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Abstract 

We present a new mechanism-oriented memory model 
called Commit-Reconcile & Fences (CRF) and define it us�
ing algebraic rules. Many existing memory models can be 
described as restricted versions of CRF. The model has been 
designed so that it is both easy for architects to implement, 
and stable enough to serve as a target machine interface 
for compilers of high-level languages. The CRF model ex�
poses a semantic notion of caches (saches), and decomposes 
load and store instructions into finer-grain operations. We 
sketch how to integrate CRF into modern microprocessors 
and outline an adaptive coherence protocol to implement 
CRF in distributed shared-memory systems. CRF offers an 
upward compatible way to design next generation computer 
systems. 

1. Loads and Stores: The CISC of Nineties 

Caching and instruction reordering are ubiquitous fea­
tures of modern computer systems and are necessary to 
achieve higher performance. For uniprocessor configura­
tions, these features are mostly transparent and exposed 
only for some low-level memory-mapped input/output op­
erations. For multiprocessor configurations however, these 
features are anything but transparent. Indeed, a whole area 
of research has evolved around what view of memory should 
be presented to the programmer, the compiler writer, and the 
computer architect. 

Every programming language has a memory model, re­
gardless of whether it is described explicitly or not (e.g., 
programmer-centric models [16, 5, 19]). It is the task of the 
compiler to ensure that the semantics of a high-level pro-
gram is preserved when its compiled version is executed on 
an architecture with a certain low-level memory model (e.g., 
architecture-centric models [25, 18, 26, 14]). The essence of 
any memory model is the correspondence between each load 

instruction and the store instruction that supplies the value 
retrieved by the load. Unfortunately, at the architecture 
level, memory access operations often have some sophisti­
cated implementation characteristics that make it difficult to 
specify the resulting memory model precisely. 

Our approach is to decompose the load and store instruc­
tions into finer-grain orthogonal operations and use them 
to define the Commit-Reconcile & Fences (CRF) memory 
model. The CRF model has a semantic notion of caches, 
referred to as saches, which makes the operational behav­
ior of data replication to be part of the model. Both loads 
and stores are performed directly on local saches and new 
instructions are provided to move data between saches and 
memory whenever necessary. The Commit instruction en­
sures that a modified value in the sache is written back to the 
memory, while the Reconcile instruction ensures a stale 
value is purged from the sache. CRF also provides fine-
grain fences to control the reordering of memory related 
instructions. Thus, a normal load or store instruction can be 
thought of as follows: 

Load(a) � Reconcile(a); Loadl(a); Fence 
Store(a,v) � Storel(a,v); Commit(a); Fence 

where Loadl and Storel represent loading data from and 
storing data to the local sache, respectively. 

CRF is a mechanism-oriented memory model and in-
tended for architects and compiler writers rather than for 
high-level parallel programming (see Figure 1). It is de-
fined by giving precise (algebraic) semantics to the memory 
related instructions so that every CRF program has a well-
defined operational behavior. The CRF mechanisms give 
architects great flexibility for efficient implementations, and 
at the same time these mechanisms give compiler writers all 
the control they need. A compiler can move around or even 
eliminate some Commit, Reconcile and Fence operations 
in a program. 

There are many benefits to our approach. CRF permits 
aggressive cache coherence protocols in distributed shared-
memory (DSM) systems because no operation explicitly 
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Figure 1. CRF: A Memory Model for Architects 
and Compiler Writers 

or implicitly involves multiple saches. Furthermore, any 
cache-coherence protocol for CRF is automatically a correct 
protocol for all other memory models whose programs can 
be transformed into CRF programs. 

In addition, there is no need to distinguish between ordi­
nary variables and synchronization variables used as locks. 
In fact, the choice and implementation of synchronization 
mechanisms is an orthogonal issue. CRF mechanisms can 
be incorporated in stages in future systems without loss of 
compatibility with existing systems. 

The salient features of CRF may be described as follows: 

�	 It is easy to translate a variety of high-level program­
ming models into CRF. Translation of programs based 
on models such as release consistency into CRF is 
straightforward. 

�	 Most existing multiprocessor systems can be inter­
preted as specific implementations of CRF, though 
more efficient implementations are possible. 

�	 In CRF, stores to each memory location are totally or­
dered so that they are always observed in the same 
order by all the processors. This is a deliberate de-
sign choice to avoid semantic complications without 
compromising implementation flexibility. 

�	 The set of algebraic rules, that define all legal behaviors 
according to the CRF model, can be used by architects 
and compiler writers to design and verify the correct­
ness of their optimizations. 

Paper organization: We briefly discuss existing memory 
models in Section 2 before introducing our formalism in 
Section 3. After presenting the CRF model in Section 4, we 
discuss the relationship of CRF with some existing memory 
models in Section 5. In Section 6, we sketch an adaptive 
cache coherence protocol that implements CRF. Section 7 
discusses the potential impact of CRF on microarchitectures, 
and some conclusions follow in Section 8. 

2. Weaker Memory Models 

Sequential consistency (SC) has been the dominant mem­
ory model in parallel computing for decades due to its sim­
plicity [16] and is thus the standard against which other mod­
els must be compared. SC requires that memory accesses of 
a program be performed in-order on each processor and be 
atomic with respect to each other and is thus clearly at odds 
with both instruction reordering and caching. Ingenious 
solutions have been devised to keep both of these features 
transparent so that at the high-level, a programmer assuming 
SC cannot detect if and when the memory accesses are out-
of-order or non-atomic. For small scale parallel machines, 
it is well understood how to preserve the access atomicity of 
SC with cache coherence protocols, and recent advances in 
the use of speculative execution permit reordering of loads 
without destroying the sequentiality of SC. 

The desire to achieve higher performance has led to var­
ious relaxed or weaker memory models [21, 12, 15, 8, 6]. 
Broadly speaking, weaker memory models weaken either 
the sequentiality constraint or the atomicity constraint of 
SC. The weak-ordering property allows certain memory ac­
cesses to be performed in a different order than the pro-
gram order unless explicit ordering constraints are speci­
fied. The weak-atomicity property exposes data replica­
tion by allowing store accesses to be performed in some 
non-atomic fashion. An aggressive memory model can ac­
commodate some combination of both weak-ordering and 
weak-atomicity properties. 

