
1

1

Symmetric Multiprocessors:
Synchronization and Sequential

Consistency

Page 1

2

2

symmetric
• All memory is equally far
away from all processors

• Any processor can do any I/O
(set up a DMA transfer)

Symmetric Multiprocessors

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

Page 2

3

3

Synchronization

The need for synchronization arises whenever
there are parallel processes in a system
(even in a uniprocessor system)

Exclusive use of a resource: Operating
system has to ensure that only one
process uses a resource at a given time

fork

join

P1 P2Forks and Joins: In parallel programming
a parallel process may want to wait until
several events have occurred

producer

consumer

Producer-Consumer: A consumer process
must wait until the producer process has
produced data

Page 3

4

4

A Producer-Consumer Example

Producer posting Item x:
Rtail Å M[tail]
M[<Rtail>] Å x
Rtail Å <Rtail> + 1
M[tail] Å <Rtail>

Consumer:
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail>
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead>
process(R)

tail headProducer

Rtail

Consumer

Rtail Rhead R

The program is written assuming
instructions are executed in order. Possible problems?

1

2

3

4

What is the problem?

Suppose the tail pointer gets updated before the item x is stored?

Suppose R is loaded before x has been stored?

Page 4

5

5

A Producer-Consumer Example

Producer posting Item x:
Rtail Å M[tail]
M[<Rtail>] Å x
Rtail Å <Rtail> + 1
M[tail] Å <Rtail >

Consumer:
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail>
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead >
process(R)

1

2

3

4

Programmer assumes that if 3 happens after 2, then 4 happens
after 1.

Problems are:
Sequence 2, 3, 4, 1
Sequence 4, 1, 2, 3

Programmer assumes that if 3 happens after 2, then 4 happens after 1.

Page 5

6

6

Sequential Consistency: A Memory Model

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

m

P P P P P P

Page 6

7

7

Sequential Consistency

Concurrent sequential tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store(X, 1) (X = 1) Load(R1, Y)
Store(Y, 11) (Y = 11) Store(B, R1) (B = Y)

Load(R2, X)
Store(A, R2) (A = X)

what are the legitimate answers for A and B ?

(A, B) ∈ { (1, 11), (0, 10), (1, 10), (0, 11) } ?

(0, 11) is not legit.

Page 7

8

8

Sequential Consistency

Sequential consistency imposes additional memory
ordering constraints in addition to those imposed by
uniprocessor program dependencies

What are these in our example ?

Does (can) a system with caches, write buffers, or
out-of-order execution capability provide a
sequentially consistent view of the memory ?

More on this later

Page 8

9

9

Multiple Consumer Example

Producer tail head Consumer1

Consumer2

What is wrong with this code?

Producer posting Item x:
Rtail Å M[tail]
M[<Rtail>] Å x
Rtail Å <Rtail> + 1
M[tail] Å <Rtail >

Consumer:
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail>
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead >
process(R)

Rtail

Rtail Rhead

R

Rtail Rhead

R

Page 9

10

10

Multiple Consumer Example

Producer tail head Consumer1

Consumer2

Critical Section:
Needs to be executed atomically
by one consumer ⇒ locks

Producer posting Item x:
Rtail Å M[tail]
M[<Rtail>] Å x
Rtail Å <Rtail> + 1
M[tail] Å <Rtail >

Consumer:
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail>
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead >
process(R)

Page 10

11

11

Locks or Semaphores:
E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the
following operations:

P(s): if s > 0 decrement s by 1 otherwise wait
V(s): increment s by 1 and wake up one of

the waiting processes

P’s and V’s must be executed atomically, i.e., without
• interruptions or
• interleaved accesses to s by other processors

Process i
P(s)

<critical section>
V(s)

What does initial value of s
determine?

The maximum number of processes in the critical section.
A sempahore is a visual system for sending information based on 2 flags
held
In each hand.

Page 11

12

12

Implementation of Semaphores

Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
atomic read-modify-write instructions

Examples: (a is a memory address, R is a register)

Test&Set(a, R):
R ← M[a];
if <R>==0 then
M[a] ← 1;

Swap(a, R):
Rt ← M[a];
M[a] ← <R>;
R ← <Rt>;

Fetch&Add(a, RV, R):
R ← M[a];
M[a] ← <R> + <RV>;

Page 12

13

13

Critical
Section

P: Test&Set(mutex, Rtemp)
if (<Rtemp> != 0) goto P
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail> goto spin
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead >

V: 0)
process(R)

Other atomic read-modify-write instructions (Swap,
Fetch&Add, etc.) can also implement P’s and V’s

Multiple Consumers Example:
using the Test & Set Instruction

What is the problem with this code?

Store(mutex,

What if the process stops or is swapped out while in the critical section?

