
1

1 

Multithreaded Processors 

Page 1




2

2 

Pipeline Hazards 

• Each instruction may depend on the next 
– Without bypassing, need interlocks 

LW r1, 0(r2) 
LW r5, 12(r1) 
ADDI r5, r5, #12 
SW 12(r1), r5 

F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

LW r1, 0(r2) 
LW r5, 12(r1) 
ADDI r5, r5, #12 
SW 12(r1), r5 

F D X M WD D D 
F D X M WD D DF F F 

F DD D DF F F 

t9 t10 t11 t12 t13 t14 

• Bypassing cannot completely eliminate interlocks 
or delay slots 

Page 2




3

3 

Multithreading 

• How can we guarantee no dependencies between 
instructions in a pipeline? 

– One way is to interleave execution of instructions 
from different program threads on same pipeline 

F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 
T2: ADD r7, r1, r4 
T3: XORI r5, r4, #12 
T4: SW 0(r7), 
T1: LW r5, 12(r1) 

t9 

F D X M W 
F D X M W 

F D X M W 
F D X M W 

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Last instruction 
in a thread 
always completes 
writeback before 
next instruction 
in same thread 
reads regfile 

r5 

Page 3




4

4 

CDC 6600 Peripheral Processors
(Cray, 1965) 

• First multithreaded hardware 
• 10 “virtual” I/O processors 
• fixed interleave on simple pipeline 
• pipeline has 100ns cycle time 
• each processor executes one instruction every 1000ns 
• accumulator-based instruction set to reduce processor state 

Page 4




5

5 

Simple Multithreaded Pipeline 

• Have to carry thread select down pipeline to ensure 
correct state bits read/written at each pipe stage 

+1 

2 Thread 
select 

PC 
1PC 

1PC 
1PC 

1 
I$ IR GPR1

GPR1 

X 

Y 

2 

D$ 

Page 5




6

6 

Multithreading Costs 

• Appears to software (including OS) as multiple
slower CPUs 

• Each thread requires its own user state 
– GPRs 
– PC 

• Also, needs own OS control state 
– virtual memory page table base register 
– exception handling registers 

• Other costs? 

Page 6




7

7 

Thread Scheduling Policies 

• Fixed interleave (CDC 6600 PPUs, 1965) 
– each of N threads executes one instruction every N 

cycles 
– if thread not ready to go in its slot, insert pipeline bubble 

• Software-controlled interleave (TI ASC PPUs, 1971) 
– OS allocates S pipeline slots amongst N threads 
– hardware performs fixed interleave over S slots,

executing whichever thread is in that slot 

• Hardware-controlled thread scheduling (HEP, 1982) 
– hardware keeps track of which threads are ready to go 
– picks next thread to execute based on hardware priority

scheme 

Software-controlled interleave, S > N. Wheel with the threads in each slot. If 
thread is ready to go 
It goes, else NOP, I.e., pipeline bubble. 

Page 7




8

8 

What “Grain” Multithreading? 

• So far assumed fine-grained multithreading 
– CPU switches every cycle to a different thread 
– When does this make sense? 

• Coarse-grained multithreading 
– CPU switches every few cycles to a different 

thread 
– When does this make sense? 

Page 8




9

9 

Multithreading Design Choices 

• Context switch to another thread every cycle, 
or on hazard or L1 miss or L2 miss or network 
request 

• Per-thread state and context-switch overhead 
• Interactions between threads in memory

hierarchy 

L1 Data 
Cache 

L1 Inst. 
Cache Unified 

L2 
Cache 

RF Memory 

Memory 

Memory 

Memory 
CPU 

Managing interactions between threads. 

Page 9




10

10 

Denelcor HEP 
(Burton Smith, 1982) 

First commercial machine to use hardware threading in main 
CPU 

– 120 threads per processor 
– 10 MHz clock rate 
– Up to 8 processors 
– precursor to Tera MTA (Multithreaded Architecture) 

Page 10




11

11 

Tera MTA Overview 

• Up to 256 processors 
• Up to 128 active threads per processor 
• Processors and memory modules populate a sparse

3D torus interconnection fabric 
• Flat, shared main memory 
¾ No data cache 
– Sustains one main memory access per cycle per processor 

• 50W/processor @ 260MHz 

SGI bought Cray, and Tera was a spin-off. 
1997. Integer sort press release. 

Page 11




12

12 

MTA Instruction Format 

• Three operations packed into 64-bit instruction word 
(short VLIW) 

• One memory operation, one arithmetic operation,
plus one arithmetic or branch operation 

• Memory operations incur ~150 cycles of latency 
• Explicit 3-bit “lookahead” field in instruction gives 

number of subsequent instructions (0-7) that are
independent of this one 

– c.f. Instruction grouping in VLIW 
– allows fewer threads to fill machine pipeline 
– used for variable- sized branch delay slots 

• Thread creation and termination instructions 

Page 12




13

13 

MTA Multithreading 

• Each processor supports 128 active hardware threads 
– 128 SSWs, 1024 target registers, 4096 general-purpose

registers 

• Every cycle, one instruction from one active thread is 
launched into pipeline 

• Instruction pipeline is 21 cycles long 

• At best, a single thread can issue one instruction 
every 21 cycles 

– Clock rate is 260MHz, effective single thread issue rate is
260/21 = 12.4MHz 

32 64-bit general-purpose registers (R0-R31) 

unified integer/floating-point register set 
R0 hard-wired to zero 

8 64-bit branch target registers (T0-T7) 

load branch target address before branch instruction 
T0 contains address of user exception handler 

1 64-bit stream status word (SSW) 

includes 32-bit program counter 
four condition code registers 
floating-point rounding mode 

Page 13 



14

14 

MTA Pipeline 

A 

W 

C 

W 

M 

Inst Fetch 

M
em

or
y 

Po
ol

 

Retry Pool 

Interconnection Network 

W
rit

e 
Po

ol
 

W 

Memory pipeline 

Issue Pool 

Memory unit is busy, or sync operation failed retry. 
Just goes around the memory pipeline. 

Page 14




15

15 

Coarse-Grain Multithreading 

• Tera MTA designed for supercomputing
applications with large data sets and low locality 

– No data cache 
– Many parallel threads needed to hide large memory

latency 

• Other applications are more cache friendly 
– Few pipeline bubbles when cache getting hits 
– Just add a few threads to hide occasional cache 

miss latencies 
– Swap threads on cache misses 

Tera not very successful, 2 machines sold. 
Changed their name back to Cray! 

Page 15




16

16 

MIT Alewife 

• Modified SPARC chips 
– register windows hold 

different thread contexts 
• Up to four threads per node 
• Thread switch on local cache 

miss 

Page 16




17

17 

IBM PowerPC RS64-III (Pulsar) 

• Commercial coarse-grain multithreading CPU 
• Based on PowerPC with quad-issue in-order five-

stage pipeline 
• Each physical CPU supports two virtual CPUs 
• On L2 cache miss, pipeline is flushed and

execution switches to second thread 
– short pipeline minimizes flush penalty (4 cycles), small

compared to memory access latency 
– flush pipeline to simplify exception handling 

Page 17




18

18 

Fetch Decode & 
Rename Reorder BufferPC Commit 

Speculative, Out-of-Order Superscalar
Processor 

Branch 
Unit ALU MEM Store 

Buffer D$ 

Execute 

In-Order 

In-OrderOut-of-Order 

Physical Reg. File 

Page 18




19

19 

Superscalar Machine Efficiency 

• Why horizontal waste? 
• Why vertical waste? 

