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6.823 Computer System Architecture 

Problem Set #4 Spring 2002 

Students are encouraged to collaborate in groups of up to 3 people. A group needs to hand in 
only one copy of the solution to a problem set. Homework assignments are due at the beginning 
of class on the due date. To facilitate grading, each problem must be stapled separately and your 
latest group number must appear on each problem (If your group has changed please indicate this 
and we will assign you a new group number). Homework will not be accepted once solutions are 
handed out. 

Problem 1: Out-of-order Scheduling 

Ben Bitdiddle is adding a floating-point unit to the basic DLX pipeline. He has patterned the 
design after the IBM 360/91’s floating-point unit. His design has one adder, one multiplier, and 
one load/store unit. The adder has a two-cycle latency and is fully pipelined. The multiplier has a 
three-cycle latency and is un-pipelined. The load/store unit has a very long latency and is fully-
pipelined; it handles all memory requests in-order. 

There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There 
is a single write-back port to the floating-point register file. In the case of a write-back conflict, 
the older instruction writes back first. Floating-point instructions must spend one cycle in the 
write-back stage before its result can be used, as explained in lecture (refer to slide L11-30). 
However, integer results are available one cycle after issue as usual. 

Ben is now deciding whether to go with (a) in-order issue using a scoreboard, (b) out-of-order 
issue, or (c) out-of-order issue with register renaming. His favorite benchmark is this inner loop 
(the last instruction is in a branch delay slot). Your job is to evaluate the three alternatives. 

loop:
I  LF F0, A(R2)
I 
I 
I 
I 
I 
I 
I 
I 
I 

MULTF F3, F1, F2
ADDF F3, F3, F0
SF B(R2), F3 
LF F1, C(R2)
MULTF F3, F0, F2
ADDF F3, F3, F1
SF D(R2), F3 
BNEZ R2, loop
ADDI R2, R2, #-8 
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Problem 1.A In-order using a scoreboard 

Fill in the scoreboard in table A (refer to slide L11-30) to simulate the execution of one iteration 
of the loop. Assume that loads take n cycles (n very large), plus one cycle for write-back. Leave 
an empty row in the table to indicate the time spent waiting for the load result. Keep in mind 
that, in this scheme, no instruction is issued that has a WAW hazard with any previous 
instruction that has not written back (just like in the lecture slides). 

In steady state, how many cycles does each iteration of the loop take, in terms of n? What is the 
bottleneck? 

Problem 1.B Out-of-order 

Now consider a single-issue out-of-order implementation (refer to slide L12-3). In this scheme, 
the issue stage buffer holds multiple instructions waiting to issue. The decode stage can add up to 
one instruction per cycle to the issue buffer. The decode stage adds an instruction to the issue 
buffer if there is space and if the instruction does not have a WAR hazard with any previous 
instruction that has not issued or a WAW hazard with any previous instruction that has not 
written back. Assume you have an infinite issue buffer. 

Table B represents the execution of one iteration of the loop in steady state. Fill in the cycle 
numbers for the cycles at which each instruction issues and writes back. The first row has been 
filled out for you already; please complete the rest of the table. Note that the order of instructions 
listed is not necessarily the issue order. We define cycle 0 as the time at which instruction I1 is 
issued. Assume again that loads take n cycles. As the load/store unit if fully-pipelined, you need 
not worry about the value of n possibly causing a structural hazard. 

Draw arrows for the dependencies that are involved in the critical path of the loop in table B. 
Can the execution of multiple iterations be overlapped? 

Problem 1.C Register Renaming 

The number of registers specified in an ISA limits the maximum number of instructions that can 
be in the pipeline. This question studies register renaming to solve this problem. In this question, 
we will consider an ideal case where we have unlimited hardware resources for renaming 
registers. 

Table C shows instructions from our benchmark for two iterations using the same format as in 
Table B. First, fill in the new register names for each instruction, where applicable. Since we 
have an infinite supply of register names, you should use a new register name each time you 
need to rename a register (T0, T1, T2, etc). Keep in mind that after a register has been renamed, 
subsequent instructions that refer to that register need to refer instead to the new register name. 
You may find it helpful to create your own rename table. Rename only floating-point 
instructions. 
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Next, fill in the cycle numbers for the cycles at which each instruction issues and writes back. 
The decode stage can add up to one instruction per cycle to the re-order buffer (ROB). Assume 
that instruction I2 was decoded in cycle 0, and cannot be issued until cycle 1. Also assume that 
loads take n cycles and that you have an infinite ROB. 

For two iterations, at which cycle does the last-issued instruction get issued? At which cycle does 
the last-issued instruction get issued for 1000 iterations? What is the performance bottleneck? 

Problem 1.D Tomasulo’s Algorithm 

Consider an out-of-order implementation using Tomasulo’s algorithm (refer to slide L12-12). In 
this scheme, there is no separate floating-point instruction queue (ROB). Floating-point 
instructions go directly from instruction fetch to one of the reservation stations. If there is no 
room, the fetch stage stalls. If several instructions in a reservation station can be issued, the 
oldest instruction is issued. 

Unlike the previous question, there are a fixed number of slots in each reservation station, which 
limits the number of registers that can be renamed. Assume that we have 3 slots for an adder 
reservation station, 2 slots for a multiplier station, 3 slots for stores, and 6 slots for loads. 

How many iterations of the benchmark can be overlapped? We define two iterations as being 
overlapped if there are instructions from two different iterations in the same reservation station 
or in different reservation stations at the same time. Assume that n is very large (n > 100). 

What is the minimum number of slots that we need for the multiplier reservation station to 
achieve the maximum possible performance? Assume that all other stations have infinite slots. 
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Problem 2: Branch Prediction 

This problem will investigate the effects of adding global history bits to a standard branch 
prediction mechanism. In this problem assume that the DLX ISA has no delay slots. 

Throughout this problem we will be working with the following program: 

loop:	
LW R4, 0(R3)
ADDI R3, R3, #4
SUBI R1, R1, #1

b1: 
BEQZ R4, b2
ADDI R2, R2, #1

b2: 
BNEZ R1, loop 

Assume the initial value of R1 is n (n>0). 

Assume the initial value of R2 is 0 (R2 holds the result of the program). 

Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit integers). 


We will be using a 2-bit predictor state machine in this problem (refer to slide L13-11). 


taken 
00 10 

01 

11 
taken taken 

taken 

taken
taken 

taken taken 

Figure 1: BP bits state diagram 

In state 1X we will guess not taken. In state 0X we will guess taken. 

Assume that b1 and b2 do not conflict in the BHT. 

Problem 2.A Program 

What does the program compute? That is, what does R2 contain when we exit the loop? 

4




Problem 2.B 2-bit branch prediction 

Now we will investigate how well our standard 2-bit history branch predictor (refer to slide L13-
12) performs. Assume the inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 
0,… etc.; i.e. the array elements exhibit an alternating pattern of 1's and 0's. Fill out Table 1 (note 
that the first few lines are filled out for you). What is the number of mispredicts? 

Table 1 contains an entry for every time a branch (either b1 or b2) is executed. The Branch 
Prediction (BP) bits in the table are the bits from the BHT. If b1 is being executed, then the b1 
bits from the BHT are to be filled in. If b2 is being executed, then the b2 bits from the BHT are 
to be filled in. 

Problem 2.C Branch prediction with one global history bit 

Now we add a global history bit to the branch predictor (refer to slide L13-13). Fill out Table 2, 
and again give the total number of mispredicts you get when running the program with the same 
inputs. 

Problem 2.D Branch prediction with two global history bits 

Now we add a second global history bit (refer to slide L13-14). Fill out Table 3. Again, compute 
the number of mispredicts you get for the same input. 

Problem 2.E Analysis I 

Compare your results from problems 2.B, 2.C, and 2.D. When do most of the mispredicts occur 
in each case (at the beginning, periodically, at the end, etc.)? What does this tell you about global 
history bits in general? For large n, what prediction scheme will work best? Explain briefly. 

Problem 2.F Analysis II 

The input we worked with in this problem is quite regular. How would you expect things to 
change if the input were random (each array element were equally probable 0 or 1). Of the three 
branch predictors we looked at in this problem, which one will perform best for this type of 
input? Is your answer the same for large and small n? 

What does this tell you about when additional history bits are useful and when they hurt you? 
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Problem 3: Register Renaming and Static versus Dynamic Scheduling 

The following DLX code calculates the floating-point expression E = A * B + C – D, where the 
addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, respectively: 

LF F0, 0(R1)
LF F1, 0(R2)
MULTF F0, F0, F1
LF F2, 0(R3)
LF F3, 0(R4)
SUBF F2, F2, F3
ADDF F0, F0, F2
SF 0(R5), F0 

Problem 3.A Simple Pipeline 

Calculate the number of cycles this code sequence would take to execute (i.e., the number of 
cycles between the issue of the first load instruction and the issue of the final store, inclusive) on 
a simple in-order pipelined machine. Assume that the load latency is two cycles. Floating-point 
multiply has a four-cycle latency. Other floating-point arithmetic operations have two-cycle 
latencies. Write-back for floating-point registers takes one cycle. Also assume that all functional 
units are fully pipelined and ignore any write back conflicts. Give the number of cycles between 
the issue of the first load instruction and the issue of the final store, inclusive. 

Problem 3.B Static Scheduling 

Reorder the instructions in the code sequence to minimize the execution time. Show the new 
instruction sequence and give the number of cycles this sequence takes to execute on the simple 
in-order pipeline. 

Problem 3.C Less Registers 

Rewrite the code sequence, but now using only two floating-point registers. Optimize for 
minimum run-time. In general, when there are insufficient registers to perform a computation, 
the compiler may use temporary memory locations to hold intermediate values, a process known 
as register-spilling. In this case, you should not need to spill any registers. List the code sequence 
and give the number of cycles this takes to execute. 

Problem 3.D Register renaming and dynamic scheduling 
Now simulate the effect of running the original code on a single-issue machine with register 
renaming and out-of-order issue. Ignore structural hazards apart from the single instruction 
decode per cycle. Show how the code is executed and give the number of cycles required. How 
does this compare with the optimized code in Part 3.B? 
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Problem 4: Register Lifetimes 

For this problem, we introduce a scheme whereby every source register specifier in an 
instruction has an extra register lifetime bit (set by the compiler) which indicates that the 
corresponding instruction is the last to need that particular register value, i.e., no following 
instruction will read the register before another instruction overwrites it with a new value. 

You are now given the following DLX instruction sequence: 

I : LW R1, 0(R2)
I : ADDI R2, R5, #4
I : SUB R4, R1, R5
I : ADD R1, R2, R6
I : LW R5, 0(R4)
I : ADD R2, R1, R4
I : SW 0(R1), R4 
I : LW R4, 0(R5) 

Problem 4.A Adding RL Bits 

Please create a table like the one below and place checks indicating which registers can have 
their register lifetime (RL) bits set for the code sequence given above. For instructions with only 
one source operand, use the Src1 column. 

Instruction # Src1 RL Bit Src2 RL Bit 
I 
I 
I 
I 
I 
I 
I 
I 

Given the register lifetime bits, we now attempt to optimize the register renaming techniques 
described in Lecture 12. 

Problem 4.B Freeing Physical Registers 

In the physical register file renaming scheme described in Lecture 14, when can a physical 
register be safely freed (i.e. put on the free list and reused for new renamings)? 

7




Problem 4.C New Register Deallocation Policy 

Assume now that we use the register lifetime bits to improve the performance of our machine. 
Explain concisely any change in the policy for when a physical register can be freed. 

Problem 4.D Benefits of RL Bits 

In the following code sequences, an underlined operand denotes that the corresponding register 
lifetime bit is set. Circle any code sequences for which having register lifetime information could 
allow the microprocessor to rename additional instructions following I3 sooner than if we just 
had the original register-renaming scheme. Assume that the CPLX instruction is a very long-
latency operation that takes many cycles to complete. Explain your selections. 

Sequence A
I1: ADD R1, R3, R4 
I2: ADD R3, R1, R2 
I3: CPLX R1, R2, R3 

Sequence B
I1: ADD R1, R2, R3 
I2: CPLX R4, R5, R6 
I3: ADD R2, R1, R3 

Sequence C
I1: ADD R1, R2, R3 
I2: ADD R2, R2, R5 
I3: CPLX R4, R5, R6 

Sequence D
I1: CPLX R1, R2, R3 
I2: ADD R3, R2, R1 
I3: ADD R2, R1, R5 
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Problem 5: Synonyms & Homonyms 

Consider adding a virtually-indexed, virtually-tagged, 4-way set-associative, write-back cache to 
a system running multiple processes. Assume the TLB and processor use ASIDs (Address Space 
Identifiers). 

Problem 5.A 
A synonym problem, also called aliasing, occurs when distinct virtual addresses refer to a same 
physical location (this can be within a single process or from multiple processes). Describe a 
simple scenario illustrating a serious problem caused by synonyms. 

Problem 5.B 
Can we avoid the synonym problem by changing the cache to be a write-through cache? Explain. 

Problem 5.C 
Can we avoid the synonym problem by changing the cache to be direct-mapped? For the direct-
mapped case, does it matter if it is write-through or write-back? Explain 

Problem 5.D 
Will we still have a synonym problem if the cache is a virtually-indexed, physically-tagged 
cache? Explain. 

Problem 5.E 

A homonym problem can happen when two processes use the same virtual address to access 
different physical locations. One way to avoid this problem is to flush the cache during each 
context-switch. Alyssa P. Hacker suggests that by adding a small amount of information to each 
cache line, the homonym problem can be eliminated without needed to flush the cache. Explain 
briefly how this can be done. Will this also solve the synonym problem? (Assume the original 
virtually-indexed, virtually-tagged cache is being used.) 

Problem 5.F 

Can we solve the homonym problem by instead using a virtual-index, physical-tag cache? 
Explain. 

Problem 5.G 

Ben Bitdiddle claims that both the synonym and homonym problems for the virtually-indexed, 
virtually-tagged cache can be avoided by making the cache physically-indexed, physically-
tagged. Does Ben's idea completely solve the homonym and synonym problems?  What are the 
drawbacks of this scheme over virtually-indexed caches? Explain briefly. 
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Table A – problem 1.A 

Instr. 
Issued 

Time 
(cycles) 

Functional Unit Status Registers Reserved 
for WritesStore (n) Adder (2) Multiplier(3) WB 

I1 0 F0 F0 
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Table B – problem 1.B 

Time 
Op Dest Src1 Src2 

Issue WB 

I1 0 n LF F0 R2 

I2 MULTF F3 F1 F2 

I3 ADDF F3 F3 F0 

I4 SF R2 F3 

I5 LF F1 R2 

I6 MULTF F3 F0 F2 

I7 ADDF F3 F3 F1 

I8 SF R2 F3 

I9 BNEZ R2 

I10 ADDI R2 R2 
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Table C – problem 1.C 

Time 
Op Dest Src1 Src2 

Issue WB 

I1 0 n LF t0 R2 

I2 MULTF t1 F1 F2 

I3 ADDF t2 t1 t0 

I4 SF 

I5 LF t3 

I6 MULTF 

I7 ADDF 

I8 SF 

I9 BNEZ 

I10 ADDI 

I1 LF 

I2 MULTF 

I3 ADDF 

I4 SF 

I5 LF 

I6 MULTF 

I7 ADDF 

I8 SF 

I9 BNEZ 

I10 ADDI 
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System 
State 

Branch Predictor Behavior Updated Values 

PC R3/R4 BP bits Predicted Actual New BP bits 
Behavior Behavior 

b1 4/1 10 N 10 
b2 4/1 10 T 11 
b1 8/0 10 T 11 
b2 8/0 11 T 00 
b1 12/1 
b2 12/1 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 
b1 
b2 

N 
N 
N 
N 

Table 1: Behavior of branch prediction (Problem 2.B) 
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System 
State 

Branch 
Predictor 

Behavior ated Values 

PC R3/R4 history BP bits Predicted Actual New BP bits New 
  bit set 0 set 1 Behavior Behavior set 0 set 1 history 

b1 4/1 1 10 N N 10 10 0 
b2 4/1 0 10 N T 11 10 1 
b1 8/0         
b2 8/0         
b1 12/1         
b2 12/1         
b1          
b2          
b1          
b2          
b1          
b2          
b1          
b2          
b1          
b2          
b1          
b2          
b1          
b2          
b1          
b2          
b1          
b2          

 
Table 2:  tion with one history bit (Problem 2.C) 

Upd

10 
10 

Behavior of branch predic
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System 
State 

Branch Predictor Behavior Updated Values 

PC R3/R4 history BP bits Predicted Actual New BP bits New
  bits set 0 set 1 set 2 set 3 Behavior Behavior set 0 

 
set 1 set 2 set 3 Hist.

b1 4/1 11 10 10 10 N N 10 10 10 10 01 
b2 4/1 01 10 10 10 N T 10 11 10 10 10 
b1 8/0             
b2 8/0             
b1 12/1             
b2 12/1             
b1              
b2              
b1              
b2              
b1              
b2              
b1              
b2              
b1              
b2              
b1              
b2              
b1              
b2              
b1              
b2              
b1              
b2              

 
Table 3:  on with two history bits (Problem 2.D) 

 
Note: history bits = 10 maps to BP set 2. 

10 
10 

Behavior of branch predicti


