
Asanovic/Devadas

Spring 2002

6.823

Virtual Machines and Dynamic

Translation:

Implementing ISAs in Software

Krste Asanovic

Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas

Spring 2002

6.823
Software Applications

How is a software application encoded?
– What are you getting when you buy a software application?
– What machines will it work on?
–	 Who do you blame if it doesn’t work, i.e., what contract(s) were

violated?

Asanovic/Devadas
Spring 2002ISA + Environment =

Virtual Machine

6.823

ISA alone not sufficient to write useful programs, need I/O

•	 Direct access to memory mapped I/O via load/store
instructions problematic
– time-shared systems
– portability

• Operating system responsible for I/O
– sharing devices and managing security
– hiding different types of hardware (e.g., EIDE vs. SCSI disks)

•	 ISA communicates with operating system through
some standard mechanism, i.e., syscall instructions
– example convention to open file:

addi r1, r0, 27 # 27 is code for file open

addu r2, r0, rfname # r2 points to filename string

syscall # cause trap into OS

On return from syscall, r1 holds file descriptor

Asanovic/Devadas

Spring 2002
Application Binary Interface 6.823

(ABI)
•	 Programs are usually distributed in a binary format

that encode the program text (instructions) and
initial values of some data segments

• Virtual machine specifications include
– what state is available at process creation
– which instructions are available (the ISA)
– what system calls are possible (I/O, or the environment)

•	 The ABI is a specification of the binary format used
to encode programs for a virtual machine

• Operating system implements the virtual machine
–	 at process startup, OS reads the binary program, creates an

environment for it, then begins to execute the code, handling traps
for I/O calls, emulation, etc.

Asanovic/Devadas

Spring 2002

6.823
OS Can Support Multiple VMs
•	 Virtual machine features change over time with

new versions of operating system
– new ISA instructions added
– new types of I/O are added (e.g., asynchronous file I/O)

•	 Common to provide backwards compatibility so
old binaries run on new OS
–	 SunOS 5 (System V Release 4 Unix, Solaris) can run binaries

compiled for SunOS4 (BSD-style Unix)
– Windows 98 runs MS-DOS programs

•	 If ABI needs instructions not supported by native
hardware, OS can provide in software

Asanovic/Devadas

6.823Supporting Multiple OSs on Spring 2002

Same Hardware
•	 Can virtualize the environment that an operating

system sees, an OS-level VM
•	 Hypervisor layer implements sharing of real hardware

resources by multiple OS VMs that each think they
have a complete copy of the machine
–	 Popular in early days to allow mainframe to be shared by multiple

groups developing OS code
–	 Used in modern mainframes to allow multiple versions of OS to be

running simultaneously Î OS upgrades with no downtime!
–	 Example for PCs: VMware allows Windows OS to run on top of Linux

(or vice-versa)

•	 Requires trap on access to privileged state that OS
needs
– easier if OS interface to hardware well defined

Asanovic/Devadas

Spring 2002
ISA Implementations Partly in 6.823

Software
Often good idea to implement part of ISA in software:
•	 Expensive but rarely used instructions can cause trap

to OS emulation routine:
– e.g., decimal arithmetic instructions in MicroVax

implementation of VAX ISA
• Infrequent but difficult operand values can cause trap

– e.g., IEEE floating-point denormals cause traps in almost all
floating-point unit implementations

•	 Old machine can trap unused opcodes, allows
binaries for new ISA to run on old hardware
– e.g., Sun SPARC v8 added integer multiply instructions, older

v7 CPUs trap and emulate

Asanovic/Devadas

6.823Supporting Non-Native ISAs Spring 2002

Run programs for one ISA on hardware with different ISA
Techniques:
• Emulation

– OS software interprets instructions at run-time
– E.g., OS for PowerPC Macs had emulator for 68000 code

• Binary Translation
– convert at install and/or load time
– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->MIPS->Alpha

• Dynamic Translation (or Dynamic Compilation)
– compile non-native ISA to native ISA at run time
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing

• Run-time Hardware Emulation
– Hardware supports two ISAs!
– IBM 360 had IBM 1401 emulator in microcode
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs)

Asanovic/Devadas
Spring 2002

6.823Emulation
• Software instruction set interpreter fetches and

decodes one instruction at a time in emulated VM

Memory image of
guest VM lives in

host emulator
data memory

Emulator Data

Emulator Code

Emulator Stack

while(!stop)
{
inst = Code[PC];
PC += 4;
execute(inst);
}

fetch-decode loop

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Guest
ISA

Code

Guest
ISA
Data

Guest
Stack

Load into
emulator
memory

Asanovic/Devadas
Spring 2002Emulation 6.823

• Easy to code, small code footprint
•	 Slow, approximately 100x slower than native

execution for RISC ISA hosted on RISC ISA
• Problem is time taken to decode instructions

– fetch instruction from memory
– switch tables to decode opcodes
– extract register specifiers using bit shifts
– access register file data structure
– execute operation
– return to main fetch loop

Asanovic/Devadas
Spring 2002Binary Translation 6.823

•	 Each guest ISA instruction translates into some
set of host (or native) ISA instructions

•	 Instead of dynamically fetching and decoding
instructions at run-time, translate entire binary
program and save result as new native ISA
executable

• Removes interpretive fetch-decode overhead
•	 Can do compiler optimizations on translated code

to improve performance
–	 register allocation for values flowing between guest ISA

instructions
– native instruction scheduling to improve performance
– remove unreachable code
– inline assembly procedures

Asanovic/Devadas
Spring 2002

6.823Binary Translation, Take 1

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Native
ISA

Code

Guest
ISA
Data

Executable
on Disk

Native
DataTranslate to

native ISA code

Data
unchanged

Native translation
might need extra data

workspace

Asanovic/Devadas

Spring 2002

6.823
Binary Translation Problems
Branch and Jump targets

– guest code:
j L1
...

L1: lw r1, (r4)
jr (r1)

– native code

j
translation native jump at end of

block jumps to native
translation of lw

lw
translation

jr
translation Where should the jump register go?

Asanovic/Devadas
Spring 2002PC Mapping Table 6.823

• Table gives translated PC for each hosted PC
•	 Indirect jumps translated into code that looks in

table to find where to jump to
–	 can optimize well-behaved guest code for subroutine

call/return by using native PC in return links

•	 If can branch to any guest PC, then need one
table entry for every instruction in hosted
program Î big table

• If can branch to any PC, then either
– limit inter-instruction optimizations
–	 large code explosion to hold optimizations for each possible

entry into sequential code sequence

•	 Only minority of guest instructions are indirect
jump targets, want to find these
– highly structured VM design
– run-time feedback of where targets were

Asanovic/Devadas

Spring 2002

6.823
Binary Translation Problems
• Self-modifying code!

– sw r1, (r2) # r2 points into code space
•	 Rare in most code, but has to be handled if allowed

by guest ISA
•	 Usually handled by including interpreter and

marking modified code pages as “interpret only”
•	 Have to invalidate all native branches into modified

code pages

Asanovic/Devadas
Spring 2002

6.823Binary Translation, Take 2

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Native
ISA Code

Executable
on Disk

PC
Mapping

Table

Guest
ISA Code

Guest
ISA Data

Native
Emulator

Translate to
native ISA code

Keep copy
of code and

data in
native data

segment

Emulator used for
run-time modified
code, checks for
jumps back into

native code using PC
mapping table

Translation has to
check for modified

code pages then jump
to emulator

Mapping table used
for indirect jumps and
to jump from emulator

back into native
translations

Asanovic/Devadas

Spring 2002

6.823
IBM System/38 and AS/400
• System/38 announced 1978, AS/400 is follow-on line
•	 High-level instruction set interface designed for binary