2.1. Properly Synchronized Programs 

It is common practice in parallel programming to use 
locks to ensure that only one processor at a time can access a 
shared variable (though in many programs it is perfectly safe 
to read a shared variable without acquiring the lock). A data 
race occurs when there are multiple concurrent accesses to a 
shared variable, at least one of which is a write. Informally, 
a properly synchronized program has no data races; races 
are limited to acquiring locks. 

Although it is generally undecidable if a program is prop­
erly synchronized, it is relatively easy for the programmer 
to characterize each memory operation as ordinary or syn­
chronization access. Synchronization accesses can be fur­
ther classified as acquire and release operations, loop and 
non-loop operations, and so on. Based on such classifi­
cations, the notions of data-race-free programs [2, 3] and 
properly-labeled programs [10, 9] have been defined. In 
each definition, conflicting ordinary accesses are separated 
(ordered) by synchronization accesses. For properly syn­
chronized programs, SC behavior can be achieved on an 
architecture with an appropriate weaker memory model [1]. 
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2.2. Models with Weak-Ordering 

Modern microprocessors support memory models with 
weak-ordering to hide latency for performance improve­
ment. Memory fences are provided at the programming 
level to ensure proper ordering constraints between specific 
memory accesses whenever necessary. Examples of mem­
ory fences include the Membar instruction in Sparc [26] and 
the Sync instruction in PowerPC [18]. Synchronization in­
structions such as Test-&-Set and Swap often act as fences. 
IBM 370’s conditional instructions have a fence-like effect, 
as does PowerPC’s EIEIO instruction. 

Different weak-ordering models allow memory accesses 
to be reordered under different conditions. In Sparc, Total 
Store Order (TSO) allows a load instruction to be performed 
before outstanding store instructions complete, which vir­
tually models FIFO write-buffers. The Partial Store Order 
(PSO) model further allows stores to be reordered, so that 
stores to the same cache line can be merged in write-buffers. 
Sparc-v9 defined Relaxed Memory Order (RMO) in which 
loads and stores can be performed in arbitrary order, pro­
vided that the so-called self-consistency is preserved. In 
each of these cases, the programmer must know the mem­
ory model of the underlying architecture so that when nec­
essary, he can insert appropriate instructions to ensure that 
SC assumptions are not violated. 

2.3. Models with Weak-Atomicity 

Although weak-ordering models allow memory accesses 
to be performed out-of-order, they still require each memory 
access to be atomic with respect to other memory accesses. 
The semantic effect of each store operation must be observ­
able by other processors in a lock-step. In the presence of 
caches, some mechanism is needed to prevent other proces­
sors from observing stale values in their caches. This is 
usually accomplished by invalidating all outstanding copies 
of the address in other caches. Invalidation increases store 
latencies and can cause dramatic performance degradation. 
In the past, such delays have been tolerable in small SMP’s 
using snoopy bus protocols, but this may not be so in future. 

Release consistency (RC) allows non-atomic memory ac­
cesses since the execution of memory accesses between ac­
quire and release operations does not have to be visible im­
mediately to other processors [12, 17]. The essence of RC 
is that memory accesses before a release must be globally 
performed before the synchronization lock can be released. 
Lazy release consistency (LRC) goes a step further; it allows 
a synchronization lock to be released to another processor 
even before previous memory accesses have been globally 
performed, provided the semantic effect of those memory 
accesses has become observable to the processor about to 
acquire the lock [15]. Again it can be shown that properly 

synchronized programs execute correctly under both RC and 
LRC, giving more flexibility in implementations. 

Weak memory models have often eluded precise defi­
nitions, a fact that causes complications when there is a 
multi-level, non-uniform memory hierarchy with a mixture 
of shared buses and networks. 

3. Specifying a Memory Model 

3.1. Program Order and Memory Models 

Memory models are often defined based on the concept 
of program order, which is an execution trace of memory 
accesses. The program order has been defined in various 
ways; the following definition from “The Sparc Architecture 
Manual (Version 9)” is typical: 

A program order execution trace is an execution 
trace that begins with a specified initial instruction and 
executes one instruction at a time in such a fashion that 
all the semantic effects of each instruction take effect 
before the next instruction is begun. The execution 
trace this process generates is defined to be the program 
order. ... Program order specifies a unique total order 
for all memory transactions initiated by one processor. 

We find such definitions defective on two counts. First, it 
is not possible to define program order without first specify­
ing the memory model, because the memory model affects 
the program order. The following example illustrates the 
problem: 

Processor 1 Processor 2 
r = Load(a1); Store(a1,1); 
Jz(r,L2); ... 

L1: Store(a2,100); Store(a1,0); 
Jz(r, L3); 

L2: Store(a2,200); 
Jz(r,L1); 

L3: ... 

Assume initially both memory locations a1 and a2 con­
tain value 0. What is the program order for processor 1 in 
regards to the two stores at L1 and L2? If register r gets value 
0 then L2 is executed before L1; otherwise L1 is executed 
before L2. Since this depends on the value retrieved by the 
load instruction, it cannot be determined without a memory 
model. Program order is not a well-defined concept without 
the inclusion of a memory model. 

The second problem with the program order definition is 
that, by insisting on executing one instruction at a time,many 
legal and interesting memory behaviors cannot be observed. 
Consider the following program: 
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[

Processor 1 Processor 2 
Store(a1,1); L: r2 = Load(a2); 
r1 = Load(a1); Jz(r2,L); 
Store(a2,r1); r = Load(a1); 

Suppose initially locations a1 and a2 contain value 0. 
Processor 1 eventually stores value 1 to location a2, while 
processor 2 loops until the value of location a2 becomes non-
zero (i.e., 1). Let us assume that loads cannot be reordered 
(or equivalently, the memory model does not allow loads 
to be reordered). Is it possible for register r to get value 
0? Whether r gets value 0 or 1 can affect the program 
order on processor 2; just imagine the code of processor 
1 from the previous example replaces the last instruction 
of processor 2 here. Some memory models allow the two 
stores on processor 1 to be reordered in spite of apparent 
data dependencies. For example, register r1 can get value 1 
before the store to location a1 is “globally performed” due to 
the use of write-buffers. This cannot happen if instructions 
are executed one at a time as dictated by the definition of 
the program order. 

