
6.823 Computer System Architecture 
Datapath for DLX 

Problem Set #2 
Spring 2002 

Students are allowed to collaborate in groups of up to 3 people. A group hands in only one copy 
of the solution to a problem set. Homework assignments are due at the beginning of class on the 
due date. To facilitate grading, each problem must be stapled separately. Homework will not be 
accepted once solutions are handed out. 

Problem 1: Microprogramming and Bus-Based Architectures 

Problem 1.A 

How many cycles does it take to execute the following instructions in the microcoded DLX 
machine? Use the states and control points from DLX-Controller-2 and assume Memory will 
not assert its busy signal. 

Instruction Cycles
ADD R3,R2,R1
ADDI R2,R1,#4
LW R1,0(R2)
BEQZ R1,label # (R1 == 0)
BEQZ R1,label # (R1 != 0)
J label 
JR R1 
JAL label 
JALR R1 

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to 
execute? 

Problem 1.B 

Ben Bitdiddle needs to compute factorials for small numbers. Realizing there is no multiply 
instruction in the microcoded DLX machine, he uses the following code to calculate the factorial 
of an unsigned number n. 

result = 1; 
 


for (i = 0; i < n; i++) { 
 


1
 



 temp = result;
 

for (j = 0; j < i; j++) { 
 


} 
result += temp; 
 


} 

The variables i, j, n, temp, and result are unsigned 32-bit values. 

Write the DLX assembly that implements Ben’s factorial code. Use only the DLX instructions 
that can be executed on the microcoded DLX machine (ALU, ALUi, LW, SW, J, JAL, JR, 
JALR, BEQZ, and BNEZ). The microcoded DLX machine does not have branch delay slots. 
Use R1 for n and R2 for result. At the end of your code, only R2 must have the correct 
value. The values of all other registers do not have to be preserved. 

How many DLX instructions are executed to calculate a factorial?  How many cycles does it take 
to calculate a factorial?  Again, use the states and control points from DLX-Controller-2 and 
assume Memory will not assert its busy signal. 

Factorial Instructions Cycles 
0 
1 
2 
3 
N 

Problem 1.C 

Alyssa P. Hacker tells Ben that his factorial code will run much faster if he implements an 
unsigned multiply instruction in the microcoded DLX machine. Then Ben can replace the inner 
loop instructions with the new unsigned multiply instruction. 

The details of Alyssa’s new proposed unsigned multiply instruction are: 

MULU Rd,Rs1,Rs2 # Rd <- Rs1 + ... + Rs1 (Rs2 times) 

The value of Rs1 is added Rs2 times and the result stored into Rd. Rs1 and Rs2 are treated as 
unsigned 32-bit values. If Rs2 or Rs1 is 0, then the result of Rd will also be 0. The format of 
the MULU instruction is R-type. 

In order to be able to write microcode for MULU, Alyssa adds an additional register, T0 (33), to 
the register file. This register, like the PC register, is not visible to the programmer. She also 
adds 33 as an input to the register file multiplexer. 

Using Worksheet 1, write microcode to implement Alyssa’s new unsigned multiply instruction. 

2
 




In Worksheet 1, the representation of the next state is different from what was presented in 
lecture. The last two columns specify the next state. The µBr (microbranch) column represents 
a 2-bit field with four possible values: N, J, Z, and D. If µBr is N (next), then the next state is 
simply (current state + 1). If it is J (jump), then the next state is unconditionally the state 
specified in the Next State column (i.e., it’s an unconditional microbranch). If it is Z (branch-if-
zero), then the next state depends on the value of the ALU’s zero output signal (i.e., it’s a 
conditional microbranch). If zero is asserted (== 1), then the next state is that specified in the 
Next State column, otherwise, it is (current state + 1). If µBr is D (dispatch), then the FSM 
looks at the opcode and function fields in the IR and goes into the corresponding state. For this 
problem set, we assume that the dispatch goes to the state labeled (DLX-instruction-name + “0”). 
For example, if the instruction in the IR is SW, then the dispatch will go to state SW0. 

The ALU performs operations specified by the ALUOp, which is determined by the ALU control 
logic block. Assume the ALU can perform the following operations: 

ALUOp ALU Result Output 
COPY_A A 
COPY_B B 
INC_A_1 A+1 
DEC_A_1 A-1 
INC_A_4 A+4 
DEC_A_4 A-4 
ADD A+B 
SUB A-B 

How many cycles does it take for the MULU instruction for different values of Rs2? 

Rs2 Cycles 
0 
1 
2 
3 
N 

Problem 1.D 

With Alyssa’s new unsigned multiply instruction, Ben eliminates the inner loop of his original 
factorial code and simplifies it to the following. 

