
6.823 Computer System Architecture

Problem Set #3 Spring 2002

Students are strongly encouraged to collaborate in groups of up to three people. A group
should hand in only one copy of the solution to the problem set. Problem sets are due in
the beginning of class on the due date. To facilitate grading, the solution to each problem
must be stapled separately. Problem sets will not be accepted once solutions have been
handed out.

Problem Set #3 2

Problem 1: Optimizing for Cache Performance

In this problem, you will explore several common compiler optimizations for improving
cache performance.

Problem 1.A Loop Ordering
Consider a 1 KB direct-mapped cache where each cache line contains four words. You
are asked to consider the following two loops, written in C, which calculate the sum of
the entries in a 64 by 16 matrix of 32-bit integers:

Loop A Loop B
for(i = 0; i < 64; i++) for(j = 0; j < 16; j++)
for(j = 0; j < 16; j++) for(i = 0; i < 64; i++)
sum += A[i][j]; sum += A[i][j];

The matrix A is stored contiguously in memory, in row-major order1, and is aligned to
cache-line boundaries. You may assume that any other variables used are allocated to
registers, and that the only cache activity involves the elements of the matrix.

Calculate the number of cache misses that occur when running loop A and when running
loop B. Are the two values the same? Explain why or why not.

Problem 1.B Blocking
Blocking was discussed in lecture 8 as a way to optimize cache performance for
computations on large matrices that do not fit in the cache. Here is a simple
implementation of matrix multiply for an N by N matrix that does not use blocking:

for(i = 0; i < N; i++)
for(j = 0; j < N; j++)
{
r = 0;

for(k = 0; k < N; k++)
{
r = r + Y[i][k]*Z[k][j];

}

X[i][j] = r;
}

where r is a register.

1 Row-major order means that elements in the same row of the matrix are adjacent in memory.

Problem Set #3

Here is an implementation that uses blocking, with B × B blocks:

for(jj = 0; jj < N; jj += B)
for(kk = 0; kk < N; kk += B)
for(i = 0; i < N; i++)
for(j = jj; j < min(jj+B, N); j++)
{
r = 0;

for(k = kk; k < min(kk+B, N); k++)
{
r = r + Y[i][k]*Z[k][j];

}

X[i][j] += r;
}

j k j

i i k

X Y Z

3

To see how blocking works, we will simulate the cache behavior for N = 4 and B = 2 for
a fully-associative write-allocate cache with two-word cache lines using an LRU
replacement policy. Assume that the matrices are aligned to cache line boundaries and
that the compiler did not re-order any loads or stores. Complete Table 1-1 and Table 1-2
for the two implementations of matrix multiply, showing the progression of cache
contents as accesses occur. Only fill in elements in the table when a value changes, or,
when a cache hit occurs, in which case put “HIT” in the corresponding entry.

Calculate the miss rate for the two implementations based on the entries in the tables.

Problem 1.C More Blocking
Ben Bitdiddle is implementing the matrix-multiply-with-blocking algorithm from part B.
He hypothesizes that he should be able to get reasonable performance if he can get the
two inner-most loops of the algorithm to run without any cache misses other than
compulsory misses.

Ben’s implementation runs on the UltraSPARC-I, which has a direct-mapped, write-
through non-allocating2 cache. Ignoring conflict misses for the moment, how big does the
data cache have to be if Ben were to use a blocking factor of B? Assume that the only
cache activity involves the elements of the matrices (i.e. that any other variables used are
allocated to registers).

2 Another way of saying “no write allocate.”

Problem Set #3 4

Using your result, calculate the maximum value of B that Ben could choose for his
implementation. The UltraSPARC-I has a 16 KB data cache.

Ben’s code operates on 3000 by 3000 matrices of 32-bit integer values, laid out in
memory in row-major order. He runs some cache simulations and finds that for his
particular data placement and cache configuration, there are some conflict misses, but not
so many that it is a serious concern. However, when he tests the code on the
UltraSPARC-I using the maximum block size you determined, the performance is dismal.
Alyssa suggests that the problem may be related to the TLB.