Our way of defining memory models side-steps the pit-
falls associated with definitions based on program order. 

3.2. Memory Model as an Input-Output Relation 

The observable behavior of a program on a computer 
is determined both by its processor microarchitecture (e.g., 
out-of-order and speculative execution) and the memory ar­
chitecture (e.g., memory, caches, cache-coherence proto­
cols). At an abstract level, it is useful to think of a computer 
as having two types of subsystems – processor and mem­
ory. Each processor generates a stream of memory requests, 
for which the memory produces a stream of replies. The 
memory system behaves as an oracle that defines a value for 
each load request generated during a program execution. A 
memory model is the specification of such an oracle. For 
parallel systems, memory models are invariably nondeter­
ministic, that is, for the same set of input streams a range of 
behaviors are acceptable as output. 

We will present memory models as a mathematical rela­
tion between processor request streams and memory reply 
streams. A request stream consists of loads and stores, and 
in weaker models, some special instructions like fences. We 
assume processors attach a unique transaction tag to each 
request and the memory system generates a corresponding 
reply using the same transaction tag. The replies are not nec­
essarily generated in the same order in which the requests 
are processed. In case of a load request, the reply contains 
the value returned from the memory. For other types of re-
quests the reply simply contains an acknowledgment (Ack). 
The order of requests in an input stream is significant and 
represents the order imposed on the requests by the program 
execution. There is no order on replies in the output stream. 

Generally, many different sets of output streams represent 
legal replies for the same set of input streams. 

Our memory model definitions can be used to design 
and verify cache coherence protocols and processor opti­
mizations. However, any issue regarding program behav­
ior requires both a processor model and a memory model 
and is discussed in this paper only tangentially. (We have 
discussed program behavior issues related to microarchi­
tectures with register renaming and speculative executions 
elsewhere [22]). 

In the rest of this section, we introduce our TRS formal-
ism and use it to model SC. 

3.3. Term Rewriting Systems 

We will use Term Rewriting Systems (TRS’s) to define 
memory models. A TRS consists of a set of terms and a set 
of rewriting rules. The terms represent system states and 
the rules specify state transitions. The general structure of 
rewriting rules is as follows: 

s 1 if p ( 1)s 

! s 2 

swhere s 1 and s 2 are terms and p ( 1) is an optional predicate 
about s 1. 

A rule can be used to rewrite a term if its left-hand-side 
pattern matches the term or one of its subterms, and the 
corresponding predicate, if any, is true. If several rules are 
applicable, then any one of them may be applied. If no rule is 
applicable, then the term cannot be rewritten any further. A 
rewriting strategy can be used to specify which rule among 
the applicable rules should be applied at each rewriting step. 

Notation: We use ‘ ] ’ as the meta notation in grammars to 
separate disjuncts. It is important to distinguish between 
variables and constants while pattern matching. A variable 
matches any expression while a constant matches only itself. 
We will follow the convention where variables and constants 
are represented by identifiers that begin with a lower-case 
and upper-case letter, respectively. Connectives such as ‘;’ 
are also constants. We use ‘ ’ to represent the empty term� 

(e.g., an empty cache), and ‘-’ the wild-card term that can 
match any term. We use ‘j ’ as a connective to indicate 
that ordering does not matter (i.e., ‘j ’ is associative and 
commutative). 

3.4. Example: Sequential Consistency 

As an example, we use a TRS to define SC. The system 
is modeled as a memory and a set of sites (see Figure 2). 
Each site contains a processor,a processor-to-memory buffer 
(pmb) and a memory-to-processor buffer (mpb). A memory 
request is a Load or Store instruction. SC can be defined 
by the following rules: 
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proc proc proc 

memory 

pmb pmb pmbmpb mpb mpb 

SYS � Sys(MEM, SITES) 
SITES � SITE [] SITE j SITES 
SITE � Site(PMB, MPB, PROC) 
PMB � � [] h t,REQi ;PMB 
MPB � � [] h t,REPij MPB 
REQ � Load(a) [] Store(a,v) 
REP � v [] Ack 

Figure 2. Semantic Configuration of SC 

SC-Load Rule 
Sys(m, Site(h t,Load(a)i ;pmb, mpb, p) j sites) 

! Sys(m, Site(pmb, mpbjh t,m[a]i , p) j sites) 

SC-Store Rule 
Sys(m, Site(h t,Store(a,v)i ;pmb, mpb, p) j sites) 

! Sys(m[a:=v], Site(pmb, mpbjh t,Acki , p) j sites) 

where m[a] refers to the value of memory location with 
address a, and m[a:=v] represents memory m with location 
a updated with value v. Since only the instruction at the front 
of pmb can be executed, memory requests are processed in-
order on each processor. Memory accesses are semantically 
atomic with respect to one another because there is no data 
replication. Since the connective ‘ j ’ implies no ordering, 
any site can be brought to the leftmost position in the site 
group. Thus, if two processors intend to access the same 
address, either can proceed. 

The above two rules completely define all possible out-
comes for a given set of request streams for the SC model. 
We will now show that, even without a processor model, 
this definition can be used to decide the correctness of some 
optimizations for microarchitectures. 

