
1

1

Cache (Memory) Performance
Optimization

Page 1

2

2

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)
• reduce the hit time

The simplest design strategy is to design the
largest primary cache without slowing down the
clock or adding pipeline stages

Design the largest primary cache without slowing down the clock
Or adding pipeline stages.

Page 2

3

3

RAM-tag 2-way Set-Associative Cache

Tag Data Word

=

Tag Index

t k
Tag Data Word

Data Word

=

t

M
U

X

Set t

Page 3

4

4

CAM-tag 2-way Set-Associative Cache

Tag Word
=

Tag Index

t k

Data Word

D
em

ux

=

=

=

TagWord
=

D
em

ux
 =

=

=

Page 4

5

5

Causes for Cache Misses

• Compulsory: first-reference to a block a.k.a. cold
start misses
- misses that would occur even with infinite cache

• Capacity: cache is too small to hold all data needed
by the program
- misses that would occur even under perfect
placement & replacement policy

• Conflict: misses that occur because of collisions
due to block-placement strategy
- misses that would not occur with full associativity

Page 5

6

6

Block-level Optimizations

• Tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss

penalty could be large.
• Sub-block placement

– A valid bit added to units smaller than the full
block, called sub- locks

– Only read a sub- lock on a miss
– If a tag matches, is the word in the cache?

100
300
204

1
1 1 0 0
0

b
b

1 1 1

1 0 1

Main reason for subblock placement is to reduce tag overhead.

Page 6

7

7

Write Alternatives

- Writes take two cycles in memory stage, one cycle
for tag check plus one cycle for data write if hit

- Design data RAM that can perform read and write
in one cycle, restore old value after tag miss

- Hold write data for store in single buffer ahead of
cache, write cache data during next store’s tag
check
- Need to bypass from write buffer if read matches write buffer

tag

Page 7

8

8

Pipelining Cache Writes (Alpha 21064)

Tag DataV

=

Block
Offset

Tag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE
Bypass

Writes usually take longer than reads because the tags have to

Be checked before writing the data.

First, tags and data are split, so they can be addressed independently.

Page 8

9

9

Prefetching

• Speculate on future instruction and data
accesses and fetch them into cache(s)

– Instruction accesses easier to predict than data
accesses

• Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

• What types of misses does prefetching affect?

Reduces compulsory misses, can increase conflict and
capacity misses.

Page 9

10

10

Issues in Prefetching

• Usefulness – should produce hits
• Timeliness – not late and not too early
• Cache and bandwidth pollution

L1 Data

L1
Instruction

Unified L2
Cache

RF

CPU

Prefetched data

Page 10

11

11

Hardware Prefetching of Instructions

• Instruction prefetch in Alpha AXP 21064
– Fetch two blocks on a miss; the requested

block and the next consecutive block
– Requested block placed in cache, and next

block in instruction stream buffer

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer
(4 blocks)

Prefetched
instruction blockReq

block

Req
block

Need to check the stream buffer if the requested block is in there.
Never more than one 32-byte block in the stream buffer.

Page 11

12

12

Hardware Data Prefetching

• One Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is

accessed
– Why is this different from doubling block size?

• Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

• Tagged prefetch:
– Tag bit for each memory block
– Tag bit = 0 signifies that a block is demand-

fetched or if a prefetched block is referenced for
the first time

– Prefetch for b + 1 initiated only if tag bit = 0 on b

HP PA 7200 uses OBL prefetching

Tag prefetching is twice as effective as prefetch-on-miss in
reducing miss rates.

Page 12

13

13

Comparison of Variant OBL Schemes

Demand-fetched
Prefetched

Demand-fetched
Prefetched

Demand-fetched
Prefetched
Demand-fetched
Prefetched

0 Demand-fetched
1 Prefetched
0
0
0

0 Demand-fetched
0 Prefetched
1 Prefetched
0
0

0 Demand-fetched
0 Prefetched
0 Prefetched
1 Prefetched
0

Prefetch-on-miss accessing contiguous blocks

Tagged prefetch accessing contiguous blocks

Page 13

14

14

Software Prefetching

for(i=0; i < N; i++) {
fetch(&a[i + 1]);
fetch(&b[i + 1]);
SUM = SUM + a[i] * b[i];

}

• What property do we require of the cache for
prefetching to work ?

Cache should be non-blocking or lockup-free.