3
 




 result = 1; 

for (i = 1; i <= n; i++) {
result = result * i;

} 

Help Ben write DLX assembly code to implement factorial using the new MULU instruction. 
Again, use R1 for n and R2 for result. At the end of your code, R2 must contain the correct 
value. You do not have to preserve the values of any other registers. 

How many DLX instructions are executed to calculate a factorial? How many cycles does it take 
to calculate a factorial? Again, assume Memory will not assert its busy signal. 

Factorial Instructions Cycles 
0 
1 
2 
3 
N 

Problem 1.E 

Combining a microcontroller and the DLX bus-based datapath (L4-5) gives us a complete 
 
working computer that can run a subset of the DLX ISA. 
 

Besides requiring much more memory, Alyssa tells Ben another reason why using the original 
 
DLX Microcontroller (L4-9) was a bad idea. A machine with the original controller would have 
 
a much longer cycle time than a machine using the second microcontroller (L4-15). Ben can’t 
 
understand why this is true. 
 

Below are the delays of the hardware parts used to implement the DLX bus-based datapath and 
 
the first version of the DLX Microcontroller (L4-9). 
 

tsetup – setup time of registers IR, A, B, MA, µPC 
 
tc-q – clock-to-q time of registers IR, A, B, MA, µPC 
 
tALU – time ALU takes to generate result and zero 
 
textend – delay of a sign extender 
 
tmux – delay of a multiplexer 
 
tbus – delay from when data is written to bus to when it becomes stable 
 
ttristate – delay of a tri-state buffer 
 
tRF – delay of the register file 
 
tMem – delay of memory 
 
tROM – delay of the ROM 
 
tALU_control – delay for ALU Control 
 

4
 



Assume that tALU, tROM, tRF, tMem have comparable values and that these delays are bigger than the 
delays for other components. 

Using the first version of the microcontroller, which microcode instruction invokes the critical 
path of the machine? Describe the critical path. What is the minimum clock period that the 
complete DLX bus-based machine can run at? Assume Memory will not assert its busy signal. 

5
 



Problem 2: Pipeline Hacking 
Inspired by his success with the MACC instruction in the last problem set, Ben Bitdiddle comes up 
with the following new instruction format called BIF (for Ben’s Instruction Format) that he 
wants to add to the DLX ISA: 

6 5 5 6 5 5 

opcode1 rf1 rf2 opcode2 rf4 rf5 

The semantics of the new instruction would be this: 

rf5 <- (rf1 op1 rf2) op2 rf4 

where op1 and op2 are ALU operations. For example, ADD R1,R2: ADD R3,R4 would be 
computed as follows: 

R4 <- (R1 + R2) + R3 

To implement the new instruction format, Ben decides to add an ALU to the memory phase of 
the pipelined, fully-bypassed implementation of the DLX datapath discussed in lecture. Old-style 
DLX instructions would still use the ALU in the execute phase while BIF instructions would use 
both ALUs. The first ALU operation in a BIF instruction would execute on the ALU in the 
execute phase, while the second ALU operation would execute on the ALU in the memory 
phase. The new pipeline would look like this: 

IF ID EX MA WB 
Fetch phase 	 Decode and Execute Memory Write-back 

register fetch phase with phase with phase 
phase original ALU new ALU 

In addition, the register file in the old datapath is replaced with a register file with three read 
ports and one write port so that all three operands can be read at the same time. 

Problem 2.A 

Give a code example that shows how you can get better performance using BIF instructions. 
Provide both the original old-style DLX code and the code that uses the BIF instructions. The 
original code should contain at least six instructions. 

What is the maximum possible improvement in performance using BIF instructions? 

6




Problem 2.B 

Show all data hazards that can cause stalls and provide a code example for each case. You 
should consider both old-style DLX instructions and instructions using Ben’s new format. You 
may assume that the datapath is fully-bypassed. Do not consider jumps or branches for now. 

Still ignoring jumps and branches, how would performance change if non-BIF instructions used 
the new ALU in the MA phase instead of the original ALU in the execute phase? 

Problem 2.C 

Write the equations for ws, we, re1, re2 for the new datapath with non-BIF instructions using the 
original ALU in the execute phase. Write the stall signal using ws, we, re1, and re2. You may 
need other signals. The signals for the original datapath are provided here for your convenience. 
Again, do not consider jumps or branches for now. 

cdest 
ws = case opcode 

ALU ⇒ rf3 
ALUi, LW ⇒ rf2 
JAL, JALR ⇒ R31 

we = case opcode 
ALU, ALUi, LW ⇒ (ws ≠ R0) 
JAL, JALR ⇒ on 
… ⇒ off 

cre 
re1 = case opcode 

ALU, ALUi, LW, SW, BEQZ, JR, JALR ⇒ on 
J, JAL ⇒ off 

re2 = case opcode 
ALU, SW ⇒ on 
( ( off 

cstall 
stall = (rf1D = wsE)((opcodeE = LWE)((wsE ( R0)(re1D + 

(rf2D = wsE)((opcodeE = LWE)((wsE ( R0)(re2D 

Problem 2.D 

Now consider jumps and branches. What additional hazards can occur? Give an example for 
each case. 