3.5. Some Optimization Rules 

Suppose each processor keeps outstanding instructions in 
some buffers in-order. On a load, the processor checks the 
buffer, and if the preceding instruction is a store to the same 
address, the value of the store instruction is returned imme­
diately. Similarly, on a store, if the preceding instruction is 
a store to the same address, then the preceding store instruc­
tion can be discarded without writing back to the memory. 
The following two rules express these optimizations: 

memory 

proc 

sache sache sache 

proc proc 

pmb pmb pmbmpb mpb mpb 

SYS � Sys(MEM, SITES) 
SITES � SITE [] SITE j SITES 
SITE � Site(SACHE, PMB, MPB, PROC) 
SACHE � � [] Cell(a,v,CS) j SACHE 
CS � Clean [] Dirty 
PMB � � [] h t,REQi ;PMB 
MPB � � [] h t,REPij MPB 
REQ � Loadl(a) [] Storel(a,v) 

[] Commit(a) [] Reconcile(a) 
[] Fencerr(a1,a2) [] Fencerw(a1,a2) 
[] Fencewr(a1 ,a2) [] Fenceww(a1,a2) 

REP � v [] Ack 

Figure 3. Semantic Configuration of CRF 

SC-Load-Bypass Rule 
Site(pmb1;h t1,Store(a,v)i ;h t2,Load(a)i ;pmb2, mpb, p) 

! Site(pmb1;h t1,Store(a,v)i ;pmb2, mpbjh t2,vi , p) 

SC-Store-Merge Rule 
Site(pmb1;h t1,Store(a,v1)i ;h t2,Store(a,v2)i ;pmb2, mpb, p) 

! Site(pmb1;h t2,Store(a,v2)i ;pmb2, mpbjh t1,Acki , p) 

These rules are correct in the sense that, given a set of 
input streams, they do not add any new behavior to the set of 
behaviors generated by the SC rules (or equivalently, the SC 
rules can simulate the behaviors generated by the optimiza­
tion rules). Of course, given a processor model, addition 
of such rules may affect the set of behaviors observable for 
a program. However, all such program behaviors would 
correspond to some behavior permissible by the SC model. 

4. The CRF Memory Model 

CRF exposes both data replication and instruction re-
ordering at the programming level. Each site has a seman­
tic cache (sache), on which Loadl (load-local) and Storel 
(store-local) instructions operate (see Figure 3). The model 
assumes memory accesses can be reordered as long as data 
dependence constraints are preserved, and provides memory 
fences to enforce ordering if needed. 

The Commit and Reconcile instructions can be used 
to ensure that the data produced by one processor can be 
observed by another processor whenever necessary. The 
memory behaves as the rendezvous between the writer and 
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Figure 4. Memory Rendezvous of CRF 

the reader: the writer performs a Commit operation to guar­
antee that the modified data has been written back to the 
memory, while the reader performs a Reconcile operation 
to guarantee that the stale copy (if any) has been purged from 
the sache so that subsequent load operations must retrieve 
the data from the memory (see Figure 4). 

Semantic caches do not necessarily correspond to caches 
in implementations; they are needed purely for semantic 
reasons. Similarly, the rendezvous between the writer and 
reader does not have to be the main memory; a cache coher­
ence protocol may use any cache in the memory hierarchy 
as the rendezvous point. The only thing that matters is that 
any system that implements CRF must maintain the same 
observable memory behavior. 

The definition of CRF includes two sets of rules. The 
first set of rules specifies the execution of Loadl, Storel, 
Commit and Reconcile instructions. It also includes rules 
that govern the data propagation between semantic caches 
and memory. The second set of rules deals with instruction 
reordering and memory fences. We also refer to the first set 
of rules as the Commit-Reconcile (CR) model because these 
rules by themselves define a memory model, which is the 
same as the CRF model except that instructions are executed 
strictly in-order. 

4.1. The Commit-Reconcile Model 

There are two states for sache cells, Clean and Dirty. The 
Clean state indicates that the data has not been modified 
since it was cached or last written back. The Dirty state 
indicates that the data has been modified and has not been 
written back to the memory since then. Notice in CRF, 
different saches can have a cell with the same address but 
different values. 

Loadl and Storel Rules: A Loadl or Storel can be per-
formed if the address is cached in the sache: 

CRF-Loadl Rule 
Site(sache, h t,Loadl(a)i ;pmb, mpb, p) 

if Cell(a,v,-) 2 sache 
! Site(sache, pmb, mpbjh t,vi , p) 

Commit/Reconcile Load/Commit Load/Store/Reconcile 

Dirty Invalid Clean 

Store 

Purge 

Cache 

Writeback 

Figure 5. Sache State Transitions of CRF 

CRF-Storel Rule 
Site(Cell(a,-,-) j sache, h t,Storel(a,v)i ;pmb, mpb, p) 

! Site(Cell(a,v,Dirty) j sache, pmb, mpbjh t,Acki , p) 

Although the store rule above requires that the address 
be cached before the Storel can be performed, it makes no 
semantic difference to allow the Storel to be performed even 
if the address is not cached. This is because, if the address 
is not cached, the sache can first obtain a Clean copy from 
the memory (by applying the cache rule given below), and 
then perform the Storel access. This can be represented by 
a straightforward derived rule. 

Commit and Reconcile Rules: On a Commit operation, if 
the address is cached and the cell’s state is Dirty, the data 
must be first written back to the memory (by applying the 
writeback rule given below). On a Reconcile operation, if 
the address is cached and the cell’s state is Clean, the cell 
must be first purged from the sache (by applying the purge 
rule given below). 

CRF-Commit Rule 
Site(sache, h t,Commit(a)i ;pmb, mpb, p) 

if Cell(a,-,Dirty)2 sache 
! Site(sache, pmb, mpbjh t,Acki , p) 

CRF-Reconcile Rule 
Site(sache, h t,Reconcile(a)i ;pmb, mpb, p) 

if Cell(a,-,Clean)2 sache 
! Site(sache, pmb, mpbjh t,Acki , p) 

Note that a Reconcile operation can complete while the 
address is cached in the Dirty state. This allows proper 
modeling of load bypassing in write-buffers. 

Cache, Writeback and Purge Rules: A sache can obtain 
a Clean copy from the memory, if the address is not cached 
at the time (thus no sache can contain more than one copy 
for the same address). A Dirty copy can be written back to 
the memory, after which the sache state becomes Clean. A  
Clean copy can be purged from the sache at any time, but 
cannot be written back to the memory. Figure 5 illustrates 
the sache state transitions (Invalid indicates the address is 
not cached). 