Please explain how the TLB can be causing this problem. The TLB on the UltraSPARC-I
is fully-associative and contains 64 entries. Pages are 8 KB. TLB misses are handled in
software. You may assume that an LRU replacement policy is used. The data cache is
virtually-tagged and virtually-indexed.

Problem 1.D Think Different
When Apple Computer first started using the PowerPC processor in their machines, they
held a company-wide contest on who could write the fastest BlockMove routine, a library
routine which copies some number of bytes from one memory location to another. 3

The top two contestants were a microcoder and a computer architect. Their
implementations of BlockMove were by far the fastest in the company. Ben Bitdiddle was
interning at Apple and caught a glimpse of their code, and noticed that both routines use
the dcbz PowerPC assembly instruction, which executes in one cycle, and has the
following semantics:

dcbz rA,rB

If the block containing the byte addressable by (rA)+(rB) is in the data cache, all bytes of
the block are cleared to zero.

If the block containing the byte addressed by (rA)+(rB) is not in the data cache, the block
is allocated in the data cache without fetching the block from main memory, and all bytes
of the block are set to zero.

Ben knows that all the 6.823 students have completed problem set 2 and are now
experienced microcoders and architects. He wants to climb the ranks at Apple, and needs
your help. Please explain how dcbz can be used in an optimized BlockMove routine.
Another piece of information that may be important is that the PowerPC processor uses a
write-allocate cache.

3 BlockMove on the Macintosh is comparable to the C library function memcpy.

Problem Set #3 5

1.C Table 1-1: Matrix Multiply Without Blocking
Line 0 Line 1 Line 2 Line 3 Line 4

0 Invalid Invalid Invalid Invalid Invali
d

Invali
d

Invali
d

Invali
d

Invali
d

Invali
d

1 Y[0][0
]

Y[0][1
]

2 Z[0][0
]

Z[0][1
]

3 HIT
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8

1.C Table 1-2: Matrix Multiply With Blocking
Line 0 Line 1 Line 2 Line 3 Line 4

0 Invalid Invalid Invali
d

Invali
d

Invali
d

Invali
d

Invali
d

Invali
d

1 Y[0][0
]

Y[0][1
]

2 Z[0][0
]

Z[0][1
]

3 HIT
4
5
6

Invalid Invalid

Problem Set #3 6

7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8

Problem Set #3 7

Problem 2: Memory

Problem 2.A Bank Assignment

Ben has a C program with an array definition of unsigned int a[4][6]. An unsigned
int is 32 bits.

Assume that a[0][0] is at address 0x0 and that a[0][1] is at address 0x4. Show how
the array elements map into the different memory banks. Each memory bank is 32-bits or
4 bytes wide.

bank number = (address/bank width in bytes) MOD NumBanks
address within bank = address MOD number of bytes in bank

Address within Bank BANK 0 BANK 1 BANK 2 BANK 3 BANK 4
0x00 a[0][0]
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C

Problem 2.B Interleaved Memory

Assume the following description of a machine and cache performance

• 4 clocks to send address
• 24 clocks for the access time per word
• 4 clocks to send a word of data
• 1.2 memory accesses per instruction
• 1.5 average cycles per instruction (ignoring cache misses)
• cache block size of 1 word
• memory bus width of 1 word

What is the CPI for the given system if the miss rate is 3% for this configuration?

If we change the cache block size to two words, the miss rate falls to 2%. If we change
the cache block size to four words, the miss rate falls to 1%. What is the CPI with two-
word cache blocks and interleaved memory with two banks. What is the CPI with four-
word cache blocks and four interleaved banks of memory?

What are the advantages and/or disadvantages of larger block sizes?

Problem Set #3 8

Problem 3: Virtual Memory Bits

In this problem we consider a DLX implementation with simple virtual memory
enhancements. Each page table entry will map a virtual page number (VPN) to a
physical page number (PPN). In addition to the page number translation, each page table
entry also contains some permission/status bits.