Issue width 

Time 

Completely idle cycle 
(vertical waste) 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 

Page 19




20

20 

Vertical Multithreading 

• Cycle-by-cycle interleaving of second thread
removes vertical waste 

Issue width 

Time 

Second thread interleaved 
cycle-by-cycle 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 

Page 20




21

21 

Ideal Multithreading for Superscalar 

• Interleave multiple threads to multiple issue slots 
with no restrictions 

Issue width 

Time 

Page 21




22

22 

Simultaneous Multithreading 

• Add multiple contexts and fetch engines to 
wide out-of-order superscalar processor 

– [Tullsen, Eggers, Levy, UW, 1995] 

• OOO instruction window already has most of 
the circuitry required to schedule from
multiple threads 

• Any single thread can utilize whole machine 

Page 22




Page 23

1

Comparison of Issue Capabilities
Courtesy of Susan Eggers; Used with Permission

Illustrates SMT thread issue & execution & how differs
SS: only single thread; long latency instructions w. lots of instructions 
dependent
FGMT: limited by amount of ILP in each thread, just as on the SS
MP: each processor issues instructions from its own thread
Example of one thread stalls or has little ILP
Performance



24

24 

From Superscalar to SMT 

• SMT is an out-of-order superscalar extended with 
hardware to support multiple executing threads 

IC
O
U
N
T

Renaming 
Registers 

IQFetch 
Unit 

Threads 
Functional 
Units 

no special HW for scheduling instructions from different threads onto 
FUs 
can use same ooo mechanism as superscalar for instruction issue: 
RENAMING HW eliminates false dependences both within a thread (just
like a conventional SS) & between threads 

MAP thread-specific architectural registers in all threads onto a 

pool of physical registers


instructions are issued when operands available without regard

to thread

(scheduler not look at thread IDs)

thereafter called by their physical name


Page 24 



25

25 

From Superscalar to SMT 

• Extra pipeline stages for accessing thread-shared
register files 

IC
O
U
N
T

Renaming 
Registers 

IQFetch 
Unit 

Threads 
Functional 
Units 

8*32 for the architecture state + 96 additional registers for register 
renaming 

Page 25




26

26 

From Superscalar to SMT 

• Fetch from the two highest throughput threads.
Why? 

IC
O
U
N
T

Renaming 
Registers 

IQFetch 
Unit 

Threads 
Functional 
Units 

Fetch unit that can keep up with the simultaneous multithreaded 
execution engine 

have the fewest instructions waiting to be executed 
making the best progress through the machine 

40% increase in IPC over RR 

Page 26 



27

27 

From Superscalar to SMT 

• Small items 
– per-thread program counters 
– per-thread return stacks 
– per-thread bookkeeping for instruction retirement, 

trap & instruction dispatch queue flush 
– thread identifiers, e.g., with BTB & TLB entries 

none of small stuff endangers critical path 
most mechanisms already exist; now duplicated for each thread or 
implemented to apply only to 1 thread at a time 
carry thread ID for retirement, trap, queue flush, not used for 
scheduling 

HW structure that points to all Is for each thread 
need flush mechanism for branch misprediction 

Fairly straightforward extension to OOO SS; this + n-fold performance 
boost was responsible for the technology transfer to chip
manufacturers 

Page 27 



28

28 

Fetch Decode & 
Rename Reorder Buffer 

Simultaneous Multithreaded Processor 

Branch 
Unit ALU MEM Store 

Buffer D$ 

Execute 

Physical Reg. File 

PCPCPCPC 
1 

Rename Table 1Rename Table 1Rename Table 1 

CommitCommitCommitCommit 

OOO execution unit 
does not see thread 
identifiers, only 
physical register 
specifiers 

Page 28




29

29 

SMT Design Issues 

• Which thread to fetch from next? 
– Don’t want to clog instruction window with 

thread with many stalls Î try to fetch from 
thread that has fewest insts in window 

• Locks 
– Virtual CPU spinning on lock executes many

instructions but gets nowhere Î add ISA 
support to lower priority of thread spinning on 
lock 

Page 29




30

30 

Intel Pentium-4 Xeon Processor 

• Hyperthreading == SMT 
• Dual physical processors, each 2-way SMT 
• Logical processors share nearly all resources 

of the physical processor 
– Caches, execution units, branch predictors 

• Die area overhead of hyperthreading % 
• When one logical processor is stalled, the 

other can make progress 
– No logical processor can use all entries in 

queues when two threads are active 
• A processor running only one active software 

thread to run at the same speed with or 
without hyperthreading 

~ 5

Load-store buffer in L1 cache doesn’t behave like that, and hence 15% 
slowdown. 

Page 30



