
Asanovic/Devadas
Spring 2002

6.823

Vector Computers

Krste Asanovic
Laboratory for Computer Science

Massachusetts Institute of Technology

Asanovic/Devadas
Spring 2002

6.823Supercomputers

Definition of a supercomputer:
• Fastest machine in world at given task
• Any machine costing $30M+
• A device to turn a compute-bound problem into an

I/O bound problem
• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

Asanovic/Devadas
Spring 2002

6.823Supercomputer Applications

Typical application areas
• Military research (nuclear weapons, cryptography)
• Scientific research
• Weather forecasting
• Oil exploration
• Industrial design (car crash simulation)

All involve huge computations on large data sets

In 70s-80s, Supercomputer ≡ Vector Machine

Asanovic/Devadas
Spring 2002

6.823

Vector Supercomputers
(Epitomized by Cray-1, 1976)

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory

Asanovic/Devadas
Spring 2002

6.823Cray-1 (1976)

Asanovic/Devadas
Spring 2002

6.823Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
T Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

Asanovic/Devadas
Spring 2002

6.823Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

VADD v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and

Store Instructions
VLD v1, r1, r2

Base, r1 Stride, r2 Memory

Vector Register

Asanovic/Devadas
Spring 2002

6.823

Vector Code Example

Scalar Code
li r4, #64

loop:
ld f1, 0(r1)
ld f2, 0(r2)
fadd f3, f1, f2
st f3, 0(r3)
add r1, r1, #1
add r2, r2, #1
add r3, r3, #1
sub r4, #1
bnez r4, loop

Vector Code
li vlr, #64
lv v1, r1, #1
lv v2, r2, #1
faddv v3, v1, v2
sv v3, r3, #1

C code
for (i=0; i<64; i++)
C[i] = A[i] + B[i];

Asanovic/Devadas
Spring 2002

6.823

Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store)
– access memory in a known pattern (strided load/store)

• Scalable
– can run same object code on more parallel pipelines or lanes

Asanovic/Devadas
Spring 2002

6.823Vector Arithmetic Execution

• Use deep pipeline (=> fast clock)
to execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Asanovic/Devadas
Spring 2002

6.823Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base StrideVector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Cycles between accesses to same bank

Asanovic/Devadas
Spring 2002

6.823Vector Instruction Execution
VADD C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined

functional units

Asanovic/Devadas
Spring 2002

6.823Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

Asanovic/Devadas
Spring 2002

6.823T0 Vector Microprocessor (1995)

LaneVector register
elements striped

over lanes

[0]
[8]

[16]
[24]

[1]
[9]

[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Asanovic/Devadas
Spring 2002

6.823Vector Memory-Memory versus
Vector Register Machines

• Vector memory-memory instructions hold all vector operands
in main memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),
were memory-memory machines

• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
C[i] = A[i] + B[i];
D[i] = A[i] - B[i];

}

Example Source Code VADD C, A, B
VSUB D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
VADD V3, V1, V2
SV V3, C
VSUB V4, V1, V2
SV V4, D

Vector Register Code

Asanovic/Devadas
Spring 2002

6.823Vector Memory-Memory vs.
Vector Register Machines

• Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?
– All operands must be read in and out of memory

• VMMAs make if difficult to overlap execution of
multiple vector operations, why?
– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100 elements
– For Cray-1, vector/scalar breakeven point was around 2 elements

⇒Apart from CDC follow-ons (Cyber-205, ETA-10) all
major vector machines since Cray-1 have had vector
register architectures

(we ignore vector memory-memory from now on)

Asanovic/Devadas
Spring 2002

6.823Automatic Code Vectorization
for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing

⇒ requires extensive loop dependence
analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter
1

Iter
2

Vectorized Code

Ti
m

e

Asanovic/Devadas
Spring 2002

6.823Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit into vector

registers, “Stripmining”
and r1, N, 63 # N mod 64
move vlr, r1 # Do remainder

loop:
lv v1, rA
add rA, rA, r1 # Bump pointer
lv v2, rB
add rB, rB, r1
vadd v3, v1, v2
sv v3, rC
add rC, rC, r1
sub N, N, r1 # Subtract elements
move vlr, 64 # Reset full length
move r1, 64
bgtz N, loop # Any more to do?