translation
•	 Memory-memory style instruction set, never directly

executed by hardware

Used 48-bit CISC
Replaced by modified

PowerPC cores in
engine in earlier newer AS/400 machines

machines

User Applications

Languages,
Database,
Utilities

Control
Program
Facility

High-Level
Architecture Interface

Vertical Microcode

Horizontal Microcode

Hardware Machine

Asanovic/Devadas

Spring 2002

6.823
Dynamic Translation
•	 Translate code sequences as needed at run-time,

but cache results
•	 Can optimize code sequences based on dynamic

information (e.g., branch targets encountered)
•	 Tradeoff between optimizer run-time and time

saved by optimizations in translated code
•	 Technique used in Java JIT (Just-In-Time)

compilers
• Also, Transmeta Crusoe for x86 emulation

Asanovic/Devadas

Spring 2002

6.823
Transmeta Crusoe

•	 Converts x86 ISA into internal native VLIW format
using software at run-time Î “Code Morphing”

•	 Optimizes across x86 instruction boundaries to
improve performance

•	 Translations cached to avoid translator overhead
on repeated execution

•	 Completely invisible to operating system – looks
like x86 hardware processor

Asanovic/Devadas

Spring 2002

6.823
Transmeta VLIW Engine

•	 Two VLIW formats, 64-bit and 128-bit, contains 2
or 4 RISC-like operations

• VLIW engine optimized for x86 code emulation
– evaluates condition codes the same way as x86
– has 80-bit floating-point unit
– partial register writes (update 8 bits in 32 bit register)

• Support for fast instruction writes
– run-time code generation important

•	 Two different VLIW implementations, low-end
TM3120, high-end TM5400
–	 native ISA differences invisible to user, hidden by translation

system

Asanovic/Devadas
Spring 2002

6.823Crusoe System

VLIW Processor

Inst. Cache

Data Cache

Crusoe CPU

x86 DRAMCode Morph DRAM
x86 BIOS

Flash

Code Morph
Compiler Code

(VLIW)
Translation

Cache (VLIW)

Workspace

Portion of system DRAM is
used by Code Morph

software and is invisible to
x86 machine

Crusoe
Boot
Flash
ROM

Compressed
compiler held in

boot ROM

System DRAM

Asanovic/Devadas
Spring 2002Transmeta Translation 6.823

x86 code:
addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

first step, translate into RISC ops:

ld %r30, [%esp] # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax, set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

Asanovic/Devadas

6.823Compiler Optimizations Spring 2002

RISC ops:
ld %r30, [%esp] # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax, set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

Optimize:
ld %r30, [%esp]
add %eax, %eax, %r30
add %ebx, %ebx, %r30
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

load from stack only once

reuse data loaded earlier

only this cond. code needed

Asanovic/Devadas
Spring 2002

Scheduling 6.823

Optimized RISC ops:
ld %r30, [%esp]
add %eax, %eax, %r30
add %ebx, %ebx, %r30
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5

Schedule into VLIW code:

load from stack only once

reuse data loaded earlier

only this cond. code needed

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Asanovic/Devadas

Spring 2002

6.823
Translation Overhead
•	 Highly optimizing compiler takes considerable

time to run, adds run-time overhead
• Only worth doing for frequently executed code
•	 Translation adds instrumentation into translations

that counts how often code executed, and which
way branches usually go

•	 As count for a block increases, higher
optimization levels are invoked on that code

Asanovic/Devadas
Spring 2002

Exceptions 6.823

Original x86 code:
addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

Scheduled VLIW code:
ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

• x86 instructions executed out-of-order with respect to
original program flow
• Need to restore state for precise traps

Asanovic/Devadas

Spring 2002
Shadow Registers and Store 6.823

Buffer

• All registers have working copy and shadow copy
•	 Stores held in software controlled store buffer,

loads can snoop
•	 At end of translation block, commit changes by

copying values from working regs to shadow
regs, and by releasing stores in store buffer

•	 On exception, re-execute x86 code using
interpreter

Asanovic/Devadas

Spring 2002

6.823
Handling Self-Modifying Code

•	 When a translation is made, mark the associated
x86 code page as being translated in page table

•	 Store to translated code page causes trap, and
associated translations are invalidated

