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6.823
Software Applications 

How is a software application encoded? 
– What are you getting when you buy a software application? 
– What machines will it work on? 
–	 Who do you blame if it doesn’t work, i.e., what contract(s) were

violated? 



Asanovic/Devadas 
Spring 2002ISA + Environment =


Virtual Machine

6.823 

ISA alone not sufficient to write useful programs, need I/O


•	 Direct access to memory mapped I/O via load/store
instructions problematic 
– time-shared systems 
– portability 

• Operating system responsible for I/O 
– sharing devices and managing security 
– hiding different types of hardware (e.g., EIDE vs. SCSI disks) 

•	 ISA communicates with operating system through
some standard mechanism, i.e., syscall instructions 
– example convention to open file:

addi r1, r0, 27 # 27 is code for file open


addu r2, r0, rfname # r2 points to filename string


syscall # cause trap into OS


# On return from syscall, r1 holds file descriptor
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Application Binary Interface 6.823


(ABI) 
•	 Programs are usually distributed in a binary format

that encode the program text (instructions) and
initial values of some data segments 

• Virtual machine specifications include 
– what state is available at process creation 
– which instructions are available (the ISA) 
– what system calls are possible (I/O, or the environment) 

•	 The ABI is a specification of the binary format used
to encode programs for a virtual machine 

• Operating system implements the virtual machine 
–	 at process startup, OS reads the binary program, creates an

environment for it, then begins to execute the code, handling traps
for I/O calls, emulation, etc. 
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6.823
OS Can Support Multiple VMs 
•	 Virtual machine features change over time with

new versions of operating system 
– new ISA instructions added 
– new types of I/O are added (e.g., asynchronous file I/O) 

•	 Common to provide backwards compatibility so
old binaries run on new OS 
–	 SunOS 5 (System V Release 4 Unix, Solaris) can run binaries

compiled for SunOS4 (BSD-style Unix) 
– Windows 98 runs MS-DOS programs 

•	 If ABI needs instructions not supported by native
hardware, OS can provide in software 
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Same Hardware 
•	 Can virtualize the environment that an operating

system sees, an OS-level VM 
•	 Hypervisor layer implements sharing of real hardware

resources by multiple OS VMs that each think they
have a complete copy of the machine 
–	 Popular in early days to allow mainframe to be shared by multiple

groups developing OS code 
–	 Used in modern mainframes to allow multiple versions of OS to be

running simultaneously Î OS upgrades with no downtime! 
–	 Example for PCs: VMware allows Windows OS to run on top of Linux

(or vice-versa) 

•	 Requires trap on access to privileged state that OS
needs 
– easier if OS interface to hardware well defined 
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Software 
Often good idea to implement part of ISA in software: 
•	 Expensive but rarely used instructions can cause trap

to OS emulation routine: 
– e.g., decimal arithmetic instructions in MicroVax

implementation of VAX ISA 
• Infrequent but difficult operand values can cause trap 

– e.g., IEEE floating-point denormals cause traps in almost all
floating-point unit implementations 

•	 Old machine can trap unused opcodes, allows
binaries for new ISA to run on old hardware 
– e.g., Sun SPARC v8 added integer multiply instructions, older

v7 CPUs trap and emulate 
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Run programs for one ISA on hardware with different ISA 
Techniques: 
• Emulation 

– OS software interprets instructions at run-time 
– E.g., OS for PowerPC Macs had emulator for 68000 code 

• Binary Translation 
– convert at install and/or load time 
– IBM AS/400 to modified PowerPC cores 
– DEC tools for VAX->MIPS->Alpha 

• Dynamic Translation (or Dynamic Compilation) 
– compile non-native ISA to native ISA at run time 
– Sun’s HotSpot Java JIT (just-in-time) compiler 
– Transmeta Crusoe, x86->VLIW code morphing 

