Lectures 10 -11 Repeated Games

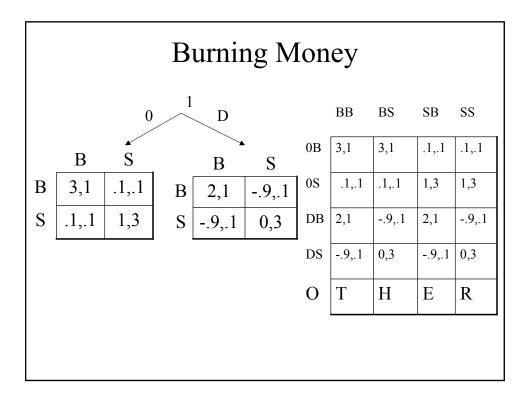
14.12 Game Theory

Road Map

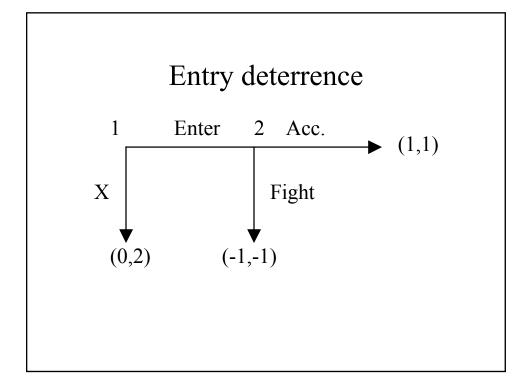
- 1. Forward Induction Examples
- 2. Finitely Repeated Games with observable actions
 - 1. Entry-Deterrence/Chain-store paradox
 - 2. Repeated Prisoners' Dilemma
 - 3. A general result
 - 4. When there are multiple equilibria
- 3. Infinitely repeated games with observable actions
 - 1. Discounting / Present value
 - 2. Examples
 - 3. The Folk Theorem
 - 4. Repeated Prisoners' Dilemma, revisited -tit for tat
 - 5. Repeated Cournot oligopoly

Forward Induction

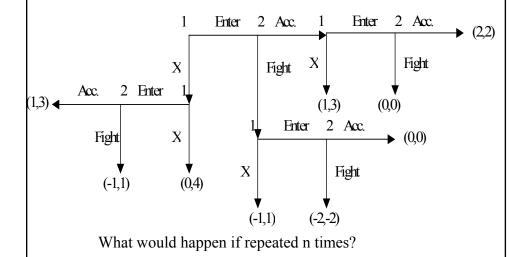
Strong belief in rationality: At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s' of a player i that are consistent with a history of play, and if s is strictly dominated but s' is not, at this history no player j believes that i plays s.)



Repeated Games



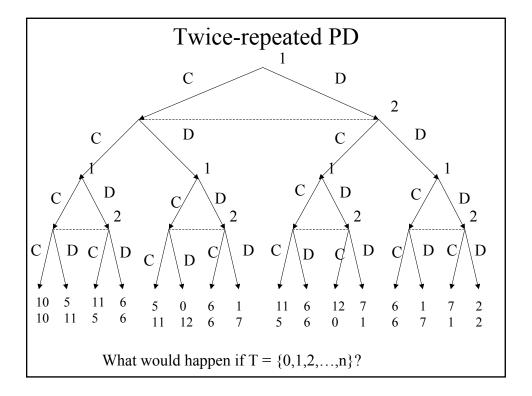
Entry deterrence, repeated twice, many times



Prisoners' Dilemma, repeated twice, many times

- Two dates $T = \{0,1\}$;
- At each date the prisoners' dilemma is played:

• At the beginning of 1 players observe the strategies at 0. Payoffs= sum of stage payoffs.



A general result

- G = "stage game" = a finite game
- $T = \{0,1,...,n\}$
- At each t in T, G is played, and players remember which actions taken before t;
- Payoffs = Sum of payoffs in the stage game.
- Call this game G(T).

Theorem: If G has a unique subgame-perfect equilibrium s*, G(T) has a unique subgame-perfect equilibrium, in which s* is played at each stage.

With multiple equilibria

$$T = \{0,1\}$$

$$1 \quad L \quad M2 \quad R$$

$$T \quad 1,1 \quad 5,0 \quad 0,0$$

$$M1 \quad 0,5 \quad 4,4 \quad 0,0$$

$$B \quad 0,0 \quad 0,0 \quad 3,3$$

Infinitely repeated Games with observable actions

- $T = \{0,1,2,...,t,...\}$
- G = "stage game" = a finite game
- At each t in T, G is played, and players remember which actions taken before t;
- Payoffs = Discounted sum of payoffs in the stage game.
- Call this game G(T).

Definitions

The *Present Value* of a given payoff stream $\pi = (\pi_0, \pi_1, ..., \pi_t, ...)$ is

$$PV(\pi;\!\delta) = \Sigma^{\!\scriptscriptstyle \infty}_{t=1}\,\delta^t \pi_t^{} = \pi_0^{} + \delta \pi_1^{} + \ldots + \delta^t \pi_t^{} + \ldots$$

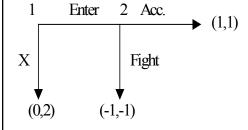
The Average Value of a given payoff stream π is

$$(1{-}\delta)PV(\pi;\delta) = (1{-}\delta)\Sigma^{\scriptscriptstyle{(\!\!\lceil}}_{\phantom{^{-}}t=1}\delta^t\pi_t$$

The *Present Value* of a given payoff stream π at t is

$$PV_t(\pi;\delta) = \Sigma_{s=t}^{\infty} \delta^{s-t} \ \pi_s = \pi_t + \delta \pi_{t+1} + \ldots + \delta^s \pi_{t+s} + \ldots$$

Infinite-period entry deterrence



Strategy of Entrant:

Enter iff
Accomodated before.

