, but lower total energy**
- System **B** has lower peak power, but higher total energy

Impacts on Computer System

- **Energy consumed per task determines battery life**
	- **Second order effect is that higher current draws decrease effective battery energy capacity (higher power also lowers battery life)**
- **Current draw causes IR drops in power supply voltage**
	- **Requires more power/ground pins to reduce resistance R**
	- **Requires thick&wide on-chip metal wires or dedicated metal layers**
- **Switching current (dI/dt) causes inductive power supply voltage bounce** ∝ **LdI/dt**
	- **Requires more pins/shorter pins to reduce inductance L**
	- **Requires on-chip/on-package decoupling capacitance to help bypass pins during switching transients**
- **Power dissipated as heat, higher temps reduce speed and reliability**
	- **Requires more expensive packaging and cooling systems**
	- **Fan noise**
	- **Laptop temperature**

Power Dissipation in CMOS Spring 2002

Asanovic/Devadas

Primary Components:

Capacitor Charging (85-90% of active power)

Energy is ½ CV2 per transition

Short-Circuit Current (10-15% of active power)

When both p and n transistors turn on during signal transition

Subthreshold Leakage (dominates when inactive)

- **Transistors don't turn off completely**
- **Becoming more significant part of active power with scaling**

Diode Leakage (negligible)

■ **Parasitic source and drain diodes leak to substrate**

Reducing Switching Power

Power ∝ **activity * ½ CV2 * frequency**

- **Example activity**
- **Reduce switched capacitance C**
- **Reduce supply voltage V**
- **Reduce frequency**

Spring 2002 Reducing Activity 6.823

Clock Gating

- **don't clock flip-flop if not needed**
- **avoids transitioning downstream logic**
- **Pentium-4 has hundreds of gated clocks**

Bus Encodings

- **choose encodings that minimize transitions on average (e.g., Gray code for address bus)**
- **compression schemes (move fewer bits)**

Remove Glitches

- **balance logic paths to avoid glitches during settling**
- **use monotonic logic (domino)**

Reducing Switched Capacitance

Reduce switched capacitance C

- **Different logic styles (logic, pass transistor, dynamic)**
- **Careful transistor sizing**
- **Tighter layout**
- **Segmented structures**

Reducing Supply Voltage **Spring 2002 6.823**

Quadratic savings in energy per transition – *BIG* **effect**

- **Circuit speed is reduced**
- **Must lower clock frequency to maintain correctness**

Reducing Frequency

- **Doesn't save energy, just reduces rate at which it is consumed**
	- **Some saving in battery life from reduction in rate of discharge**

Voltage Scaling for Reduced Energy

- **Reducing supply voltage by 0.5 improves energy per transition by 0.25**
- **Performance is reduced – need to use slower clock**
- **Can regain performance with parallel architecture**
- **Alternatively, can trade surplus performance for lower energy by reducing supply voltage until "just enough" performance**

Dynamic Voltage Scaling

Parallel Architectures Reduce Spring 2002 Energy at Constant Throughput

- **8-bit adder/comparator**
	- **40MHz at 5V, area = 530 k** µ **2**
	- **Base power Pref**
- **Two parallel interleaved adder/compare units**
	- **20MHz at 2.9V, area = 1,800 k** µ **2 (3.4x)**
	- **Power = 0.36 Pref**
- **One pipelined adder/compare unit**
	- **40MHz at 2.9V, area = 690 k** µ **2 (1.3x)**
	- **Power = 0.39 Pref**
- **Pipelined and parallel**
	- **20MHz at 2.0V, area = 1,961 k** µ **2 (3.7x)**
	- **Power = 0.2 Pref**

Chandrakasan et. al. "Low-Power CMOS Digital Design", IEEE JSSC 27(4), April 1992

"Just Enough" Performance

 Save energy by reducing frequency and voltage to minimum necessary (usually done in O.S.)

Voltage Scaling on Spring 2002 **Transmeta Crusoe TM5400**

Types of Embedded Computer

• **General Purpose Processors**

– **often too expensive, too hot, too unpredictable, and require too much support logic for embedded applications**

• **Microcontroller**

- **emphasizes bit-level operations and control-flow intensive operations (a programmable state machine)**
- **usually includes on-chip memories and I/O devices**

• **DSP (Digital Signal Processor)**

- **organized around a multiply-accumulate engine for digital signal processing applications**
- **FPGA (Field Programmable Gate Array)**
	- **reconfigurable logic can replace processors/DSPs for some applications**

New Forms of Domain-Specific Processor

• **Network processor**

- **arrays of 8-16 simple multithreaded processor cores on a single chip used to process Internet packets**
- **used in high-end routers**

• **Media processor**

- **conventional RISC or VLIW engine extended with media processing instructions (SIMD or Vector)**
- **used in set-top boxes, DVD players, digital cameras**

Spring 2002 DSP Processors

Equivalent to one multiply, three adds, and two loads in RISC ISA!

Spring 2002 Network Processors

Programming Embedded Computers

- **Microcontrollers, DSPs, network processors, media processors usually have complex, nonorthogonal instruction sets with specialized instructions and special memory structures**
	- **poor compiled code quality (% peak with compiled code)**
	- **high static code efficiency**
	- **high MIPS/\$ and MIPS/W**
	- **usually assembly-coded in critical loops**
- **Worth one engineer year in code development to save \$1 on system that will ship 1,000,000 units**
- **Assembly coding easier than ASIC chip design**
- \bullet *But room for improvement…*