CRF-Cache Rule 
Sys(m, Site(sache, pmb, mpb, p) j sites) 

if a 2 sache 
! Sys(m, Site(Cell(a,m[a],Clean)j sache, pmb, mpb, p) 

j sites) 
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I2 ) Loadl Storel Fencerr Fencerw Fencewr Fenceww Commit Reconcile 
I1 + (a0 ) (a0 ,v0 ) (a0 

1,a0 

2) (a0 

1,a0 

2) (a0 

1,a0 

2) (a0 

1,a0 

2) (a0 ) (a0 ) 

Loadl(a) true a 6� a0 a 6� a0 

1 a 6� a0 

1 true true true true 
Storel(a,v) a 6� a0 a 6� a0 true true true true a 6� a0 true 
Fencerr(a1,a2) true true true true true true true a2 6� a0 

Fencerw(a1,a2) true a2 6� a0 true true true true true true 
Fencewr(a1,a2) true true true true true true true a2 6� a0 

Fenceww(a1,a2) true a2 6� a0 true true true true true true 
Commit(a) true true true true a 6� a0 

1 a 6� a0 

1 true true 
Reconcile(a) a 6� a0 true true true true true true true 

Figure 6. Instruction Reordering Table of CRF 

CRF-Writeback Rule 
Sys(m, Site(Cell(a,v,Dirty) j sache, pmb, mpb, p) j sites) 

! Sys(m[a:=v], Site(Cell(a,v,Clean) j sache, pmb, mpb, p) 
j sites) 

CRF-Purge Rule 
Site(Cell(a,-,Clean)j sache, pmb, mpb, p) 

! Site(sache, pmb, mpb, p) 

These rules are also called background rules, since they 
can be applied even though no instruction is executed by 
any processor. The background rules can potentially propel 
optimizations that are more aggressive than conventional 
techniques such as non-binding prefetch. 

It is worth noting that we can add extra Commit and 
Reconcile instructions in a program without affecting its 
semantics. The set of behaviors that is generated by the 
program with extra Commit and Reconcile instructions is 
a subset of the behaviors of the original program. This 
is because, regardless of whether a Commit or Reconcile 
is executed, a dirty cell can always be written back to the 
memory and a clean cell can always be purged from a sache. 

The operational specification of CRF includes a set of 
imperative rules only; intentionally this does not address 
implementation issues. For example, suppose a processor 
executes a Commit instruction while a dirty copy is cached 
for the address. The processor will stall until the writeback 
rule is applied. In practice, proper directive rules must be 
incorporated to ensure the liveness of the system. Directive 
rules, however, have no semantic implications and thus, 
are not part of the CRF definition. More discussion about 
the imperative-directive design methodology can be found 
elsewhere [23]. 

4.2. The Fence Operation 

CRF allows memory accesses to be reordered if they 
access different addresses or if they are both Loadl instruc­
tions. It provides four types of memory fences to con­
trol reordering: Fencerr (read-read), Fencerw (read-write), 
Fencewr (write-read) and Fenceww (write-write). Each 
memory fence has a pair of arguments, a pre-address and 

a post-address, and imposes an ordering constraint between 
memory operations involving the pre- and post- addresses. 
For example, Fencerw(a1,a2) ensures that any preceding 
Loadl to location a1 must be performed before any follow­
ing Storel to location a2 can be performed. This implies 
that instructions Loadl(a1) and Storel(a2,v) separated by 
Fencerw(a1,a2) cannot be reordered. 

A Fencewr or Fenceww imposes ordering constraints 
on preceding Commit (instead of Storel) operations, since 
only a Commit can force the data of a Storel to be writ-
ten back to the memory. It makes little sense to ensure a 
Storel operation to be completed if it is not followed by a 
Commit. Similarly, a Fencerr or Fencewr imposes order­
ing constraints on following Reconcile (instead of Loadl) 
operations, since only a Reconcile can force the stale data, 
if any, to be purged. It makes little sense to postpone a Loadl 
operation if it is not preceded by a Reconcile. 

Memory fences can always be reordered with respect to 
each other. Figure 6 concisely defines the conditions under 
which two adjacent memory instructions can be reordered 
(assume instruction I1 precedes instruction I2, and a ‘true’ 
condition indicates that the reordering is allowed). The un­
derlying rational is to allow maximum reordering flexibility 
for out-of-order execution. 

For example, the rule represented by the Storel-Storel 
entry specifies that two Storel operations can be reordered if 
they access different addresses. This rule is commutable in 
the sense that reordered transactions can be reordered back. 
Not all the reordering rules commute. For example, the rule 
represented by the Fencerr -Loadl entry does not commute: 
once the reordering is performed, the transactions cannot be 
reordered back unless the address of the Loadl instruction 
and the pre-address of the Fencerr instruction are different 
(according to the Loadl-Fencerr entry). 

We also need a rule to discharge a memory fence: 

CRF-Fence Rule 
Site(sache, h t,Fence (a1,a2)i ;pmb, mpb, p)�� 

! Site(sache, pmb, mpbjh t,Acki , p) 

The reordering rules are useful for the compiler writer to 
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decide whether specific compiler transformations preserve 
program semantics. The specification of CRF also demon­
strates a framework in which different memory models can 
be defined and analyzed. For example, we can ensure that all 
load and store operations to the same location are performed 
in-order on each processor by changing the Loadl-Loadl en-

0try to “a � 6 a ”. 
Again it is worth noting that adding an extra Fence in a 

program can eliminate a permissible behavior but never add 
a new behavior. In particular, a strict sequential execution 
of instructions always generates a legal behavior. 

4.3. Coarse-grain Fences, Commits and Reconciles 

We have chosen fine-grain fence, commit and reconcile 
operations to define the memory model but coarse-grain 
versions of these operations may be more practical at the 
instruction set level. 

