
Asanovic/Devadas
Spring 2002

6.823

Branch Prediction &
Speculative Execution

Krste Asanovic
Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas
Spring 2002

6.823Average Run-Length between
Branches

Average dynamic instruction mix from SPEC92:
SPECint92 SPECfp92

ALU 39 % 13 %
FPU Add 20 %
FPU Mult 13 %
load 26 % 23 %
store 9 % 9 %
branch 16 % 8 %
other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches?

Asanovic/Devadas
Spring 2002

6.823

Reducing Control Transfer Penalties
Software solution

• loop unrolling
Increases the run length

• instruction scheduling
Compute the branch condition as early
as possible

(limited)

Hardware solution
• delay slots

replaces pipeline bubbles with useful work
(requires software cooperation)

• branch prediction & speculative execution
of instructions beyond the branch

Asanovic/Devadas
Spring 2002

6.823

Effect of Control Transfer on
Pipelined Execution

Control transfer instructions require insertion
of bubbles in the pipeline.

The number of bubbles depends upon the number
of cycles it takes

• to determine the next instruction address, and

• to fetch the next instruction

Asanovic/Devadas
Spring 2002

6.823

DLX Branches and Jumps

Must know (or guess) both target address and
whether taken to execute branch/jump.

Instruction Taken known? Target known?
After Reg. Fetch After Inst. FetchBEQZ/BNEZ
Always Taken After Inst. FetchJ
Always Taken After Reg. FetchJR

Asanovic/Devadas
Spring 2002

6.823Branch Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch executed

Next fetch
started

Asanovic/Devadas
Spring 2002

6.823

Branch Penalties in Modern Pipelines

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline (+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target Known

Asanovic/Devadas
Spring 2002

6.823Branch Prediction
Motivation: branch penalties limit performance of deeply
pipelined processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures: branch history tables, branch
target buffers etc.

Mispredict recovery mechanisms:
• In-order machines: kill instructions following

branch in pipeline
• Out-of-order machines: shadow registers and

memory buffers for each speculated branch

Asanovic/Devadas
Spring 2002

6.823Static Branch Prediction

Probability a
branch is taken
(~60-70% overall):

Can predict all taken,
or backwards taken/forward not-taken (use offset sign bit)

ISA can attach additional semantics to branches about
preferred direction, e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted
direction (HP PA-RISC, Intel IA-64)

JZ

JZbackward
90%

forward
50%

(Encode prediction as part of branch instruction)

Asanovic/Devadas
Spring 2002

6.823

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good predictor
of the way it will resolve at the next execution

Spatial correlation
Several branches may resolve in a highly correlated
manner (a preferred path of execution)

Asanovic/Devadas
Spring 2002

6.823

Branch Prediction Bits

• Assume 2 BP bits per instruction
• Change the prediction after two consecutive mistakes!

¬take
wrong

taken ¬ taken

taken

taken

taken
¬take
right

take
right

take
wrong

¬ taken

¬ taken¬ taken

BP state:
(predict take/¬take) x (last prediction right/wrong)

Asanovic/Devadas
Spring 2002

6.823Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k
BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Asanovic/Devadas
Spring 2002

6.823Exploiting Spatial Correlation
Yeh and Patt, 1992

History bit: H records the direction of the last branch
executed by the processor

Two sets of BHT bits (BHT0 & BHT1) per branch
instruction

H = 0 (not taken) ⇒ consult BHT0
H = 1 (taken) ⇒ consult BHT1

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

Asanovic/Devadas
Spring 2002

6.823Two-Level Branch Predictor
Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0
kFetch PC

Shift in
Taken/¬Taken
results of each
branch

2-bit global branch
history shift register

Taken/¬Taken?

Asanovic/Devadas
Spring 2002

6.823Limitations of BHTs
Cannot redirect fetch stream until after branch instruction
is fetched and decoded, and target address determined

(UltraSPARC-III fetch pipeline)

Correctly
predicted taken
branch penalty

Jump Register
penalty

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute
pipeline (+ another 6 stages)

Asanovic/Devadas
Spring 2002

6.823Branch Target Buffer (BTB)

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

Asanovic/Devadas
Spring 2002

6.823Combining BTB and BHT
• BTB entries are considerably more expensive than

BHT, but can redirect fetches at earlier stage in
pipeline and can accelerate indirect branches (JR)

• BHT can hold many more entries and is more accurate

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage

Asanovic/Devadas
Spring 2002

6.823Uses of Jump Register (JR)
• Switch statements (jump to address of matching case)

How well does BTB work for each of these cases?

