
6.823 Computer System Architecture 
Multiprocessor Systems 

Problem Set #6 Spring 2002 

Students are encouraged to collaborate in groups of up to 3 people. A group needs to hand in 
only one copy of the solution to a problem set. To facilitate grading, each problem must be 
stapled separately and your latest group number must appear on each problem (If your group has 
changed please indicate this). Homework will not be accepted once solutions are handed out. It 
may be necessary to make certain assumptions in order to do the following problems. Be sure to 
explicitly state your assumptions in your write-ups. 

Problem 1: Synchronization 
Ben Bitdiddle is developing a DLX-based Symmetric Multi-Processor system (SMP). To 
implement synchronization primitives, Ben has added the following instructions to the DLX 
ISA. 

EXCH R2,A(R1) Atomically exchanges the contents of R2 with the contents at 
M[<R1>+A]. 

Temp ← M[<R1>+A]; M[<R1>+A] ← R2; R2 ← Temp 

LL R2,A(R1) Load Linked. Loads R2 with the contents at M[<R1>+A] and reserves 
the memory address <R1>+A by storing it in a special link register 
(Rlink, not R31). 

Rlink ← <R1>+A; R2 ← M[<R1>+A]; 

SC A(R1),R2 Store Conditional. Checks if the reservation of the memory address is 
valid in the link register. If so, the contents of R2 is written to 
M[<R1>+A] and R2 is set to 1; otherwise no memory store is performed 
and 0 is written into R2. 

if <Rlink> = <R1>+A then 
Cancel other processors’ reservation on <R1>+A;
M[<R1>+A] ← <R2>; R2 ← 1;

else 
R2 ← 0; 

Problem 1.A EXCH with LL/SC 
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Alyssa P. Hacker tells Ben that he does not need the EXCH instruction because it can be 
implemented using Load Linked (LL) and Store Conditional (SC). Using LL and SC, write a 
code sequence equivalent to: 

EXCH R2,0(R1) 

Problem 1.B SC vs. SW 

Is there any additional cost to the SC instruction compared to a standard SW instruction on an 
SMP with an invalidate cache coherence protocol? Please explain considering bus usage and 
operations that have to be done. 

Problem 1.C Even better with LL/SC 

Now consider the following code sequence, implementing a lock (at the beginning of the 
sequence, R1 contains the memory address of the mutex): 

ADDI R2,R0,#1
try: EXCH R2,0(R1)

BNEZ R2,try 

If you insert the code you wrote from Part B for EXCH R2,0(R1) you should still get a 
working mutex. However, this code can be improved to perform better on an SMP. Give a 
modification to the new lock code (using LL and SC), and a scenario in which your modification 
makes a difference. What advantage is shown here for using LL/SC instead of an atomic 
exchange? 

Problem 1.D Context switching 

Bob Cratchet gives Ben a set of SMP programs to run on the new system. When running just one 
of Bob’s programs, everything works fine. However, when running two or more of Bob’s 
programs together, the machine gives erroneous results. Alyssa informs Ben that she believes 
LL/SC along with the link register does not provide correct synchronization across context 
switches. 

Describe a problematic situation illustrating Alyssa’s point. Specifically, think of a situation 
where a processor is running several tasks that reserve a common memory location. Note that a 
processor has only one link register (Rlink). 

What fix or fixes can Ben make to provide correct synchronization across context switches? 
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Problem 2: Snoopy Cache Coherent Shared Memory 
In this problem, we will examine an invalidation coherence protocol for write-back caches 
similar to those employed by the SUN Mbus. As in most invalidation protocols, only a single 
cache may own a modified copy of a cache line at any one time. However, in addition to 
allowing multiple shared copies of clean data, multiple shared copies of modified data may also 
exist. (Here, modified data refers to data different from memory. When multiple shared copies of 
modified data exist, one of the caches owns the current copy of the data instead of the memory.) 
All shared copies are invalidated any time a new modified (write) copy is created. 

The MBus transactions with which we are concerned are: 
• Coherent Read (CR): issued by a cache on a read miss to load a cache line. 
• Coherent Read and Invalidate (CRI): issued by a cache on a write-allocate after a write miss. 
•	 Coherent Invalidate (CI): issued by a cache on a write hit to a block that is in one of the 

shared states. 
• Block Write (WR): issued by a cache on the write-back of a cache block. 
•	 Coherent Write and Invalidate (CWI): issued by an I/O processor (DMA) on a block write (a 

full block at a time). 