Page 13

14

14

Nonblocking Synchronization

try: Rhead Å M[head]
spin: Rtail Å M[tail]

if <Rhead> == <Rtail> goto spin
R Å M[<Rhead>]
Rnewhead Å <Rhead> + 1
Compare&Swap(head, Rhead, Rnewhead)
if (status == fail) goto try
process(R)

Compare&Swap(a, Rt, Rs): implicit arg - status
if (<Rt> == M[a])

then Å <Rs>;
Rt Å <Rs>;
status ← success;

else status ← fail;

M[a]

Page 14

15

15

Load-reserve & Store-conditional
Non-blocking Synchronization

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

try: Load-reserve(Rhead, head)
spin: Rtail Å M[tail]

if <Rhead > == <Rtail> goto spin
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
Store-conditional(head, Rhead)
if (status == fail) goto try
process(R)

Load-reserve(R, a):
<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional(a, R):
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] ← <R>;
status ← succeed;

else status ← fail;

Page 15

16

16

Mutual Exclusion Using Load/Store

Process 1
...
c1 = 1;

L: if c2 == 1 then go to L
< critical section >
c1 = 0;

Process 2
...
c2 = 1;

L: if c1 == 1 then go to L
< critical section >
c2 = 0;

A protocol based on two shared variables c1 and
c2. , both c1 and c2 are 0 (not busy)

What is wrong?

Initially

Page 16

17

17

Mutual Exclusion: second attempt

Process 1
...

L:
if c2 == 1 then

{ c1 = 0; goto L }
< critical section >
c1 = 0

To avoid deadlock, let process give up reservation
(i.e., Process 1 sets c1 to 0) while waiting.

Deadlock is not possible.

What could go wrong?

Process 2
...

L:
if c1 == 1 then

{ c2 = 0; goto L }
< critical section >
c2 = 0

c1 = 1; c2 = 1;

This is the most promising solution, but alas, we still have a problem with
bounded waiting . Suppose Process j continually reenters its entry protocol
after leaving its exit protocol, while Process i is waiting. It is possible That
Process j will repeatedly reach the while test when Process i has
temporarily cleared its flag. We cannot place a bound on how many times
this could happen.

Page 17

18

18

A Protocol for Mutual Exclusion
T. Dekker, 1966

Process 1
...
c1 = 1;
turn = 1;

L: if c2 == 1 && turn == 1
then goto L

< critical section >
c1 = 0;

A protocol based on 3 shared variables c1, c2 and
turn. itially, both c1 and c2 are 0 (not busy)

• turn = i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion

Process 2
...
c2 = 1;
turn = 2;

L: if c1 == 1 && turn == 2
then goto L

< critical section>
c2 = 0;

In

Take a number approach used in bakeries.

Never seen one in bakeries, but the RMV uses one.

Page 18

19

19

N-process Mutual Exclusion
Lamport’s Bakery Algorithm

Process i

choosing[i] = 1;
num[i] = max(num[0], …, num[N-1]) + 1;
choosing[i] = 0;

for(j = 0; j < N; j++)
while(choosing[j]);
while(num[j] &&

((num[j] < num[i]) ||
(num[j] == num[i] && j < i)));

}

num[i] = 0;

Initially num[j] = 0, for all j

Entry Code

Exit Code

{

Wait if the process is currently choosing

Wait if the process has a number and comes ahead of us.

Page 19

20

20

Implementation Issues

Implementation of SC is complicated by two issues

• Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a ≠ b
Store(a); Load(b) yes if a ≠ b
Store(a); Store(b) yes if a ≠ b

• Caches
Caches can prevent the effect of a store from
being seen by other processors

m

P P P P P P

Page 20

21

21

Memory Fences:
Instructions to serialize memory accesses

Processors with relaxed or weak memory models
(i.e., permit Loads and Stores to different addresses
to be reordered) need memory fence instructions to
force serialization of memory accesses

Processors with relaxed memory models:
Sparc V8 (TSO, PSO): Membar
PowerPC (WO): nc, EIEIO

Memory fences are expensive operations, however,
one pays for serialization only when it is required

Sy

Page 21

22

22

Producer posting Item x:
Rtail Å M[tail]
M[<Rtail>] Å x
membarSS
Rtail = <Rtail> + 1
M[tail] Å <Rtail >

Consumer:
Rhead Å M[head]

spin: Rtail Å M[tail]
if <Rhead> == <Rtail>
membarLL
R Å M[<Rhead>]
Rhead Å <Rhead> + 1
M[head] Å <Rhead >
process(R)

Using Memory Fences

Producer Consumertail head

What does this ensure?
What does
this ensure?

Ensures that tail pointer is not updated before
X has been stored.

Ensures that R is not loaded before x has been stored.

Page 22

