Lecture 5-6 Applications of Nash equilibrium Rationalizablity & Backwards Induction

14.12 Game Theory

Road Map

- 1. Cournot (quantity) Competition
 - 1. Nash Equilibrium in Cournot duopoly
 - 2. Nash Equilibrium in Cournot oligopoly
 - 3. Rationalizability in Cournot duopoly
- 2. Bertrand (price) Competition
- 3. Commons Problem
- 4. Quiz
- 5. Mixed-strategy Nash equilibrium
- 6. Backwards induction

Cournot Oligopoly

- $N = \{1,2,...,n\}$ firms;
- Simultaneously, each firm i produces q_i units of a good at marginal cost c,
- and sells the good at price $P = \max\{0,1-Q\}$ where $Q = q_1 + ... + q_n$.
- Game = $(S_1,...,S_n; \pi_1,...,\pi_n)$ where $S_i = [0,\infty)$,

$$\begin{split} \pi_i(q_1,\ldots,q_n) &= q_i[1\text{-}(q_1+\ldots+q_n)\text{-}c] \text{ if } q_1+\ldots+q_n < 1,\\ &\quad \text{-}q_ic &\quad \text{otherwise.} \end{split}$$

$C-D-best\ responses$ • $q_i^B(q_j) = max\{(1-q_j-c)/2,0\};$ • Nash Equilibrium q^* : $q_1^* = (1-q_2^*-c)/2;$ $q_2^* = (1-q_1^*-c)/2;$ • $q_1^* = q_2^* = (1-c)/3$ $q_2^* = q_2^B(q_1)$ $q_2^{-q_2^B(q_1)}$

Cournot Oligopoly -- Equilibrium

- q>1-c is strictly dominated, so $q \le 1$ -c.
- $\pi_i(q_1,...,q_n) = q_i[1-(q_1+...+q_n)-c]$ for each i.

• FOC:
$$\frac{\partial \pi_i(q_1, ..., q_n)}{\partial q_i} \bigg|_{q=q^*} = \frac{\partial [q_i(1-q_1-\dots-q_n-c)]}{\partial q_i} \bigg|_{q=q^*} = (1-q_1^*-\dots-q_n^*-c)-q_i^* = 0.$$

• That is,
$$2q_1^* + q_2^* + \dots + q_n^* = 1 - c$$
$$q_1^* + 2q_2^* + \dots + q_n^* = 1 - c$$
$$\vdots$$
$$q_1^* + q_2^* + \dots + nq_n^* = 1 - c$$

• Therefore, $q_1^* = ... = q_n^* = (1-c)/(n+1)$.

Rationalizability in Cournot duopoly

- If i knows that $q_i \le q$, then $q_i \ge (1-c-q)/2$.
- If i knows that $q_i \ge q$, then $q_i \le (1-c-q)/2$.
- We know that $q_i \ge q^0 = 0$.
- Then, $q_i \le q^1 = (1-c-q^0)/2 = (1-c)/2$ for each i;
- Then, $q_i \ge q^2 = (1-c-q^1)/2 = (1-c)(1-1/2)/2$ for each i;
- ...
- Then, $q^n \le q_i \le q^{n+1}$ or $q^{n+1} \le q_i \le q^n$ where $q^{n+1} = (1-c-q^n)/2 = (1-c)(1-1/2+1/4-\ldots+(-1/2)^n)/2.$
- As $n \rightarrow \infty$, $q^n \rightarrow (1-c)/3$.

Bertrand (price) competition

- $N = \{1,2\}$ firms.
- Simultaneously, each firm i sets a price p_i;
- If $p_i < p_j$, firm i sells $Q = max\{1 p_i, 0\}$ unit at price p_i ; the other firm gets 0.
- If $p_1 = p_2$, each firm sells Q/2 units at price p_1 , where $Q = \max\{1 p_1, 0\}$.
- The marginal cost is 0.

$$\pi_1(p_1, p_2) = \begin{cases} p_1(1-p_1) & \text{if } p_1 < p_2 \\ p_1(1-p_1)/2 & \text{if } p_1 = p_2 \\ 0 & \text{otherwise.} \end{cases}$$

Bertrand duopoly -- Equilibrium

Theorem: The only Nash equilibrium in the "Bertrand game" is $p^* = (0,0)$.