• Run-time Hardware Emulation 
– Hardware supports two ISAs! 
– IBM 360 had IBM 1401 emulator in microcode 
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs) 
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6.823Emulation 
• Software instruction set interpreter fetches and

decodes one instruction at a time in emulated VM 

Memory image of
guest VM lives in

host emulator 
data memory 

Emulator Data 

Emulator Code 

Emulator Stack 

while(!stop) 
{ 
inst = Code[PC]; 
PC += 4; 
execute(inst); 
} 

fetch-decode loop 

Guest 
ISA 

Code 

Guest 
ISA 
Data 

Executable 
on Disk 

Guest 
ISA 

Code 

Guest 
ISA 
Data 

Guest 
Stack 

Load into 
emulator 
memory 
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• Easy to code, small code footprint 
•	 Slow, approximately 100x slower than native

execution for RISC ISA hosted on RISC ISA 
• Problem is time taken to decode instructions 

– fetch instruction from memory 
– switch tables to decode opcodes 
– extract register specifiers using bit shifts 
– access register file data structure 
– execute operation 
– return to main fetch loop 
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•	 Each guest ISA instruction translates into some
set of host (or native) ISA instructions 

•	 Instead of dynamically fetching and decoding
instructions at run-time, translate entire binary
program and save result as new native ISA
executable 

• Removes interpretive fetch-decode overhead 
•	 Can do compiler optimizations on translated code

to improve performance 
–	 register allocation for values flowing between guest ISA

instructions 
– native instruction scheduling to improve performance 
– remove unreachable code 
– inline assembly procedures 
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6.823Binary Translation, Take 1 

Guest 
ISA 

Code 
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6.823
Binary Translation Problems 
Branch and Jump targets 

– guest code:
j L1 
... 

L1: lw r1, (r4)
jr (r1) 

– native code 

j 
translation native jump at end of

block jumps to native
translation of lw 

lw 
translation 

jr 
translation Where should the jump register go?
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• Table gives translated PC for each hosted PC 
•	 Indirect jumps translated into code that looks in

table to find where to jump to 
–	 can optimize well-behaved guest code for subroutine

call/return by using native PC in return links 

•	 If can branch to any guest PC, then need one
table entry for every instruction in hosted 
program Î big table 

• If can branch to any PC, then either 
– limit inter-instruction optimizations 
–	 large code explosion to hold optimizations for each possible

entry into sequential code sequence 

•	 Only minority of guest instructions are indirect
jump targets, want to find these 
– highly structured VM design 
– run-time feedback of where targets were 
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6.823
Binary Translation Problems 
• Self-modifying code! 

– sw r1, (r2) # r2 points into code space 
•	 Rare in most code, but has to be handled if allowed 

by guest ISA 
•	 Usually handled by including interpreter and

marking modified code pages as “interpret only” 
•	 Have to invalidate all native branches into modified 

code pages 
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6.823Binary Translation, Take 2 
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6.823
IBM System/38 and AS/400 
• System/38 announced 1978, AS/400 is follow-on line 
•	 High-level instruction set interface designed for binary

translation 
•	 Memory-memory style instruction set, never directly

executed by hardware 

Used 48-bit CISC 
Replaced by modified 

PowerPC cores in
engine in earlier newer AS/400 machines

machines 

User Applications 

Languages,
Database, 
Utilities 

Control 
Program 
Facility 

High-Level 
Architecture Interface 

Vertical Microcode 

Horizontal Microcode 

Hardware Machine 
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6.823
Dynamic Translation 
•	 Translate code sequences as needed at run-time,

but cache results 
•	 Can optimize code sequences based on dynamic

information (e.g., branch targets encountered) 
•	 Tradeoff between optimizer run-time and time

saved by optimizations in translated code 
•	 Technique used in Java JIT (Just-In-Time)

compilers 
• Also, Transmeta Crusoe for x86 emulation 
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6.823
Transmeta Crusoe 

•	 Converts x86 ISA into internal native VLIW format 
using software at run-time Î “Code Morphing” 

