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Cache (Memory) Performance
Optimization 
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Improving Cache Performance 

Average memory access time = 
Hit time + Miss rate x Miss penalty 

To improve performance: 
• reduce the miss rate (e.g., larger cache) 
• reduce the miss penalty (e.g., L2 cache) 
• reduce the hit time 

The simplest design strategy is to design the 
largest primary cache without slowing down the 
clock or adding pipeline stages 

Design the largest primary cache without slowing down the clock 
Or adding pipeline stages. 
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RAM-tag 2-way Set-Associative Cache 
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CAM-tag 2-way Set-Associative Cache 

Tag Word 
= 

Tag Index 

t k 

Data Word 

D
em

ux 

= 

= 

= 

TagWord 
= 

D
em

ux
 = 

= 

= 

Page 4




5

5 

Causes for Cache Misses 

• Compulsory: first-reference to a block a.k.a. cold 
start misses 
- misses that would occur even with infinite cache 

• Capacity: cache is too small to hold all data needed 
by the program 
- misses that would occur even under perfect 
placement & replacement policy 

• Conflict: misses that occur because of collisions 
due to block-placement strategy 
- misses that would not occur with full associativity 
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Block-level Optimizations 

• Tags are too large, i.e., too much overhead 
– Simple solution: Larger blocks, but miss 

penalty could be large. 
• Sub-block placement 

– A valid bit added to units smaller than the full 
block, called sub- locks 

– Only read a sub- lock on a miss 
– If a tag matches, is the word in the cache? 
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Main reason for subblock placement is to reduce tag overhead. 
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Write Alternatives 

- Writes take two cycles in memory stage, one cycle 
for tag check plus one cycle for data write if hit 

- Design data RAM that can perform read and write 
in one cycle, restore old value after tag miss 

- Hold write data for store in single buffer ahead of
cache, write cache data during next store’s tag
check 
- Need to bypass from write buffer if read matches write buffer 

tag 
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Pipelining Cache Writes (Alpha 21064) 
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Writes usually take longer than reads because the tags have to


Be checked before writing the data.

First, tags and data are split, so they can be addressed independently.
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Prefetching 

• Speculate on future instruction and data 
accesses and fetch them into cache(s) 

– Instruction accesses easier to predict than data 
accesses 

• Varieties of prefetching 
– Hardware prefetching 
– Software prefetching 
– Mixed schemes 

• What types of misses does prefetching affect? 

Reduces compulsory misses, can increase conflict and 
capacity misses. 
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Issues in Prefetching 

• Usefulness – should produce hits 
• Timeliness – not late and not too early 
• Cache and bandwidth pollution 
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Hardware Prefetching of Instructions 

• Instruction prefetch in Alpha AXP 21064 
– Fetch two blocks on a miss; the requested 

block and the next consecutive block 
– Requested block placed in cache, and next 

block in instruction stream buffer 
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block 

Need to check the stream buffer if the requested block is in there. 
Never more than one 32-byte block in the stream buffer. 
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Hardware Data Prefetching 

• One Block Lookahead (OBL) scheme 
– Initiate prefetch for block b + 1 when block b is 

accessed 
– Why is this different from doubling block size? 

• Prefetch-on-miss: 
– Prefetch b + 1 upon miss on b 

• Tagged prefetch: 
– Tag bit for each memory block 
– Tag bit = 0 signifies that a block is demand-

fetched or if a prefetched block is referenced for 
the first time 

– Prefetch for b + 1 initiated only if tag bit = 0 on b 

HP PA 7200 uses OBL prefetching 

Tag prefetching is twice as effective as prefetch-on-miss in 
reducing miss rates. 
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Comparison of Variant OBL Schemes 

Demand-fetched 
Prefetched 

Demand-fetched 
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1 Prefetched 
0 
0 
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0 
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1 Prefetched 
0 

Prefetch-on-miss accessing contiguous blocks 

Tagged prefetch accessing contiguous blocks 
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Software Prefetching 

for(i=0; i < N; i++) {
fetch( &a[i + 1] );
fetch( &b[i + 1] );
SUM = SUM + a[i] * b[i];

} 

• What property do we require of the cache for 
prefetching to work ? 