7




With the new instruction format, Ben thinks that we can speed up conditional branches if we 
allow an instruction that combines the compare with the branch. For example, 

SLT R1,R2: BEQZ label 

would mean: 

if (R1 < R2) then branch to label 

The first instruction (in this example, the SLT instruction) would be performed on the ALU in 
the EX phase. The result (a 0 or 1), instead of being written to the register file, would be passed 
to the MA phase where the zero test would be performed on the new ALU. How many delay 
slots will this type of instruction require to avoid any stalls? 

How could you reduce the number of delay slots that are needed, without introducing any new 
stall conditions or killing instructions in the pipeline? For each case that you consider, argue 
what effect it will have on the clock period. Each case should correspond to an implementation 
with a different number of delay slots. 

Given the options you investigated above, argue in a few sentences which of these options is the 
best. Consider delay slots, stalls, circuit size, and clock period. 

Problem 2.E 

Ben finds that the additional read port on the register file is increasing the length of the critical 
path on the processor, and that they cannot clock the new datapath at as high a speed as the 
original. To try and solve this problem, he is going to try and use the original register file. 

Since the original register file only has two read ports, only two of the operands can be read in 
the ID phase. The third operand is going to be read in the EX phase, in parallel with the first 
ALU operation. 

What other changes are needed to make this scheme work? How do these changes affect the 
performance of the processor? 

Alyssa thinks that Ben can solve his problem by adding a second register file, identical to the 
first. How would this scheme work? How does the performance of Alyssa’s scheme compare to 
the two that Ben tried? 

Problem 2.F 

With the new BIF instructions, how will code size change? Will this have an affect on 
performance? 

8 



Problem 3: Cache Access-Time & Performance 
Ben is trying to determine the best cache configuration for a new processor. He knows how to 
build three kinds of caches: direct-mapped caches, 2-way set-associative caches, and small fully 
associative caches. The goal is to find the best cache configuration with the given building 
blocks. 

Since he only knows how to build very small fully associative caches, Ben decided to use either 
direct-mapped or 2-way set-associative as the basic cache configuration. He wants to know how 
these two different configurations affect the clock speed and the cache miss-rate, and choose the 
one that provides better performance in terms of average latency for a load. 

Problem 3.A Access time: DM 

The following diagram shows how a direct-mapped cache is organized. To read a word from the 
cache, the input address is set by the processor. Then the index portion of the address is decoded 
to access the proper row in the tag memory array and in the data memory array. The selected tag 
is compared to the tag portion of the input address to determine if the access is a hit or not. At 
the same time, the corresponding cache block is read and the proper line is selected through a 
MUX. 

Input Address 2b: cache line size (bytes) 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

2b-2 data words 
• 
• 
• 

• 
• 
• 

StatusTag 

MUX 

Tag 
Decoder 

Data 
Decoder 

Comparator 

Valid Bit 

Data 
Output Driver 

Tag 
Output Driver 

Tag Index b-2 

9




In the memory array, each row corresponds to a row in the cache. For example, a row in the tag 
memory array contains one tag and two status bits (valid and dirty) for the cache line. For direct-
mapped caches, a row in the data array holds one cache line. 

Now we want to compute the access time of the cache. Assume a 32-KB cache with 8-word (32-
byte) cache lines. The address is 32 bits, and two LSB of the address is ignored since a cache 
access is word-aligned. The data output is also 32 bits, and the MUX selects one word out of the 
eight words in a cache line. Using the delay equations given in Table 3-1, fill in the column for 
the direct-mapped (DM) cache in Table 3-1. In the equation for the data output driver, 
‘associativity’ refers to the associativity of the cache (1 or direct-mapped caches, A for A-way 
set-associative caches). 

Component Delay equation (ps) DM (ps) SA (ps) 
Decoder 200×(# of index bits) + 1000 Tag 

Data 
Memory array 200×log2 (# of rows) + 

200×log2 (# of bits in a row) + 1000 
Tag 
Data 

Comparator 200×(# of tag bits) + 1000 
N-to-1 MUX 500×log2 N + 1000 
Buffer driver 2000 
Data output driver 500×(associativity) + 1000 
Valid output driver 1000 

Table 3-1: Delay of each Cache Component 

What is the critical path of this direct-mapped cache for a cache read? What is the access time of 
the cache (the delay of the critical path)? To compute the access time, assume that a gate (AND, 
OR) delay is 500 (ps). If the CPU clock is 150 MHz, how many CPU cycles does a cache access 
take? 

Problem 3.B Access time: SA 

The implementation of a 2-way set-associative cache is shown in the following diagram. The 
index part of the input address is again used to find the proper row in the data memory array and 
the tag memory array. In this case, however, each row corresponds to two cache lines (one cache 
set). A row in the data memory holds two cache lines (for 32-bytes cache lines, 64 bytes), and a 
row in the tag memory array contains two tags and status bits for those tags (2 bits per cache 
line). The tag memory and the data memory are accessed in parallel, but the output data driver is 
enabled only if there is a cache hit. 

Assume the total cache size is 32-KB (each way is 16-KB) and all other parameters (such as the 
input address, cache line, etc.) are the same as part 3.A. Compute the delay of each component, 
and fill in the column for a 2-way set-associative cache in Table 3-1. 

10




What is the critical path of the 2-way set-associative cache? What is the access time of the cache 
(the delay of the critical path)? What is the main reason that the 2-way set-associative cache is 
slower than the direct-mapped cache? If the CPU clock is 150 MHz, how many CPU cycles does 
a cache access take? 

Input Address 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

2×2b-2 data words 
• 
• 
• 

Tag 
• 
• 
• 

Stat 
• 
• 
• 

• 
• 
• 

StatTag 

MUX 

Tag 
Decoder 

Data 
Decoder 

Valid Bit 

Valid 
Output Driver 

= = 
MUX 

Buffer Driver 

Comparator 

Tag Index b-2 

Problem 3.C Miss-rate analysis 

Now Ben is studying the effect of set-associativity on the cache performance. Since he now 
knows the access time of each configuration, he wants to know the miss-rate of each one. For the 
miss-rate analysis, Ben is considering two small caches: a direct-mapped cache with 4 lines with 
16 bytes/line, and a 2-way set-associative cache, using a least recently used replacement policy, 
with 4 lines with 16 bytes/line. 

Ben tests the cache by accessing the following sequence of hexadecimal byte addresses, starting 
with empty caches. Complete the following tables for both the direct-mapped cache and the 2-
way set-associative cache showing the progression of cache contents as accesses occur (in the 
tables, ‘inv’ = invalid, and the column of a particular cache line contains the {tag,index} 
contents of that line; e.g. for the address ‘110,’ L1 gets the value ‘11’). You only need to fill in 
elements in the table when a value changes. 

11




Problem 3.C 
line in cache 

D-map 

Address L0 
hit? 

110 inv 11 inv inv no 
101 10 
123 12 
201 20 
15C 
102 
136 
202 
137 
15D 
103 
114 
203 

L3 L2 L1 

Problem 3.E 
line 
VC 

VC hit? 

inv No 

10 

D-map 
Total Misses 
Total Accesses 

Problem 3.C 
line in cache 

Set 0 Set 1 

2-way 

Address 
MRU MRU LRU 

hit? 

110 inv inv 11 inv no 
101 10 
123 12 10 
201 
15C 
102 
136 
202 
137 
15D 
103 
114 
203 

2-way 
Total Misses 
Total Accesses 

LRU 

Problem 3.E 
line 

VC 

VC hit? 

inv no 

12




Problem 3.D Average latency 

Assume that the results of the above analysis can represent the average miss-rates of the direct-
mapped and the 2-way 32-KB caches studied in 3.A and 3.B. What would be the average 
memory access latency in CPU cycles for each cache (assume that a cache miss takes 20 cycles)? 
Which one is better? 

Problem 3.E Victim caches 

In order to improve performance, Ben has decided to add a victim cache. This will be one line of 
16 bytes that always holds the most recently evicted line from the main cache. When an item is 
found in the victim cache, it takes twice as long as the main cache access in order to bring it back 
into the main cache and return it. Fill out the remaining tables above. If we assume that the result 
of this analysis represents the average miss-rate for each case, what is the average memory 
access latency for each configuration with a victim cache? Does victim cache help? Overall, 
which cache configuration is the best? 

13






 15

 
State ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp 
ALU 

ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

µB
r 

Next State 

FETCH0 MA ← PC 0 0 1 0 0 * 0 1 * 0 * 0 N * 

 IR ← Mem 1 * 0 0 0 * 0 0 0 1 * 0 N * 

 A  ← PC 0 0 1 1 0 * 0 0 * 0 * 0 N * 

 PC ← A+4 0 1 1 0 0 INC_A_4 1 0 * 0 * 0 D * 

. . .                 

NOP0 
back to FETCH0 

0 * 0 0 0 * 0 0 * 0 * 0 J FETCH0 

MULU0                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

Worksheet 1 

PseudoCode en 

PC 

* 

PC 

PC 

microbranch * 