In addition to these primary bus transactions, there is: 
•	 Cache to Cache Intervention (CCI): used by a cache to satisfy other caches’ read transactions 

when appropriate. A CCI intervenes and overrides the answers normally supplied by 
memory. Data should be supplied using CCI whenever possible for faster response relative 
to the memory. However, only the cache that owns the data can respond by CCI. 

The five possible states of a data block are: 
• Invalid (I): Block is not present in the cache. 
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it. 
•	 Owned exclusive (OE): The cached data is different from memory, and no other cache has it. 

This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data. 

•	 Clean shared (CS): The data has not been modified by the corresponding CPU since cached. 
Multiple CS copies and at most one OS copy of the same data could exist. 

•	 Owned shared (OS): The data is different from memory. Other CS copies of the same data 
could exist. This cache is responsible for supplying this data instead of memory when other 
caches request copies of this data. (Note, this state can only be entered from the OE state.) 

The following questions are to help you check your understanding of the coherence protocol. 
(You don’t need to hand in the answers to these short questions.) 

•	 Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the 
actions that must be taken by memory and by the different caches involved. 

• Explain why WR is not snooped on the bus. 
• Explain the I/O coherence problem that CWI helps avoid. 
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Problem 2.A Where in the Memory System is the Current Value 

In the tables on the following page, column 1 indicates the initial state of a certain address X in a 
cache. Column 2 indicates whether address X is currently cached in any other cache. (The 
“cached” information is known to the cache controller only immediately following a bus 
transaction. Thus, the action taken by the cache controller must be independent of this signal, but 
state transition could depend on this knowledge.) Column 3 enumerates all the available 
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI, 
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are 
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7, 
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible 
locations where up-to-date copies of this data block could exist after the operation in 
column 3 has taken place. The first table has been completed for you. Make sure the answers in 
this table make sense to you. 

Problem 2.B MBus Cache Block State Transition Table 

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, 
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the 
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the 
protocol should be optimized such that data is supplied using CCI whenever possible, and only 
the cache that owns a line should issue CCI. 
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initial state cached ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

Invalid no none none I √ 
CPU read CR CE √ √ 
CPU write CRI OE √ 

replace none Impossible 
CR none I √ √ 
CRI none I √ 
CI none Impossible 

WR none Impossible 
CWI none I √ 

Invalid yes none 

same 
as 

above 

I √ √ 
CPU read CS √ √ √ 
CPU write OE √ 

replace Impossible 
CR I √ √ 
CRI I √ 
CI I √ 

WR I √ √ 
CWI I √ 

initial state cached ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

cleanExclusive no none none CE 
CPU read 
CPU write 

replace 
CR CS 
CRI 
CI 

WR 
CWI 
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initial state cached ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

ownedExclusive no none none OE 
CPU read 
CPU write 

replace 
CR OS 
CRI 
CI 

WR 
CWI 

initial state cached ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

cleanShared no none none CS 
CPU read 
CPU write 

replace 
CR 
CRI 
CI 

WR 
CWI 

cleanShared yes none 

same 
as 

above 

CPU read 
CPU write 

replace 
CR 
CRI 
CI 

WR 
CWI 
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initial state cached ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

ownedShared no none none OS 
CPU read 
CPU write 

replace 
CR 
CRI 
CI 

WR 
CWI 

ownedShared yes none 

same 
as 

above 

CPU read 
CPU write 

replace 
CR 
CRI 
CI 

WR 
CWI 
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Problem 3: Directory-based cache coherence protocol 
In this problem we consider a CCDSM (cache-coherent distributed shared memory) system. The 
system consists of a number of sites connected by an interconnection network. As shown in 
Figure 1, each site has a processor, an L1 cache, a shared memory, and a protocol processing 
component (PP). The PP implements global cache coherence using a directory-based cache 
coherence protocol. For each cache line, we maintain a cache state to specify the current 
coherence state of the cache line. For each memory block, we maintain a directory entry to 
record the sites that are currently caching that block. For every global address, there is a home 
site where the physical memory and directory entry is maintained. Assume that the home site can 
be determined by the global address using its most significant bits. 

processor 

PP 

L1 cache 
shared memory 

to interconnection network 

Figure 1:  Site Configuration 

A simple full-map directory structure is used. Each directory entry keeps a complete record of 
the sites that are sharing the memory block. The most common implementation keeps a bit-
vector in each directory entry. The bit-vector has one bit for each site, indicating if a valid copy 
of the memory block is cached at that site. A dirty bit is also needed to indicate if the block has 
been modified. Unlike bus-based snoopy protocols, the directory-based protocol does not rely on 
broadcast to invalidate stale copies. Instead, because the locations of shared copies are known, 
cache coherence can be achieved by sending point-to-point protocol messages to only the sites 
that have cached the accessed memory block. The elimination of broadcast overcomes the major 
limitation on scaling cache coherent systems to parallel machines with a large number of 
processors. 

