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Symmetric Multiprocessors:
Synchronization and Sequential

Consistency 
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symmetric 
• All memory is equally far 
away from all processors 

• Any processor can do any I/O 
(set up a DMA transfer) 
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Synchronization 

The need for synchronization arises whenever 
there are parallel processes in a system 
(even in a uniprocessor system) 

Exclusive use of a resource: Operating 
system has to ensure that only one 
process uses a resource at a given time 

fork 

join 

P1 P2Forks and Joins: In parallel programming 
a parallel process may want to wait until 
several events have occurred 

producer 

consumer 

Producer-Consumer: A consumer process 
must wait until the producer process has 
produced data 
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A Producer-Consumer Example 

Producer posting Item x: 
Rtail Å M[tail] 
M[<Rtail>] Å x 
Rtail Å <Rtail> + 1 
M[tail] Å <Rtail> 

Consumer: 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> ==  <Rtail> 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead> 
process(R) 

tail headProducer 

Rtail 

Consumer 

Rtail Rhead R 

The program is written assuming 
instructions are executed in order. Possible problems? 

1 

2 

3 

4 

What is the problem?


Suppose the tail pointer gets updated before the item x is stored?


Suppose R is loaded before x has been stored?
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A Producer-Consumer Example 

Producer posting Item x: 
Rtail Å M[tail] 
M[<Rtail>] Å x 
Rtail Å <Rtail> + 1 
M[tail] Å <Rtail > 

Consumer: 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> ==  <Rtail> 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead > 
process(R) 

1 

2 

3 

4 

Programmer assumes that if 3 happens after 2, then 4 happens 
after 1. 

Problems are: 
Sequence 2, 3, 4, 1 
Sequence 4, 1, 2, 3 

Programmer assumes that if 3 happens after 2, then 4 happens after 1. 
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Sequential Consistency: A Memory Model 

“A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential 
order, and the operations of each individual processor 
appear in the order specified by the program” 

Leslie Lamport 

Sequential Consistency = 
arbitrary order-preserving interleaving 
of memory references of sequential programs 

m 

P P P P P P 
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Sequential Consistency 

Concurrent sequential tasks: T1, T2 
Shared variables: X, Y (initially X = 0, Y = 10) 

T1: T2: 
Store(X, 1) (X =  1) Load(R1, Y) 
Store(Y, 11) (Y = 11) Store(B, R1) (B = Y) 

Load(R2, X) 
Store(A, R2) (A = X) 

what are the legitimate answers for A and B ? 

(A, B) ∈ { (1, 11), (0, 10), (1, 10), (0, 11) } ? 

(0, 11) is not legit. 
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Sequential Consistency 

Sequential consistency imposes additional memory 
ordering constraints in addition to those imposed by 
uniprocessor program dependencies 

What are these in our example ? 

Does (can) a system with caches, write buffers, or 
out-of-order execution capability provide a 
sequentially consistent view of the memory ? 

More on this later 
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Multiple Consumer Example 

Producer tail head Consumer1 

Consumer2 

What is wrong with this code? 

Producer posting Item x: 
Rtail Å M[tail] 
M[<Rtail>] Å x 
Rtail Å <Rtail> + 1 
M[tail] Å <Rtail > 

Consumer: 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> == <Rtail> 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead > 
process(R) 

Rtail 

Rtail Rhead 

R 

Rtail Rhead 

R 
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Multiple Consumer Example 

Producer tail head Consumer1 

Consumer2 

Critical Section: 
Needs to be executed atomically 
by one consumer ⇒ locks 

Producer posting Item x: 
Rtail Å M[tail] 
M[<Rtail>] Å x 
Rtail Å <Rtail> + 1 
M[tail] Å <Rtail > 

Consumer: 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> == <Rtail> 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead > 
process(R) 
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Locks or Semaphores:
E. W. Dijkstra, 1965 

A semaphore is a non-negative integer, with the 
following operations: 

P(s): if s > 0 decrement s by 1 otherwise wait 
V(s): increment s by 1 and wake up one of 

the waiting processes 

P’s and V’s must be executed atomically, i.e., without 
• interruptions or 
• interleaved accesses to s by other processors 

Process i 
P(s) 

<critical section> 
V(s) 

What does initial value of s 
determine? 

The maximum number of processes in the critical section. 
A sempahore is a visual system for sending information based on 2 flags
held 
In each hand. 
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Implementation of Semaphores 

Semaphores (mutual exclusion) can be implemented 
using ordinary Load and Store instructions in the 
Sequential Consistency memory model. However, 
protocols for mutual exclusion are difficult to design... 

Simpler solution: 
atomic read-modify-write instructions 

Examples: (a is a memory address, R is a register) 

Test&Set(a, R): 
R ← M[a]; 
if <R>==0 then 
M[a] ← 1; 

Swap(a, R): 
Rt ← M[a]; 
M[a] ← <R>; 
R ← <Rt>; 

Fetch&Add(a, RV, R): 
R ← M[a]; 
M[a] ← <R> + <RV>; 
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Critical 
Section 

P: Test&Set(mutex, Rtemp) 
if (<Rtemp> != 0) goto P 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> == <Rtail> goto spin 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead > 

V: 0) 
process(R) 

Other atomic read-modify-write instructions (Swap, 
Fetch&Add, etc.) can also implement P’s and V’s 

Multiple Consumers Example:
using the Test & Set Instruction 

What is the problem with this code? 