Cache should be non-blocking or lockup-free.

By that we mean that the processor can proceed while the prefetched


Data is being fetched; and the caches continue to supply instructions


And data while waiting for the prefetched data to return.
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Software Prefetching Issues 

• Timing is the biggest issue, not predictability 
– If you prefetch very close to when the data is 

required, you might be too late 
– Prefetch too early, cause pollution 
– Estimate how long it will take for the data to 

come into L1, so we can set P appropriately 
– Why is this hard to do? 

for(i=0; i < N; i++) {
fetch( &a[i + P] );
fetch( &b[i + P] );
SUM = SUM + a[i] * b[i];

} 
Don’t ignore cost of prefetch instructions 
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Compiler Optimizations 

• Restructuring code affects the data block 
access sequence 

– Group data accesses together to improve
spatial locality 

– Re- order data accesses to improve temporal
locality 

• Prevent data from entering the cache 
– Useful for variables that are only accessed 

once 
• Kill data that will never be used 

– Streaming data exploits spatial locality but not 
temporal locality 

Miss-rate reduction without any hardware changes. 
Hardware designer’s favorite solution. 
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Loop Interchange 

for(j=0; j < N; j++) {for(i=0; i < M; i++) {x[i][j] = 2 * x[i][j];}} 

for(i=0; i < M; i++) {for(j=0; j < N; j++) {x[i][j] = 2 * x[i][j];}} 

What type of locality does this improve? 
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Loop Fusion 

for(i=0; i < N; i++)for(j=0; j < M; j++)a[i][j] = b[i][j] * c[i][j]; 
for(i=0; i < N; i++)for(j=0; j < M; j++)

d[i][j] = a[i][j] * c[i][j]; 

for(i=0; i < M; i++)for(j=0; j < N; j++) {a[i][j] = b[i][j] * c[i][j];
d[i][j] = a[i][j] * c[i][j];

} 

What type of locality does this improve? 
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for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];
x[i][j] = r;

} 

Blocking 
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for(jj=0; jj < N; jj=jj+B)
for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)
for(j=jj; j < min(jj+B,N); j++) {

r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;

} 

Blocking 

x j j 

i k 

What type of locality does this improve? 

zy k 

i 

Y benefits from spatial locality 
z benefits from temporal locality 
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CPU-Cache Interaction (5-stage pipeline) 
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Memory (DRAM) Performance 

• Upon a cache miss 
– 4 clocks to send the address 
– 24 clocks for the access time per word 
– 4 clocks to send a word of data 

• Latency worsens with increasing block size 

1 Gb 
DRAM 

50-100 ns access time 
Needs refreshing 

Need 128 or 116 clocks, 128 for a dumb memory. 
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Memory organizations 
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Alpha AXP 21064 256 bits wide memory and cache. 
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Interleaved Memory 

• Banks are often 1 word wide 
• Send an address to all the banks 
• How long to get 4 words back? 
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Bank i contains all 
words whose address 

modulo N is i 

4 + 24 + 4* 4 clocks = 44 clocks from interleaved memory. 
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Independent Memory 

• Send an address to all the banks 
• How long to get 4 words back? 

Bank i contains all 
words whose address 

modulo N is i 
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4 + 24 + 4 = 32 clocks from main memory for 4 words. 
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Memory Bank Conflicts 

Consider a 128-bank memory in the NEC SX/3 
where each bank can service independent 
requests 

int x[256][512];
for(j=0; j < 512; j++)

for(i=0; i < 256; i++)
x[i][j] = 2 * x[i][j]; 

Consider column k 
Address of elements in column is i*512 + k 

Where do these addresses go? 

x[i][k], 0 <= i < 256
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Bank Assignment 

B0 B1 B2 B3 
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Address 
within 
Bank 

Bank number = Address MOD NumBanks 
Address within bank = Address . 

NumBanks 

Should randomize address to bank mapping. 

Could use odd/prime number of banks. Problem? 

Bank number for i*512 + k should depend on i 
Can pick more significant bits in address 
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