A coarse-grain fence imposes an ordering constraint with 
respect to address ranges, instead of individual locations. 
For example, Fencerw(A1,A2) ensures that all preceding 
Loadl operations to address range A1 must be performed 
before any following Storel operation to address range A2 

can be performed. It can be defined in terms of j A1j : j A2j fine-
grain fences and obey all the reordering rules given earlier. 
Similarly, Commit(A) and Reconcile(A) can be defined 
in terms of fine-grain Commit and Reconcile operations, 
respectively. An address range may be a cache line, a page 
or the whole address space (represented by *). 

Of particular interest are memory fences that impose or­
dering constraints between some memory range and an in­
dividual location. As an example, we define the following 
pre- and post- fences: 

PreFenceW(a) � Fencerw(*,a); Fenceww(*,a) 
PostFenceR(a) � Fencerr(a,*); Fencerw(a,*) 

Informally, PreFenceW(a) requires that all memory ac­
cesses (i.e., Loadl and Commit) preceding the fence be 
completed before any store to location a following the fence 
can be performed. PostFenceR(a) requires that all loads 
to location a preceding the fence be completed before any 
memory access (i.e., Reconcile and Storel) following the 
fence can be performed. 

5. Relationship with Other Models 

There is a simple translation scheme from SC programs 
to CRF programs. We can augment an SC program to a 
CRF program by substituting each Load/Store instruction 
with a Loadl/Storel instruction, placing a Reconcile before 
each Loadl and a Commit after each Storel, and inserting 
memory fences appropriately. This translation guarantees 

that the augmented program in CRF has the same program 
behavior as the original program in SC. 

A program that is crucially dependent on the SC seman­
tics for its correctness is the Dekker’s algorithm for mutual 
exclusion. The essence of this algorithm is that a processor 
first signals its intent to enter the critical section by asserting 
a flag (a1 and a2 for processors 1 and 2, respectively), and 
then checks whether the other processor is also trying to 
enter. It can enter the critical section only when the other 
processor has not set its flag (this part of the code is not 
shown below). Initially both locations a1 and a2 contain 
value 0. 

Processor 1 Processor 2 
Storel(a1,1); Storel(a2,1); 
Commit(a1); Commit(a2); 
Fencewr(a1,a2); Fencewr(a2,a1); 
Reconcile(a2); Reconcile(a1); 
r = Loadl(a2); r = Loadl(a1); 

The Lock and Unlock operations for mutual exclusion 
can be implemented with much less effort using synchro­
nization instructions such as Test-&-Set, Swap or Load-
Reserve/Store-Conditional. In CRF, these instructions by 
themselves have no ordering implication on preceding and 
following instructions. Memory fences can be used to en-
force necessary ordering constraints, where Lock is consid­
ered to be both a Loadl and Storel operation, and Unlock 
simply a Storel operation. 

We can translate programs based on release consistency 
to CRF by defining the Release and Acquire operations as 
follows: 

Release(s) � Commit(*); PreFenceW(s); Unlock(s) 
Acquire(s) � Lock(s); PostFenceR(s); Reconcile(*) 

This can lead to better performance (especially for DSM 
systems) than implementations of RC on existing micro-
processors. Memory accesses after a Release can be 
performed before the semaphore is released, because the 
Release only imposes a pre-fence on preceding accesses. 
Memory accesses before an Acquire do not have to be com­
pleted before the semaphore is acquired, because the Ac­
quire only imposes a post-fence on following memory ac­
cesses. In addition, modified data of store operations before 
a Release need to be written back to the memory at the 
release point, but stale data in other caches do not have to be 
invalidated or updated since it will be reconciled at the next 
acquire point. 

Modern microprocessors often exhibit some relaxed 
memory models. They provide very coarse-grain mem­
ory fences that apply to all addresses, and have no com­
mit/reconcile like instructions. For example, Sparc’s RMO 
model can be represented using CRF instructions as follows: 
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Load(a) � Reconcile(a); Loadl(a)

Store(a,v) � Storel(a,v); Commit(a)

Membar #LoadLoad � Fencerr(*,*)

Membar #LoadStore � Fencerw(*,*)

Membar #StoreLoad � Fencewr(*,*)

Membar #StoreStore � Fenceww(*,*)


Unlike CRF, according to the manual, Sparc requires 
that Membar instructions be applied in-order. The exact se­
mantics of Membar instructions can be obtained by simply 
modifying the corresponding entries in the reordering table. 
However, it is not clear to us why fences must be performed 
in-order. 

Some memory models (e.g., Location Consistency [7, 8]) 
cannot be represented by CRF. In CRF, if the values of 
two stores (not necessarily from the same processor) are 
observed by more than one processor, then they must be 
observed in the same order, provided the load instructions 
used in the observation are executed in-order. There is a 
total order on stores for each address in CRF. For example, 
in the following program, if register r1 gets value 2, then 
register r2 also must get value 2. 

Processor 1 Processor 2 
Storel(a,1); Storel(a,2); 
r1 = Loadl(a); r2 = Loadl(a); 

6. Cache Coherence Protocols for CRF 

Cachet [24], an adaptive cache coherence protocol, has 
been developed to implement CRF on the MIT StarT mul­
tiprocessor system [4]. Cachet is a seamless integration 
of a number of micro-protocols, each of which has been 
optimized for a different access pattern. The design is mo­
tivated by the belief that a protocol that adapts to changing 
access patterns should perform better than any fixed proto­
col. Micro-protocols are distinctive in the actions performed 
by the protocol engine while committing dirty cells and rec­
onciling clean cells. 

Cachet-Base: This straightforward implementation of CRF 
simply uses the memory as the rendezvous point. A Commit 
instruction for an address cached in the Dirty state requires 
that the modified data be written back to the memory before 
the instruction can complete. A Reconcile instruction for 
an address cached in the Clean state requires the data be 
purged from the cache before the instruction can complete. 
An attractive characteristic of Cachet-Base is its simplicity: 
no state needs to be maintained on the memory side. 

Cachet-WriterPush: Since load operations are usually 
more frequent than store operations, it is desirable to allow 
a Reconcile to complete even when the address is cached 
in the Clean state. Subsequent load accesses to the address 
targeted by the Reconcile will then cause no cache miss. 
Correspondingly, when a Commit instruction is performed 

on an address cached in the Dirty state, the Clean copies 
of the address are purged from all other caches before the 
Commit can complete. Therefore, committing an address 
that is cached in the Dirty state can be a lengthy process. 

Cachet-Migratory: When an address is exclusively ac­
cessed by one processor for a reasonable time period, it 
makes sense to give the cache the exclusive ownership so 
that all instructions on the address become local operations. 
This is reminiscent of the exclusive state in conventional 
MESI-like protocols. Therefore, a Commit instruction can 
complete even when the address is cached in the Dirty state, 
and a Reconcile instruction can complete even when the 
address is cached in the Clean state. 

Each micro-protocol of Cachet embodies some voluntary 
rules that are not triggered by any specific instruction or 
protocol message. For example, at any time, a cache engine 
can write a dirty copy back to the memory or purge a clean 
copy from the cache. The memory engine can voluntarily 
send data to caches, provided that the memory contains 
the valid data. The existence of voluntary rules provides 
enormous scope for adaptivity which can be exploited to 
achieve better performance. 

It is also possible to adaptively switch the micro-protocol 
that is operating on an address. For example, since the mem­
ory maintains no information about cache copies in Cachet-
Base states, it can simply instruct a cache cell to adopt the 
Cachet-Base protocol when it does not have enough direc­
tory space to record the information. This can be impor­
tant for large DSM systems when fully-mapped directory 
schemes are too expensive. 

Since Cachet implements CRF, it is by definition a proto­
col for all high-level models whose programs can be trans­
lated into CRF programs. The translation can be performed 
statically by the compiler, or dynamically by the processor 
or the protocol engine. Thus, different high-level memory 
models can be used in different regions of memory simul­
taneously. For example, in an RC program, the region of 
memory used for input/output operations can have the SC 
semantics by simply employing an SC translation scheme 
for that region. 

With both CRF and Cachet specified in TRS’s, it can 
be proved formally that Cachet is a correct implementation 
of the CRF memory model [24]. The proof is based on 
simulation with respect to a mapping function that maps 
each Cachet term to a CRF term. The mapping function 
is defined in terms of the “drained states” which can be 
reached by applying a subset of Cachet rules. The simulation 
theorem shows that if a term t 1 can be rewritten to another 
term t 2 in Cachet, then the term corresponding to t 1 can be 
rewritten to the term corresponding to t 2 in CRF. 
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7. CRF Implications for Microarchitectures 

First note that the CRF model can be implemented on any 
multiprocessor systems based on current microprocessors 
via a simple translation. For example, CRF programs can be 
executed correctly on a machine with Sparc’s RMO model: 
Loadl and Storel are translated as normal Load and Store, 
Commit and Reconcile as Nop (no-operation), and Fence 
as Membar. It is safe to treat a Commit as a Nop because if 
it follows a Storel then its semantic effect is captured by the 
corresponding Store, otherwise it has no semantic effect. 
Similar argument applies to Reconcile. 

In this section we discuss several issues that may arise 
if we were to develop a microprocessor to implement CRF 
directly. Since ordinary load and store instructions have 
been decomposed into finer-grain instructions in CRF, the 
instruction bandwidth needed to support a certain level of 
performance is likely to be high. This effect is similar 
to what was observed during the shift from CISC to RISC 
ISA’s. A solution to this problem is discussed in Section 7.1. 

Another important issue is the flexibility needed to dis­
patch CRF instructions to the memory system. The mem­
ory system, including the caches and associated protocols, 
works on the requests in the processor-to-memory queue. 
The processor must dispatch these requests quickly for good 
performance. This issue is discussed in Section 7.2. 

Finally, as an aside, we discuss the impact of speculative 
load mechanism on CRF because it is a way of keeping load 
reordering transparent. 

7.1. Reducing Instruction Bandwidth Requirement 

While coarse-grain instructions alleviate some of the in­
struction bandwidth requirements, better encoding of load 
and store instructions using the CRF-bits can make a dra­
matic difference. 

There are six CRF-bits: the Com and Rec bits are used to 
insert Commit and Reconcile operations, while the PreR, 
PreW, PostR and PostW bits are used to insert memory 
fences. Informally, the fence bits have the following effect 
if turned on: 

�	 PreR: all preceding Loadl operations must complete 
before the instruction is performed; 

�	 PreW: all preceding Commit operations must com­
plete before the instruction is performed; 

�	 PostR: the instruction must complete before any fol­
lowing Reconcile operation is performed; 

�	 PostW: the instruction must complete before any fol­
lowing Storel operation is performed. 

The following instruction sequences give the semantics 
of Load/Store instructions when all the CRF-bits are set: 

Branch Resolution 

Functional Units 

Memory System 

ROB 

<tag, value/Ack> 

<tag, value> 

Instruction Fetch 

mis-prediction 

<tag, inst, Dispatched/UnDispatched> 

Figure 7. Instruction Dispatch from ROB 

Load(a) [Rec,PreR,PreW,PostR,PostW] Store(a,v) [Com,PreR,PreW,PostR,PostW] 

Fencerr(*,a); Fencerw(*,a); 
Fencewr(*,a); Fenceww(*,a); 
Reconcile(a); Storel(a,v); 
Loadl(a); Commit(a); 
Fencerr(a,*); Fencewr(a,*); 
Fencerw(a,*); Fenceww(a,*); 

Notice, for a Load instruction it makes little sense to 
set the PreR or PreW bit without setting the the Rec bit. 
Similarly, the Com bit of a Store instruction should be set 
if the PostR or PostW bit is set. The Com and Rec bits are 
separate since synchronization instructions such as Test-&-
Set and Swap behave as both a load and a store operation. 