The PPs are responsible for servicing memory access instructions, processing protocol messages, 
and maintaining cache line states and home directory states. When the processor issues a 
memory access instruction, the PP checks the addressed cache line's state. If the cache state 
shows that the instruction cannot be completed locally, the PP suspends the instruction, and 
sends a protocol request message to the corresponding home site. When this request arrives at 
the home site, the PP at the home site checks the home directory state, and sends a protocol reply 
message back to the requesting site to supply the requested data and/or exclusive ownership (in 
order to do this, the home site may need to obtain, from a remote site, the most up-to-date data 
and/or exclusive ownership if the memory block has been modified; or invalidate all the shared 
copies if the memory block is shared and the protocol message received is a store-request). At 
the requesting site, when the PP receives the protocol reply message, it resumes the suspended 
memory access instruction. 
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We make the following assumptions about the interconnection network: 
•	 Message passing is reliable, and free from deadlock, livelock and starvation. In other 

words, the transfer latency of any protocol message is finite. 
•	 Message passing is FIFO. That is, protocol messages with the same source and 

destination sites are always received in the same order as that in which they were issued. 

Memory instructions: The basic memory access instructions are load and store. A load 
instruction reads the most up-to-date value of a given location, while a store instruction writes a 
specific value to a given location. We also need to consider cache replacement operations. A 
replace operation invalidates a cache line and, if the cache line has been modified, writes the 
modified data back to memory. 

Both load and store are processor-issued instructions. Replace, on the other hand, is normally 
caused by a load/store instruction when a read/write miss leads to an associative conflict in the 
cache. In this situation, the load/store instruction cannot be processed before the replace 
(which is a “side-effect” of the load/store instruction) operation is completed. A cache line in a 
transient state cannot be replaced. 

Cache states: For each cache line, there are 4 possible states: 
• C-invalid: The accessed data is not resident in the cache. 
•	 C-shared: The accessed data is resident in the cache, and possibly also cached at other 

sites. The data in memory is valid. 
•	 C-modified: The accessed data is exclusively resident in this cache, and has been 

modified. Memory does not have the most up-to-date data. 
•	 C-transient: The accessed data is in a transient state (for example, the site has just issued 

a protocol request, but has not received the corresponding protocol reply). 

Home directory states: For each memory block, there are 4 possible states: 
•	 H-uncached: The memory block is not cached by any site. Memory has the most up-to-

date data. 
•	 H-shared[S]: The memory block is shared by the sites specified in S (S is a set of sites). 

The data in memory is also valid. 
•	 H-modified[m]: The memory block is exclusively cached at site m, and has been 

modified at that site. Memory does not have the most up-to-date data. 
•	 H-transient: The memory block is in a transient state (for example, the home site has just 

sent a protocol request to the modified site in order to obtain the most up-to-date data, but 
has not received the corresponding protocol reply). A counter, count, is needed when H-
transient represents a transient state in which the home site is waiting for the 
acknowledgments to the invalidation requests it has issued. 

Protocol messages: There are 12 different protocol messages, which are summarized in the 
following table (their meaning will become clear later). A protocol message includes the 
message type, the accessed memory address and, if necessary, the requested or written-back data. 
A protocol message usually comes in a request and reply pair. However, there are two 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

exceptions: write-back and retry. Write-back writes a modified cache line back to the main 
memory. This is a one-way message that does not need a reply (compared with protocol requests, 
this saves one reply message). Retry is a NAK (negative acknowledgment) message which 
indicates that something abnormal has happened, and some request cannot be processed and 
should be retried later. This is possible since the parallel system runs in a distributed way so that 
operations (e.g. sending a protocol message from one site to another) cannot be treated as atomic 
operations. 

No. Message Type Includes data? 
load-request no 
store-request no 
shared-copy-request no 
exclusive-copy-request no 
invalidate-request no 
load-reply yes 
store-reply yes 
shared-copy-reply yes 
exclusive-copy-reply yes 
invalidate-reply no 
write-back yes 
retry no 

The behavior of the PP can be defined by two finite state machines: one for cache line states, the 
other for home directory states. In this problem, we consider a very simple invalidation-based 
cache coherence protocol that implements the sequential consistency memory model. A brief 
(but neither formal nor complete) description is given below to help you understand the protocol. 

Cache state transitions: 
When the processor issues a load instruction, 

•	 If the cache state is C-shared or C-modified, the PP supplies the processor the data from 
the cache. The cache state is not changed. 

•	 If the cache state is C-invalid, the PP suspends the load instruction, and sends a load-
request to the accessed memory's home site to request the data. The cache state is 
changed to C-transient. Later when the corresponding load-reply arrives, the PP places 
the data in the cache, changes the cache state to C-shared, and resumes the suspended 
load instruction. 

When the processor issues a store instruction, 
•	 If the cache state is C-modified, the PP allows the processor to write to the cache. The 

cache state is not changed. 
•	 If the cache state is C-invalid or C-shared, the PP suspends the store instruction, and 

sends a store-request to the accessed memory's home site to request the data and 
exclusive ownership. The cache state is changed to C-transient. Later when the 
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corresponding store-reply arrives, the PP places the data in the cache, changes the cache 
state to C-modified, and resumes the suspended store instruction. 

When a replace operation happens, 
• If the cache state is C-shared, the PP simply changes the cache state to C-invalid. 
•	 If the cache state is C-modified, the PP sends a write-back message to the home site to 

write the modified data to memory, and changes the cache state to C-invalid. 

Home directory state transitions: 
When a load-request from site k arrives at the home site, 

•	 If the home directory state is H-uncached, the PP sends a load-reply to site k to supply 
the requested data. The directory state is changed to H-shared[S], where S = {k}. 

•	 If the home directory state is H-shared[S], the PP sends a load-reply to site k to supply 
the requested data. The directory state is changed to H-shared[S'], where S' = S ∪  {k}. 

•	 If the home directory state is H-modified[m], the PP sends a shared-copy-request to 
site m in order to obtain the most up-to-date data. The directory state is changed to H-
transient. Later when the corresponding shared-copy-reply arrives at the home site, the 
PP updates memory, sends a load-reply to site k to supply the requested data, and then 
changes the directory state to H-shared[S], where S = {m, k}. 

When a store-request from site k arrives at the home site, 
•	 If the home directory state is H-uncached, the PP sends a store-reply to site k to supply 

the requested data and exclusive ownership. The directory state is changed to H-
modified[k]. 

•	 If the home directory state is H-shared[S], the PP sends an invalidate-request to each of 
the sites specified in S. The directory state is then changed to H-transient, with a 
dedicated counter initialized to the number of invalidate-requests that have been issued. 
Later when all the invalidations have been acknowledged, the PP sends a store-reply to 
site k, and changes the directory state to H-modified[k]. 

•	 If the home directory state is H-modified[m], the PP sends a exclusive-copy-request to 
site m in order to obtain the most up-to-date data and exclusive ownership. The directory 
state is then changed to H-transient. Later when the corresponding exclusive-copy-reply 
is received, the PP sends a store-reply to site k, and changes the directory state to H-
modified[k]. 

When a write-back from site m arrives at the home site, 
•	 If the home directory state is H-modified[m] or H-transient, the PP updates the memory 

with the write-back data, and changes the directory state to H-uncached. 

*Note: The cache state transitions described above are for each physical address at the 
granularity of the cache line size. 

Problem 3.A Cache State Transitions 

Table 1 shows the cache state transitions of the protocol (note that some tricky transitions are 
intentionally ignored here). The “current state” is the current cache line state. The “event 
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received” is the event that the PP receives, which can be a load/store instruction, a replace 
operation, or a protocol message issued from the home site. The “next state” is the next cache 
line state after the PP processes the received event. The “action” is what the PP must do when 
processing the received event. This usually includes generating some new protocol message, 
placing some data in the cache, and so on. 

Complete Table 1. 

Problem 3.B Directory State Transitions 

Table 2 shows the home directory state transitions of the protocol (note that some tricky 
transitions are intentionally ignored here). The “current state” is the current home directory state. 
The “message received” is the protocol message that the PP receives. The “next state” is the next 
directory state after the PP processes the received message. The “action” is what the PP must do 
when processing the received event. This usually includes generating some new protocol 
message(s), updating memory with the most up-to-date data, and so on. We use k to represent the 
site that issued the received message. For H-transient state, we use j to represent the site that 
issued the original protocol request (load-request/store-request). 

Complete Table 2. 

Problem 3.C Protocol Understanding 

Consider the situation in which the home site sends an exclusive-copy-request to a site. This 
can only happen when the home directory shows that the modified copy resides at that site. The 
home site intends to obtain the most up-to-date data and exclusive ownership, and then supply 
them to another site that has issued a store-request. In Table 1, the last row (line 19) specifies 
the PP behavior when the current cache state is C-transient (not C-modified) and an exclusive-
copy-request is received. 

Give a simple scenario that causes this situation. You should explain your answer clearly. 