for (i=0; i<N; i++)
C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

Asanovic/Devadas
Spring 2002

6.823

load

Vector Instruction Parallelism
Can overlap execution of multiple vector instructions

– example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Asanovic/Devadas
Spring 2002

6.823Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

lv v1
vmul v3,v1,v2
vadd v5, v3, v4

Asanovic/Devadas
Spring 2002

6.823Vector Chaining Advantage

• With chaining, can start dependent instruction as soon
as first result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to
be written before starting dependent instruction

Asanovic/Devadas
Spring 2002

6.823Vector Startup
Two components of vector startup penalty

– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector

instruction can start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

Asanovic/Devadas
Spring 2002

6.823

No Dead Time => Shorter Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

Asanovic/Devadas
Spring 2002

6.823Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]
Indexed load instruction (Gather)

lv vD, rD # Load indices in D vector
lvx vC, rC, vD # Load indirect from rC base
lv vB, rB # Load B vector
vadd vA, vB, vC # Do add
sv vA, rA # Store result

Asanovic/Devadas
Spring 2002

6.823Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)

A[B[i]]++;

Is following a correct translation?
lv vB, rB # Load indices in B vector
lvx vA, rA, vB # Gather initial A values
vadd vA, vA, 1 # Increment
svx vA, rA, vB # Scatter incremented values

Asanovic/Devadas
Spring 2002

6.823Vector Conditional Execution
Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)
if (A[i]>0) then

A[i] = B[i];
else

A[i] = C[i];
Solution: Add vector mask (or flag) registers

– vector version of predicate registers, 1 bit per element
…and maskable vector instructions

– vector operation becomes NOP at elements where mask bit is clear

Code example:
lv vA, rA # Load A vector
mgtz m0, vA # Set bits in mask register m0 where A>0
lv.m vA, rB, m0 # Load B vector into A under mask
fnot m1, m0 # Invert mask register
lv.m vA, rC, m1 # Load C vector into A under mask
sv vA, rA # Store A back to memory (no mask)

Asanovic/Devadas
Spring 2002

6.823Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off

result writeback according to mask

Asanovic/Devadas
Spring 2002

6.823Compress/Expand Operations
• Compress packs non-masked elements into

contiguous vector
– population count of mask vector gives packed vector length

• Expand performs inverse operation

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]
A[4]
A[5]
A[6]
A[7]

A[0]
A[1]
A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]
A[4]
A[5]

Used for density-time conditionals and also for general
selection operations

Asanovic/Devadas
Spring 2002

6.823Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)

sum += A[i]; # Loop-carried dependence on sum
Solution: Re-associate operations if possible, use binary

tree to perform reduction
Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {

VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

Asanovic/Devadas
Spring 2002

6.823A Modern Vector Super: NEC SX-5 (1998)

• CMOS Technology
– 250MHz clock (312 MHz in 2001)
– CPU fits on one multi-chip module
– SDRAM main memory (up to 128GB)

• Scalar unit
– 4-way superscalar with out-of-order and speculative execution
– 64KB I-cache and 64KB data cache

• Vector unit
– 8 foreground VRegs + 64 background VRegs (256 elements/VReg)
– 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit, 1 mask unit
– 16 lanes, 8 GFLOPS peak (32 FLOPS/cycle)
– 1 load & store unit (32x8 byte accesses/cycle)
– 64 GB/s memory bandwidth per processor

• SMP structure
– 16 CPUs connected to memory through crossbar
– 1 TB/s shared memory bandwidth

Asanovic/Devadas
Spring 2002

6.823Multimedia Extensions

• Very short vectors added to existing ISAs for micros
• Usually 64-bit registers split into 2x32b or 4x16b or 8x8b
• Newer designs have 128-bit registers (Altivec, SSE2)
• Limited instruction set:

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors

