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14.12 Game Theory — Midterm II 

Instructions. This is an open book exam; you can use any written material. You have one 
hour and 20 minutes. Each question is 25 points. Good luck! 

1. Consider the following game: 
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Compute all the pure-strategy subgame-perfect equilibria. Use a forward induction 
argument to eliminate one of these equilibria. 

Answer: There are two pure strategy Nash equilibria in the proper subgame, yielding 
subgame-perfect equilibria: 
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For player 2, Er is strictly dominated by Xr, while El is not dominated. Hence, if player 
1 keeps believing that 2 is rational whenever it is possible, then when he sees that 2 
played E, he ought to believe that 2 plays strategy El – not the dominated strategy 
Ex. In that case, 1 would play L, and 2 would play E. Therefore, the equilibrium on 
the left is eliminated. 

1 



2.	 Below, there are pairs of stage games and strategy profiles. For each pair, check whether 
the strategy profile is a subgame-perfect equilibrium of the game in which the stage 
game is repeated infinitely many times. Each agent tries to maximize the discounted 
sum of his expected payoffs in the stage game, and the discount rate is δ = 0.99. 

(a) Stage Game: 
1\2 L M R 
T 
M 
B 

Strategy profile: Until some player deviates, player 1 plays T and player 2 
alternates between L and R. If anyone deviates, then each play M thereafter. 
Answer: It is subgame perfect. Since (M,M) is a Nash equilibrium of the stage 
game, we only need to check if any player wants to deviate when player 1 plays 
T and player 2 alternates between L and R. In this regime, the present value of 
player 1’s payoffs is 

2 δ 2 − δ 
V1L = − = > 0 

1 − δ 1 − δ 1 − δ 

when 2 is to play L and 

2δ 1 2δ − 1 
V1R = − = = 98 

1 − δ 1 − δ 1 − δ 

when 2 is to play R. When 2 plays L, 1 cannot gain by deviating. When 2 plays 
R, the best 1 gets by deviating is 

2 + 0  < 98 

(when he plays B). The only possible profitable deviation for player 2 is to play 
R when he is supposed to play left. In that contingency, if he follows the strategy 
he gets V1R = 98; if he deviates, he gets 2 + 0  < V1R. 

(b) Stage Game: 
1\2 A B 
A 
B 

Strategy profile: The play depends on three states. In state S0, each player 
plays A; in states S1 and S2, each player plays B. The game start at state S0. In 
state S0, if each player plays A or if each player plays B, we stay at S0, but if a 
player i plays B while the other is playing A, then we switch to state Si. At any 
Si, if player i plays B, we switch to state S0; otherwise we state at state Si. 
Answer: It is not subgame-perfect. At state S2, player 2 is to play B, and we 
will switch to state S0 no matter what 1 plays. In that case, 1 would gain by 
deviating and playing A (in state S2). 

2,-1 0,0 -1,2 
0,0 0,0 0,0 
-1,2 0,0 2,-1 

2,2 1,3 
3,1 0,0 
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3. Consider the following first-price, sealed-bid auction where an indivisible good is sold. 
There are n ≥ 2 buyers indexed by i = 1, 2, . . . , n. Simultaneously, each buyer i 
submits a bid bi ≥ 0. The agent who submits the highest bid wins. If there are k >  1 
players submitting the highest bid, then the winner is determined randomly among 
these players – each has probability 1/k of winning. The winner i gets the object and 
pays his bid bi, obtaining payoff vi − bi, while the other buyers get 0, where v1, . . . , vn 

are independently and identically distributed with probability density function f where ½ 
3x2 x ∈ [0, 1]

f (x) =  
0 otherwise. 

(a) Compute the symmetric, linear Bayesian Nash equilibrium. 
Answer: We look for an equilibrium of the form 

bi = a + cvi 

where c >  0. Then, the expected payoff from bidding bi with type vi is 

U (bi; vi) = (vi − bi) Pr (bi > a  + cvj ∀j 6= i)Y 
= (vi − bi) Pr (bi > a  + cvj ) 

j 6=i 

= (vi − bi) 
Y 
Pr 
µ
vj <

bi − a 
¶

c 
j 6=i Y 

= (vi − bi) 
j 6=i 

µ 
bi − a 

¶3 

c 

= (vi − bi) 

µ 
bi − a 

¶3(n−1) 
c 

for bi ∈ [a, a + c]. The first order condition is 

∂U (bi; vi)
= − 

µ 
bi − a 

¶3(n−1) 
+ 3 (n − 1) 

1 
(vi − bi) 

µ 
bi − a 

¶3(n−1)−1 

= 0;
∂bi c c c 

i.e., 

− 

µ 
bi − a 

¶ 

+ 3 (n − 1) 
1 
c 
(vi − bi) = 0; 

c 

i.e., 
a + 3 (n − 1) vi

bi = . 
3 (n − 1) + 1 

Since this is an identity, we must have 

a 
a = =⇒ a = 0,

3 (n − 1) + 1 

and 
3 (n − 1) 

c = . 
3 (n − 1) + 1 
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(b) What happens as n →∞? 
Answer: As n →∞, 

bi → vi. 

In the limit, each bidder bids his valuation, and the seller extracts all the gains 
from trade. 

[Hint: Since v1, v2, . . . , vn is independently distributed, for any w1, w2, . . . , wk, we have 

Pr(v1 ≤ w1, v2 ≤ w2, . . . , vk ≤ wk) = Pr(v1 ≤ w1) Pr(v2 ≤ w2) . . .  Pr(vk ≤ wk).] 

4.	 This question is about a thief and a policeman. The thief has stolen an object. He 
can either hide the object INSIDE his car on in the TRUNK. The policeman stops the 
thief. He can either check INSIDE the car or the TRUNK, but not both. (He cannot 
let the thief go without checking, either.) If the policeman checks the place where the 
thief hides the object, he catches the thief, in which case the thief gets -1 and the police 
gets 1; otherwise, he cannot catch the thief, and the thief gets 1, the police gets -1. 

(a) Compute all the Nash equilibria. 
Answer: This is a matching-pennies game. There is a unique Nash equilibrium, 
in which Thief hides the object INSIDE or the TRUNK with equal probabilities, 
and the Policeman checks INSIDE or the TRUNK with equal probabilities. 

(b)	 Now imagine that we have 100 thieves and 100 policemen, indexed by i = 
1, . . . ,  100, and j = 1, . . . ,  100. In addition to their payoffs above, each thief i 
gets extra payoff bi form hiding the object in the TRUNK, and each policeman j 
gets extra payoff dj from checking the TRUNK. We have 

b1 < b2 < · · ·  < b50 < 0 < b51 < · · ·  < b100, 
d1 < d2 < · · ·  < d50 < 0 < d51 < · · ·  < d100. 

Policemen cannot distinguish the thieves from each other, nor can the thieves 
distinguish the policemen from each other. Each thief has stolen an object, hiding 
it either in the TRUNK or INSIDE the car. Then, each of them is randomly 
matched to a policeman. Each matching is equally likely. Again, a policeman 
can either check INSIDE the car or the TRUNK, but not both. Compute a 
pure-strategy Bayesian Nash equilibrium of this game. 
Answer: A Bayesian Nash equilibrium: A thief i hides the object in 

INSIDE if bi < 0 
TRUNK if bi > 0; 

a policeman j checks 
INSIDE if dj < 0 
TRUNK if dj > 0. 

This is a Bayesian Nash equilibrium, because, from the thief’s point of view the 
policeman is equally likely to to check TRUNK or INSIDE the car, hence it is the 
best response for him to hide in the trunk iff the extra benefit from hiding in the 
trunk is positive. Similar for the policemen. 
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