Bit Name Bit Definition
PPN / DBN Physical Page Number / Disk Block Number
V (valid) 1 if the page table entry is valid, 0 otherwise
R (resident) 1 if the page is resident in memory, 0 otherwise
W (writable) 1 if the page is writable, 0 otherwise
U (used) 1 if the page has been accessed recently, 0 otherwise
M (modified) 1 if the page has been modified, 0 otherwise
S (supervisor) 1 if the page is only accessible in supervisor mode, 0 otherwise

Each entry in the TLB has a tag that is matched against the VPN and a TLB Entry Valid

bit (note, the TLB Entry Valid bit is not the V bit shown in the table above). The TLB

Entry Valid bit will be set if the TLB entry is valid. Each TLB entry also contains all the

fields from the page table that are listed above.

A TLB miss (VPN does not match any of the tags for entries that have the TLB Entry

Valid bit set) causes an exception. On a TLB miss kernel software will load the page

table entry into the TLB and will restart the memory access. (Kernel software can

modify anything in the TLB that it likes and always runs in supervisor mode). If the

entry being replaced was valid, then the kernel will also write the TLB entry that is being

replaced back to the page table.

Hardware will set the used bit whenever a TLB hit to the corresponding entry occurs.

Similarly, the modified bit (in the TLB entry) will be set when a store to the page

happens.

All exceptions that come from the TLB (hit or miss) are handled by software. For

example, the possible exceptions are as follows:

TLB Miss: VPN does not match any of tags for entries that have the

TLB Entry Valid bit set.
Page Table Entry Invalid: Trying to access a virtual page that has no mapping to a

physical address.
Write Fault (Store only): Trying to modify a read-only page (W is 0).
Protection Violation: Trying to access a protected (supervisor) page while in user

mode.
Page Fault: Page is not resident.
(Unless noted, exceptions can occur for both loads and stores)

Problem Set #3 9

Problem 3.A

Whenever a TLB entry is replaced we write the entire entry back to the page table. Ben
thinks this is a waste of memory bandwidth. He thinks only a few of the bits need to be
written back. For each of the bits explain why or why not they need to be written back to
the page table.

With this in mind, we will see how we can minimize the number of bits we actually need
in each TLB entry throughout the rest of the problem.

Problem 3.B
Ben does not like the TLB design. He thinks the TLB Entry Valid bit should be dropped
and the kernel software should be changed to ensure that all TLB entries are always valid.
Is this a good idea? Explain the advantages and disadvantages of such a design.

Problem 3.C
Alyssa got wind of Ben’s idea and suggests a different scheme to eliminate one of the
valid bits. She thinks the page table entry valid and TLB Entry Valid bits can be
combined into a single bit.

On a refill this combined valid bit will take the value that the page table entry valid bit
had. A TLB entry is invalidated by writing it back to the page table and setting the
combined valid bit in the TLB entry to invalid.

How does the kernel software need to change to make such a scheme work? How do the
exceptions that the TLB produces change?

Problem 3.D

Now, Bud Jet jumps into the game. He wants to keep the TLB Entry Valid bit.
However, there is no way he is going to have two valid bits in each TLB entry (one for
the TLB entry one for the page table entry). Thus, he decides to drop the page table entry
valid bit from the TLB entry.

How does the kernel software need to change to make this work well? How do the
exceptions that the TLB produces change?

Problem 3.E

Compare your answers to Problem 3.C and 3.D. What scheme will lead to better
performance?

Problem Set #3 10

Problem 3.F

How about the R bit? Can we remove them from the TLB entry without significantly
impacting performance? Explain briefly.

Problem 3.G

The processor has a kernel (supervisor) mode bit. Whenever kernel software executes the
bit is set. When user code executes the bit is not set. Parts of the user’s virtual address
space are only accessible to the kernel. The supervisor bit in the page table is used to
protect this region—an exception is raised if the user tries to access a page that has the
supervisor bit set.