7.2. Dispatching the CRF Instructions 

A modern processor fetches and decodes instructions and 
puts them in a reorder buffer (ROB) after register renaming 
(see Figure 7). Any instruction except a memory instruction 
can be dispatched to a functional unit as soon as its operands 
become available. Functional units store results back in 
the ROB. When a branch gets resolved, it can have the 
effect of killing all the instructions that are fetched after 
the branch, and resetting the program counter to the correct 
value. Instructions are retired from the ROB in the same 
order in which they are enqueued into the ROB. In such a 
system the order in which instructions retire from the ROB 
is the “program order” (further details of out-of-order and 
speculative execution can be found elsewhere [20, 22]). 

Care has to be exercised in dispatching memory instruc­
tions from the ROB to the memory system (i.e., pmb). If 
we treat the memory as a separate autonomous subsystem, 
then no speculative store should be dispatched because there 
is no way to retract or undo the effect of a store operation 
once it is dispatched. In addition, no memory instruction 
with an unresolved address or value should be dispatched. 
The rest of the constraints in dispatching of memory related 
instructions are determined by the memory model. 
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In SC, memory instructions are dispatched in the same 
order in which they reside in the ROB. In CRF, memory 
instructions can be dispatched earlier as long as the reorder­
ing rules are respected. For example, a Loadl(a) can be 
dispatched if there is no undispatched Storel or Recon­
cile in front that refers to address a or some unresolved 
address. Note that the dispatch can happen even if there 
is an undispatched Fencerr or Fencewr instruction in front 
whose post-address is a. The reason this is safe is that even 
if we dispatch instructions in-order, the reordering rules for 
CRF allow the instructions to be reordered in pmb. Thus, 
reordering at the processor-level cannot violate the memory 
model. 

It should also be noted that the processor can simplify the 
memory interface by being less aggressive. For example, the 
processor may never dispatch a fence, and allow at most one 
outstanding load or store instruction for the same address. 
This will allow the memory system to reorder loads and 
stores as it pleases. 

7.3. Impact of Speculative Loads 

Some microprocessors such as MIPS R10000 have in­
corporated the capability for speculative execution of load 
instructions, which allows much more efficient implemen­
tation of SC [27]. A load instruction is allowed to be 
dispatched and performed speculatively before memory in­
structions preceding it have completed. However, all load 
and store instructions must be retired in-order. When an ad-
dress is modified, a kill signal is issued to all the processors 
(this is a normal operation in systems with snoopy buses). 
When a processor receives the kill signal, it searches for load 
instructions to that address in its ROB which have obtained a 
value. If such a load is found, the load and all the following 
instructions are killed. This capability is easy to incorporate 
in any modern processor that does instruction reordering and 
speculative execution based on branch prediction. 

It is worth pointing out that the speculative execution 
of load instructions requires the communication from the 
memory to a cache to be FIFO. Specifically, if the memory 
issues a kill signal to a cache, and then supplies a value to 
the same cache (probably for another address), then the kill 
signal must arrive at the cache first. This FIFO property 
is easily satisfied in an SMP because of the bus. However, 
in DSM systems where the memory is distributed among 
multiple sites, maintaining the FIFO order is difficult and 
expensive. Thus, even with speculative loads, SC may have 
limited scalability. 

Finally we note that speculative loads would be an equally 
useful mechanism to implement the CR model, which is the 
same as the CRF model without instruction reordering. 

8. Conclusion 

We have proposed CRF, a mechanism-oriented mem­
ory model that provides great flexibility in both instruction 
reordering and data replication. Instruction reordering is 
constrained only by data dependences and memory fences. 
Data replication is facilitated by decomposing the load and 
store instructions into simpler instructions that operate on 
semantic caches and memory. Generally speaking, a Storel 
followed by a Commit forces the memory to be updated, 
and a Loadl preceded by a Reconcile retrieves the latest 
value from the memory. These fine-grain primitives pro-
vide architects and protocol designers more implementation 
flexibility in hiding long latency operations, especially in 
DSM’s. 

CRF is designed to serve as the interface between the 
compiler writer and the architect. It can be used as the com­
mon target machine language for compilers of high-level 
parallel languages. CRF is defined completely with only 
eight rewriting rules and a reordering table. All its mecha­
nisms, notably, Commit, Reconcile and Fence, have direct 
instruction-level interpretation. CRF has precise seman­
tics for any program, regardless of whether it is properly 
synchronized or not. This, we think, is essential for an 
architecture-centric memory model because of its impact on 
the ISA specification. 

The complexity of weaker memory models, surprisingly, 
does not manifest itself in implementations but rather in 
a conceptual burden for the programmer and the architect. 
Indeed, the definitions of weaker models are not for the faint 
hearted but it is their unstability that is more problematic. 
No compiler writer or architect can deal with a memory 
model that changes with every computer generation even 
from the same manufacturer. CRF addresses both these 
issues squarely. Its definition is precise and small, and it 
provides a simple method of dealing with its variants. It 
essentially provides a systematic way for architectures and 
compiler implementations to evolve. 

There is no broad consensus on the memory model future 
shared-memory machines should support. Hill has recently 
argued that multiprocessors should just support SC, or a 
model that just relaxes the ordering from writes to reads [13]. 
Hill’s central argument is that the performance gap between 
SC and relaxed memory models can be narrowed by specula­
tive execution and prefetching techniques [11] and thus, the 
complexity of weaker memory models is not justified. We 
agree with many of his observations but not his prescription. 

For the sake of argument we compare SC with CR (CRF 
sans instruction reordering). As we pointed out earlier, 
the speculative load mechanism would be an equally use­
ful mechanism to implement the CR model. However, CR 
provides more implementation flexibility. For example, CR 
allows a store operation to be performed without the exclu-
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sive ownership. This can be very useful to alleviate cache 
thrashing due to false-sharing. Different processors can 
work on different parts of the same cache line without inter­
fering each other. Moreover, write-buffers can be employed 
so that store accesses to the same cache line can be merged 
to take advantage of burst bus transactions. Thus, even if the 
instruction reordering advantage turns out to be minimal, we 
expect Commit and Reconcile type mechanisms to widen 
the performance gap in future, especially for DSM’s. 

The next step in this research is to do a performance 
evaluation of the CRF model. 
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