Problem 3.D Non-FIFO Network 

FIFO message passing is a necessary assumption for the correctness of the protocol. Assume 
now that the network is non-FIFO. Give a simple scenario that shows how the protocol fails. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

No. Current State Event Received Next State Action 

C-invalid load C-transient load-request -> home 

C-invalid store 

C-invalid invalidate-request 

C-invalid shared-copy-request 

C-invalid exclusive-copy-request 

C-shared load processor reads cache 

C-shared store 

C-shared replace nothing 

C-shared invalidate-request 

C-modified load 

C-modified store 

C-modified replace 

C-modified shared-copy-request 

C-modified exclusive-copy-request 

C-transient load-reply data -> cache, processor reads cache 

C-transient store-reply 

C-transient invalidate-request 

C-transient shared-copy-request 

C-transient exclusive-copy-request 

Table 1: Cache State Transitions 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

No. Current State Message Received Next State Action 

H-uncached load-request H-shared[{k}] load-reply -> k 

H-uncached store-request H-modified[k] 

H-shared[S] load-request H-shared[S ∪  {k}] 

H-shared[S] store-request 

H-modified[m] load-request 

H-modified[m] store-request 

H-modified[m] write-back data -> memory 

H-transient load-request 

H-transient store-request 

H-transient write-back 

H-transient[count > 1] invalidate-reply H-transient[--count] nothing 

H-transient[count = 1] invalidate-reply 

H-transient shared-copy-reply 

H-transient exclusive-copy-reply 

Table 2: Home Directory State Transitions 
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Problem 4: Relaxed Memory Models 
Lem E. Tweakit has started a software company called Compilers"R"Us® (CRU) whose product 
is a compiler for shared memory multi-processor machines. CRU would like to present a 
sequentially consistent memory model to programmers, but many of the machines supported by 
the CRU compiler use relaxed memory models. Lem has hired Ben Bitdiddle and Alyssa P. 
Hacker to solve this problem. 

Ben thinks that they should simply write a compiler pass that inserts the equivalent of a MIPS 
SYNC instruction after every memory operation. The SYNC instruction guarantees that all loads 
and stores initiated before the SYNC will be seen before any load or store initiated after it. Alyssa 
disagrees; she thinks that even though Ben’s scheme will produce code that operates correctly, 
the performance would be abysmal, since memory barriers are very expensive operations. She 
claims that they can do better by addressing each relaxed memory model separately, and using 
finer-grain memory barrier instructions. 

In this problem, you will help Ben and Alyssa convert code written under a sequential 
consistency assumption so that it operates correctly on machines that support relaxed memory 
models. You have at your disposal the following four memory barrier instructions: 

•	 Membarrr guarantees that all read operations initiated before the Membarrr will be seen 
before any read operation initiated after it. 
Membarrw guarantees that all read operations initiated before the Membarrw will be seen• 

before any write operation initiated after it. 
•	 Membarwr guarantees that all write operations initiated before the Membarwr will be 

seen before any read operation initiated after it. 
Membarww guarantees that all write operations initiated before the Membarww will be• 

seen before any write operation initiated after it. 

As memory barrier instructions are expensive, you should use one only when necessary. Each of 
the relaxed memory models you are asked to consider is summarized below, but you should refer 
to Lecture 19 or Chapter 8.6 of the text for details. 

To help you along, here is Alyssa’s explanation of how the compiler should compile code for a 
machine using total store ordering (TSO), so that sequential consistency is preserved (in TSO, a 
read may complete before a write that is earlier in program order if the read and write are to 
different addresses): 

The compiler needs to insert a Membarwr after a write if the next memory 
instruction that occurs after the write may be a read. 
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Problem 4.A Partial Store Ordering 

In partial store ordering (PSO), a read or a write may complete before a write that is earlier in 
program order if they are to different addresses. Explain how the compiler should transform code 
for a machine using PSO so that sequential consistency is preserved. 

Problem 4.B Weak Ordering 

In weak ordering (WO), a read or a write must complete before any synchronization operation 
following it in program order, and a synchronization operation must complete before any reads 
or writes following it. Explain how the compiler should transform code for a machine using WO 
so that sequential consistency is preserved. You may assume that the compiler is able to identify 
synchronization operations. 

Problem 4.C Release Consistency 

Release consistency (RC) distinguishes between acquire and release synchronization operations. 
An acquire must complete before any reads or writes following it in program order, while a read 
or a write before a release must complete before the release. Explain how the compiler should 
transform code for a machine using RC so that sequential consistency is preserved. You may 
assume that the compiler is able to identify acquire and release operations. Acquire and release 
are special operations that cannot be reordered with respect to memory barriers. 
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