Bud Jet is on a roll and he decides to eliminate the supervisor bit from each TLB entry.
Explain how the kernel software needs to change so that we still have the protection
mechanism and the kernel can still access these pages through the virtual memory
system.

Problem 3.H

Alyssa P. Hacker thinks Ben and Bud are being a little picky about these bits, but has
devised a scheme where the TLB entry does not need the M bit or the U bit. It works as
follows. If a TLB miss occurs due to a load, then the page table entry is read from
memory and placed in the TLB. However, in this case the W bit will always be set to 0.
Provide the details of how the rest of the scheme works (what happens during a store,
when do the entries need to be written back to memory, when are the U and M bits
modified in the page table, etc.).

Problem Set #3 11

Problem 4: 64-bit Virtual Memory

Ben is experimenting with the idea of using a 64-bit virtual address.

Problem 4.A

How large is the page table if only a single-level page table is used? Assume that each
page is 4KB, each page table entry is 4 bytes, and that the processor is byte-addressable.

Problem 4.B

Ben read in a recent technical journal that many current implementations of 64-bit ISAs
implement only part of the large virtual address space. They usually segment the virtual
address space into three parts as shown below: one used for stack, one used for code and
heap data, and the third one unused.

0xFFFFFFFFFFFFFFFF

0xFF00000000000000

0x00FFFFFFFFFFFFFF

0x0000000000000000
Reserved for Code and Heap

Reserved for Stack

A special circuit is used to detect whether the top eight bits of an address are all zeros or
all ones before the address is sent to the virtual memory system. If they are not all equal,
an invalid virtual memory address trap is raised. This scheme in effect removes the top
seven bits from the virtual memory address, but retains a memory layout that will be
compatible with future designs that implement a larger virtual address space.

Ben likes the idea, but wants an even cheaper virtual memory system. He decided to
remove the top 22 bits and only use the lower 42 bits to index the virtual memory. How
large is the single-level page table now?

Problem 4.C

Ben is still unsatisfied about the page table size and asks you to use a three-level
hierarchical page table that breaks the 42-bit address into three 10-bit page indices and a
12-bit page offset. If page table overhead is defined as (in bytes):

Problem Set #3 12

PHYSICAL MEMORY USED BY PAGE TABLES FOR A USER PROCESS
PHYSICAL MEMORY USED BY THE USER CODE, HEAP, AND STACK

What is the smallest possible page table overhead for the three-level hierarchical scheme?
Remember that a complete page table page (1024 PTEs) is allocated even if only one
PTE is used. Assume a large enough physical memory that no pages are ever swapped to
disk.

What is the largest possible page table overhead for the three-level hierarchical scheme?
Assume that once a user page is allocated in memory, the whole page is considered to be
useful.

Problem 4.D

Alyssa P. Hacker is unhappy with the large hole in the virtual address space given by the
proposed scheme. She decides that a hashed page table is the way to go. Again, the
machine has a 64-bit virtual address and 4KB pages. The hardware paging system has
only one page table with 64 slots, each containing 8 PTEs. Alyssa decides to use X mod
64 as the hash function to select a slot, where X is the VPN. The page table resides in
memory and Alyssa’s design has no TLB, so each PTE read requires one memory access.
During a page table lookup, all PTEs in each slot are searched sequentially. If there is a
miss in the page table, a trap is raised and a software handler will refill the page table,
with each refill requiring 10 memory accesses on average.

Alyssa runs a very simple benchmark that repeatedly loops over an array of 221 bytes,
reading one byte at a time in sequential address order. On average in the steady state, how
many memory accesses are performed for each byte read by the user program? Ignore the
memory traffic for instruction fetch, assume that the array starts on a page boundary, and
there are no other memory accesses in the user code apart from the single byte memory
accesses.

Problem 4.E

Alyssa now decides to add a one-entry TLB to the hashed paging system. What is the
average number of memory accesses per user byte read for Alyssa’s benchmark?