By that we mean that the processor can proceed while the prefetched

Data is being fetched; and the caches continue to supply instructions

And data while waiting for the prefetched data to return.

Page 14

15

15

Software Prefetching Issues

• Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is

required, you might be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to

come into L1, so we can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
fetch(&a[i + P]);
fetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

}
Don’t ignore cost of prefetch instructions

Page 15

16

16

Compiler Optimizations

• Restructuring code affects the data block
access sequence

– Group data accesses together to improve
spatial locality

– Re- order data accesses to improve temporal
locality

• Prevent data from entering the cache
– Useful for variables that are only accessed

once
• Kill data that will never be used

– Streaming data exploits spatial locality but not
temporal locality

Miss-rate reduction without any hardware changes.
Hardware designer’s favorite solution.

Page 16

17

17

Loop Interchange

for(j=0; j < N; j++) {for(i=0; i < M; i++) {x[i][j] = 2 * x[i][j];}}

for(i=0; i < M; i++) {for(j=0; j < N; j++) {x[i][j] = 2 * x[i][j];}}

What type of locality does this improve?

Page 17

18

18

Loop Fusion

for(i=0; i < N; i++)for(j=0; j < M; j++)a[i][j] = b[i][j] * c[i][j];
for(i=0; i < N; i++)for(j=0; j < M; j++)

d[i][j] = a[i][j] * c[i][j];

for(i=0; i < M; i++)for(j=0; j < N; j++) {a[i][j] = b[i][j] * c[i][j];
d[i][j] = a[i][j] * c[i][j];

}

What type of locality does this improve?

Page 18

19

19

for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];
x[i][j] = r;

}

Blocking

x j j

i k

Not touched Old access New access

zy k

i

Page 19

20

20

for(jj=0; jj < N; jj=jj+B)
for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)
for(j=jj; j < min(jj+B,N); j++) {

r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;

}

Blocking

x j j

i k

What type of locality does this improve?

zy k

i

Y benefits from spatial locality
z benefits from temporal locality

Page 20

21

21

CPU-Cache Interaction (5-stage pipeline)

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

nop

hit?

PCen

Decode,
Register

Fetch R

addr

wdata

rdata
Primary
Data
Cache

we A

B
YALU

MD1 MD2

Cache Refill Data from Lower Levels
of Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Instruction miss ?

Page 21

22

22

Memory (DRAM) Performance

• Upon a cache miss
– 4 clocks to send the address
– 24 clocks for the access time per word
– 4 clocks to send a word of data

• Latency worsens with increasing block size

1 Gb
DRAM

50-100 ns access time
Needs refreshing

Need 128 or 116 clocks, 128 for a dumb memory.

Page 22

23

23

Memory organizations

Memory

B
us

Cache

CPU

1 word wide

Memory
B

us
 Cache

CPU

Wide memory

B
us

Cache

CPU

bank 0 bank 1

Interleaved memory

Alpha AXP 21064 256 bits wide memory and cache.

Page 23

24

24

Interleaved Memory

• Banks are often 1 word wide
• Send an address to all the banks
• How long to get 4 words back?

B
us

Cache

CPU

B 0 B 1 B 2 B 3

Bank i contains all
words whose address

modulo N is i

4 + 24 + 4* 4 clocks = 44 clocks from interleaved memory.

Page 24

25

25

Independent Memory

• Send an address to all the banks
• How long to get 4 words back?

Bank i contains all
words whose address

modulo N is i

B
us

Non
Blocking

Cache

CPU

B 0 B 1 B 2 B 3
B

us

B
us

B
us

4 + 24 + 4 = 32 clocks from main memory for 4 words.

Page 25

26

26

Memory Bank Conflicts

Consider a 128-bank memory in the NEC SX/3
where each bank can service independent
requests

int x[256][512];
for(j=0; j < 512; j++)

for(i=0; i < 256; i++)
x[i][j] = 2 * x[i][j];

Consider column k
Address of elements in column is i*512 + k

Where do these addresses go?

x[i][k], 0 <= i < 256

Page 26

27

27

Bank Assignment

B0 B1 B2 B3
0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

Address
within
Bank

Bank number = Address MOD NumBanks
Address within bank = Address .

NumBanks

Should randomize address to bank mapping.

Could use odd/prime number of banks. Problem?

Bank number for i*512 + k should depend on i
Can pick more significant bits in address

Page 27