• Dynamic function call (jump to run-time function
address)

• Subroutine returns (jump to return address)

Asanovic/Devadas
Spring 2002

6.823BTB Performance
• Switch statements (jump to address of matching case)

• Dynamic function call (jump to run-time function
address)

• Subroutine returns (jump to return address)

BTB works well if same case used repeatedly

BTB works well if same function usually called,
(e.g., in C++ programming, when objects have
same type in virtual function call)

BTB works well if usually return to the same place
⇒ Often one function called from many different
call sites!

Asanovic/Devadas
Spring 2002

6.823Subroutine Return Stack
Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.

&fb()
&fc()

Push call address when
function call executed

Pop return address
when subroutine return
decoded

fa() { fb(); }
fb() { fc(); }
fc() { fd(); }

&fd() k entries
(typically k=8-16)

Asanovic/Devadas
Spring 2002

6.823Speculating Both Directions

• resource requirement is proportional to the
number of concurrent speculative executions

An alternative to branch prediction is to execute both
directions of a branch speculatively

• branch prediction takes less resources
than speculative execution of both paths

• only half the resources engage in useful work
when both directions of a branch are executed
speculatively

With accurate branch prediction, it is more cost effective
to dedicate all resources to the predicted direction

Asanovic/Devadas
Spring 2002

6.823Mispredict Recovery

In-order execution machines:
–Assume no instruction issued after branch can

write-back before branch resolves
–Kill all instructions in pipeline behind mispredicted

branch

–Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

Asanovic/Devadas
Spring 2002

6.823In-Order Commit for
Precise Exceptions

• Instructions fetched and decoded into instruction reorder buffer in-order
• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, regfile+memory) is in-order

Temporary storage in ROB holds results before commit

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill Kill
Kill

Exception!Inject handler PC

Asanovic/Devadas
Spring 2002

6.823ROB for Precise Exceptions

ptr2
next to
commit

ptr1
next

available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
order ⇒ buffers can be maintained circularly
• on exception, clear reorder buffer by resetting ptr1=ptr2

(stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

Asanovic/Devadas
Spring 2002

6.823Branch Misprediction Recovery
ptr2

next to
commit

ptr1
next

available

Inst# use exec op p1 src1 p2 src2 pd dest data cause

On mispredict

• Roll back “next available” pointer to just after branch

• Reset use bits

• Flush mis-speculated instructions from pipelines

• Restart fetch on correct branch path

rollback
next

available

BEQZ
Speculative Instructions

Asanovic/Devadas
Spring 2002

6.823Branch Misprediction in Pipeline

Fetch Decode Reorder BufferPC

Branch
Prediction

Execute

Commit

Branch
Resolution

kill
kill

kill

• Can have multiple unresolved branches in ROB
• Can resolve branches out-of-order

Complete

restart fetch on correct path

Asanovic/Devadas
Spring 2002

6.823Killing Speculative Instructions
• Each instruction tagged with single “speculative” bit,

carried throughout all pipelines
• Decode stage stalls if second branch encountered

before first speculative branch resolves
• When speculative branch resolves:
–Prediction incorrect, kill all instructions tagged as

speculative
–Prediction correct, clear speculative bit on all

instructions
To allow speculation past multiple branches, add

multiple bits per instruction indicating on which
outstanding branches it is speculative
– speculation bits reclaimed when

corresponding branch resolves and is oldest
speculative branch in machine (manage
allocation of speculation tag bits circularly)

Asanovic/Devadas
Spring 2002

6.823

ti vi

Recovering Renaming Table
Register
File

Reorder
buffer

Load
Unit FU FU FU Store

Unit
< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

r1
r2

ti viti viti vi

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

Rename
Snapshots

ti vi