Store(mutex, 

What if the process stops or is swapped out while in the critical section? 
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Nonblocking Synchronization 

try: Rhead Å M[head] 
spin: Rtail Å M[tail] 

if <Rhead> == <Rtail> goto spin 
R Å M[<Rhead>] 
Rnewhead Å <Rhead> + 1 
Compare&Swap(head, Rhead, Rnewhead) 
if (status == fail) goto try 
process(R) 

Compare&Swap(a, Rt, Rs): implicit arg - status 
if (<Rt> == M[a]) 

then Å <Rs>; 
Rt Å <Rs>; 
status ← success; 

else status ← fail; 

M[a] 
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Load-reserve & Store-conditional 
Non-blocking Synchronization 

Special register(s) to hold reservation flag and 
address, and the outcome of store-conditional 

try: Load-reserve(Rhead, head) 
spin: Rtail Å M[tail] 

if <Rhead > ==  <Rtail> goto spin 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
Store-conditional(head, Rhead) 
if (status == fail) goto try 
process(R) 

Load-reserve(R, a): 
<flag, adr> ← <1, a>; 
R ← M[a]; 

Store-conditional(a, R): 
if <flag, adr> == <1, a> 
then cancel other procs’ 

reservation on a; 
M[a] ← <R>; 
status ← succeed; 

else status ← fail; 
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Mutual Exclusion Using Load/Store 

Process 1 
... 
c1 = 1; 

L: if c2 == 1 then go to L 
< critical section > 
c1 = 0; 

Process 2 
... 
c2 = 1; 

L: if c1 == 1 then go to L 
< critical section > 
c2 = 0; 

A protocol based on two shared variables c1 and 
c2. , both c1 and c2 are 0 (not busy) 

What is wrong? 

Initially
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Mutual Exclusion: second attempt 

Process 1 
... 

L: 
if c2 == 1 then 

{ c1 = 0; goto L } 
< critical section > 
c1 = 0 

To avoid deadlock, let process give up reservation 
(i.e., Process 1 sets c1 to 0) while waiting. 

Deadlock is not possible. 

What could go wrong? 

Process 2 
... 

L: 
if c1 == 1 then 

{ c2 = 0; goto L } 
< critical section > 
c2 = 0 

c1 = 1; c2 = 1; 

This is the most promising solution, but alas, we still have a problem with
bounded waiting . Suppose Process j continually reenters its entry protocol
after leaving its exit protocol, while Process i is waiting. It is possible That 
Process j will repeatedly reach the while test when Process i has 
temporarily cleared its flag. We cannot place a bound on how many times 
this could happen. 
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A Protocol for Mutual Exclusion 
T. Dekker, 1966 

Process 1 
... 
c1 = 1; 
turn = 1; 

L: if c2 == 1 && turn == 1 
then goto L 

< critical section > 
c1 = 0; 

A protocol based on 3 shared variables c1, c2 and 
turn. itially, both c1 and c2 are 0 (not busy) 

• turn = i ensures that only process i can wait 
• variables c1 and c2 ensure mutual exclusion 

Process 2 
... 
c2 = 1; 
turn = 2; 

L: if c1 == 1 && turn == 2 
then goto L 

< critical section> 
c2 = 0; 

In

Take a number approach used in bakeries.

Never seen one in bakeries, but the RMV uses one.
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N-process Mutual Exclusion 
Lamport’s Bakery Algorithm 

Process i 

choosing[i] = 1; 
num[i] = max(num[0], …, num[N-1]) + 1; 
choosing[i] = 0; 

for(j = 0; j < N; j++) 
while( choosing[j] ); 
while( num[j] && 

( ( num[j] < num[i] ) || 
( num[j] == num[i] &&  j < i ) ) ); 

} 

num[i] = 0; 

Initially num[j] = 0, for all j 

Entry Code 

Exit Code 

{ 

Wait if the process is currently choosing


Wait if the process has a number and comes ahead of us.
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Implementation Issues 

Implementation of SC is complicated by two issues 

• Out-of-order execution capability 
Load(a); Load(b) yes 
Load(a); Store(b) yes if a ≠ b 
Store(a); Load(b) yes if a ≠ b 
Store(a); Store(b) yes if a ≠ b 

• Caches 
Caches can prevent the effect of a store from 
being seen by other processors 

m 

P P P P P P 
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Memory Fences:
Instructions to serialize memory accesses 

Processors with relaxed or weak memory models 
(i.e., permit Loads and Stores to different addresses 
to be reordered) need memory fence instructions to 
force serialization of memory accesses 

Processors with relaxed memory models: 
Sparc V8 (TSO, PSO): Membar 
PowerPC (WO): nc, EIEIO 

Memory fences are expensive operations, however, 
one pays for serialization only when it is required 

Sy
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Producer posting Item x: 
Rtail Å M[tail] 
M[<Rtail>] Å x 
membarSS 
Rtail = <Rtail> + 1 
M[tail] Å <Rtail > 

Consumer: 
Rhead Å M[head] 

spin: Rtail Å M[tail] 
if <Rhead> == <Rtail> 
membarLL 
R Å M[<Rhead>] 
Rhead Å <Rhead> + 1 
M[head] Å <Rhead > 
process(R) 

Using Memory Fences 

Producer Consumertail head 

What does this ensure? 
What does 
this ensure? 

Ensures that tail pointer is not updated before 
X has been stored. 

Ensures that R is not loaded before x has been stored. 
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