Proof:

- 1. $p^*=(0,0)$ is an equilibrium.
- 2. If $p = (p_1, p_2)$ is an equilibrium, then $p = p^*$.
 - 1. If $p = (p_1, p_2)$ is an equilibrium, then $p_1 = p_2$.
 - 2. Given any equilibrium $p = (p_1, p_2)$ with $p_1 = p_2$, $p = p^*$.

Commons Problem

- N = {1,2,...,n} players, each with unlimited money;
- Simultaneously, each player i contributes x_i
 ≥ 0 to produce y = x₁+...x_n unit of some public good, yielding payoff

$$U_i(x_i, y) = y^{1/2} - x_i$$
.

Equilibrium in Mixed Strategies

What is a strategy?

- A complete contingent-plan of a player.
- What the others think the player might do under various contingency.

What do we mean by a mixed strategy?

- The player is randomly choosing his pure strategies.
- The other players are not certain about what he will do.

Mixed-strategy equilibrium in Stag-Hunt game

- Assume: Player 2 thinks that, with probability p, Player 1 targets for Rabbit. What is the best probability q she wants to play Rabbit?
- His payoff from targeting Rabbit:

$$U_2(R;p) = 2p + 4(1-p)$$

= 4-2p.

• From Stag:

$$U_2(S;p) = 5(1-p)$$

• She is indifferent iff 4-2p = 5(1-p) iff p = 1/3.

$$q^{BR}(p) = \begin{cases} 0 & \text{if } p < 1/3\\ q \in [0,1] & \text{if } p = 1/3\\ 1 & \text{if } p > 1/3 \end{cases}$$

Bertrand Competition with costly search

- N = {F1,F2,B}; F1, F2 are firms; B is buyer
- B needs 1 unit of good, worth 6;
- Firms sell the good;
 Marginal cost = 0.
- Possible prices $P = \{1,5\}$.
- Buyer can check the prices with a small cost c > 0.

Game:

- 1. Each firm i chooses price p_i;
- 2. B decides whether to check the prices;
- 3. (Given) If he checks the prices, and $p_1 \neq p_2$, he buys the cheaper one; otherwise, he buys from any of the firm with probability $\frac{1}{2}$.

Mixed-strategy equilibrium

- Symmetric equilibrium: Each firm charges "High" with probability q;
- Buyer Checks with probability r.
- U(check;q) = $q^21 + (1-q^2)5 c = 5 4q^2 c$;
- U(Don't;q) = q1 + (1-q)5 = 5 4q;
- Indifference: 4q(1-q) = c; i.e.,
- U(high;q,r) = 0.5(1-r(1-q))5;
- U(low;q,r) = qr1 + 0.5(1-qr)
- Indifference = r = 4/(5-4q).

Dynamic Games of Perfect
Information
&
Backward Induction

Definitions

Perfect-Information game is a game in which all the information sets are singleton.

Sequential Rationality: A player is sequentially rational iff, at each node he is to move, he maximizes his expected utility conditional on that he is at the node – even if this node is precluded by his own strategy.

In a finite game of perfect information, the "common knowledge" of sequential rationality gives "Backward Induction" outcome.

A centipede game

Note

- There are Nash equilibria that are different from the Backward Induction outcome.
- Backward Induction always yields a Nash Equilibrium.
- That is, Sequential rationality is stronger than rationality.

Matching Pennies (wpi) 1 Head Tail 2 head tail head (-1,1) (1,-1) (1,-1) (-1,1)

Stackelberg Duopoly

Game:

 $N = \{1,2\}$ firms w MC = 0;

- 1. Firm 1 produces q₁ units
- 2. Observing q_1 , Firm 2 produces q_2 units
- 3. Each sells the good at price $P = \max\{0,1-(q_1+q_2)\}.$

$$\pi_i(q_1, q_2) = q_i[1-(q_1+q_2)] \text{ if } q_1+q_2 < 1,$$
0 otherwise.

"Stackelberg equilibrium"

- If $q_1 > 1$, $q_2 * (q_1) = 0$.
- If $q_1 \le 1$, $q_2*(q_1) = (1-q_1)/2$.
- Given the function q_2^* , if $q_1 \le 1$

$$\pi_1(q_1;q_2*(q_1)) = q_1[1-(q_1+(1-q_1)/2)]$$

$$= q_1 (1-q_1)/2;$$

0 otherwise.

- $q_1* = \frac{1}{2}$.
- $q_2*(q_1*) = \frac{1}{4}$.