•	 Optimizes across x86 instruction boundaries to
improve performance 

•	 Translations cached to avoid translator overhead 
on repeated execution 

•	 Completely invisible to operating system – looks 
like x86 hardware processor 
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6.823
Transmeta VLIW Engine 

•	 Two VLIW formats, 64-bit and 128-bit, contains 2 
or 4 RISC-like operations 

• VLIW engine optimized for x86 code emulation 
– evaluates condition codes the same way as x86 
– has 80-bit floating-point unit 
– partial register writes (update 8 bits in 32 bit register) 

• Support for fast instruction writes 
– run-time code generation important 

•	 Two different VLIW implementations, low-end
TM3120, high-end TM5400 
–	 native ISA differences invisible to user, hidden by translation 

system 
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6.823Crusoe System 

VLIW Processor 

Inst. Cache 

Data Cache 

Crusoe CPU 

x86 DRAMCode Morph DRAM 
x86 BIOS 

Flash 

Code Morph
Compiler Code

(VLIW) 
Translation 

Cache (VLIW) 
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Portion of system DRAM is
used by Code Morph

software and is invisible to 
x86 machine 
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compiler held in
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x86 code: 
addl %eax, (%esp) # load data from stack, add to eax


addl %ebx, (%esp) # load data from stack, add to ebx


movl %esi, (%ebp) # load esi from memory


subl %ecx, 5 # sub 5 from ecx


first step, translate into RISC ops: 

ld %r30, [%esp] # load from stack into temp


add.c %eax, %eax, %r30 # add to %eax, set cond.codes


ld %r31, [%esp]


add.c %ebx, %ebx, %r31


ld %esi, [%ebp]


sub.c %ecx, %ecx, 5
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RISC ops: 
ld %r30, [%esp] # load from stack into temp


add.c %eax, %eax, %r30 # add to %eax, set cond.codes


ld %r31, [%esp]


add.c %ebx, %ebx, %r31


ld %esi, [%ebp] 
sub.c %ecx, %ecx, 5 

Optimize: 
ld %r30, [%esp] 
add %eax, %eax, %r30 
add %ebx, %ebx, %r30 
ld %esi, [%ebp] 
sub.c %ecx, %ecx, 5 

# load from stack only once 

# reuse data loaded earlier 

# only this cond. code needed 
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Scheduling 6.823 

Optimized RISC ops: 
ld %r30, [%esp] 
add %eax, %eax, %r30 
add %ebx, %ebx, %r30 
ld %esi, [%ebp] 
sub.c %ecx, %ecx, 5 

Schedule into VLIW code: 

# load from stack only once 

# reuse data loaded earlier 

# only this cond. code needed 

ld %r30, [%esp]; sub.c %ecx, %ecx, 5


ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30
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6.823
Translation Overhead 
•	 Highly optimizing compiler takes considerable

time to run, adds run-time overhead 
• Only worth doing for frequently executed code 
•	 Translation adds instrumentation into translations 

that counts how often code executed, and which 
way branches usually go 

•	 As count for a block increases, higher
optimization levels are invoked on that code 
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Exceptions 6.823 

Original x86 code: 
addl %eax, (%esp) # load data from stack, add to eax


addl %ebx, (%esp) # load data from stack, add to ebx


movl %esi, (%ebp) # load esi from memory


subl %ecx, 5 # sub 5 from ecx


Scheduled VLIW code: 
ld %r30, [%esp]; sub.c %ecx, %ecx, 5


ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30


• x86 instructions executed out-of-order with respect to
original program flow 
• Need to restore state for precise traps 
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Buffer 

• All registers have working copy and shadow copy 
•	 Stores held in software controlled store buffer, 

loads can snoop 
•	 At end of translation block, commit changes by

copying values from working regs to shadow 
regs, and by releasing stores in store buffer 

•	 On exception, re-execute x86 code using
interpreter 
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6.823
Handling Self-Modifying Code 

•	 When a translation is made, mark the associated 
x86 code page as being translated in page table 

•	 Store to translated code page causes trap, and
associated translations are invalidated 