Strategy of Incumbent:

Accommodate iff accomodated before.

Incumbent:

- $V(Acc.) = V_A =$
- $V(Fight) = V_F =$
- Case 1: Accommodated before.
 - Fight =>
 - Acc. =>
- Case 2: Not Accommodated
 - Fight =>
 - Acc. =>
 - Fight ⇔

Entrant:

- Accommodated
 - Enter =>
 - _ X =>
- Not Acc.
 - Enter =>
 - _ X =>

Infinitely-repeated PD

- $V_D = 1/(1-\delta)$;
- $V_C = 5/(1-\delta) = 5V_D$;
- Defected before (easy)
- Not defected

A Grimm Strategy:

Defect iff someone -C =>defected before.

Tit for Tat

- Start with C; thereafter, play what the other player played in the previous round.
- Is (Tit-for-tat, Tit-for-tat) a SPE?
- **Modified:** Start with C; if any player plays D when the previous play is (C,C), play D in the next period, then switch back to C.

Folk Theorem

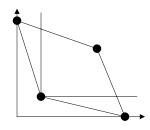
Definition: A payoff vector $\mathbf{v} = (v_1, v_2, ..., v_n)$ is feasible iff v is a convex combination of some pure-strategy payoff-vectors, i.e.,

$$v = p_1 u(a^1) + p_2 u(a^2) + ... + p_k u(a^k),$$

where $p_1 + p_2 + ... + p_k = 1$, and $u(a^j)$ is the payoff vector at strategy profile a^j of the stage game.

Theorem: Let $x = (x_1, x_2, ..., x_n)$ be s feasible payoff vector, and $e = (e_1, e_2, ..., e_n)$ be a payoff vector at some equilibrium of the stage game such that $x_i > e_i$ for each i. Then, there exist $\underline{\delta} < 1$ and a strategy profile s such that s yields x as the expected average-payoff vector and is a SPE whenever $\delta > \underline{\delta}$.

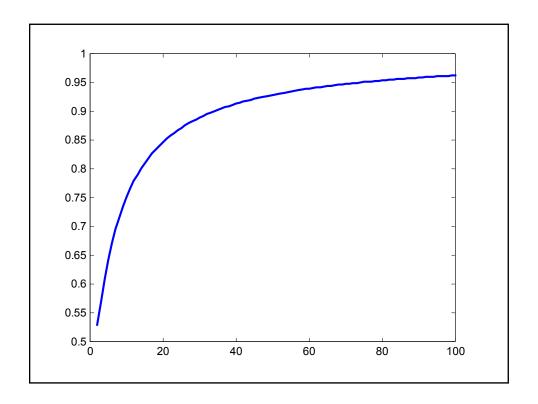
Folk Theorem in PD

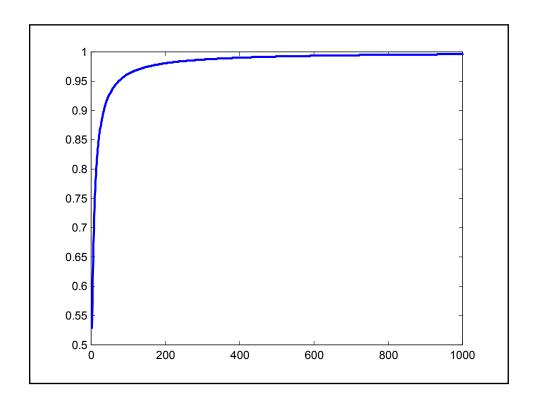


- A SPE with PV (1.1,1.1)?
 - With PV (1.1,5)?
 - With PV (6,0)?
 - With PV (5.9,0.1)?

Infinitely-repeated Cournot oligopoly

- N firms, MC = 0; $P = max\{1-Q,0\}$;
- Strategy: Each is to produce q = 1/(2n); if any firm defects produce q = 1/(1+n) forever.
- $V_C =$
- V_D =
- V(D|C) =
- Equilibrium ⇔



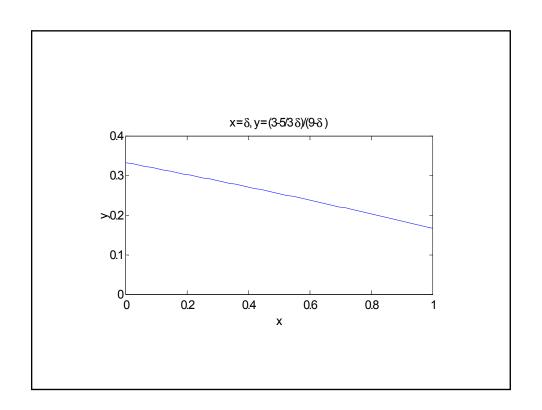


IRCD (n=2)

- Strategy: Each firm is to produce q*; if any one deviates, each produce 1/(n+1) thereafter.
- $V_C = q^*(1-2q^*)/(1-\delta);$
- $V_D = 1/(9(1-\delta))$;
- $V_{D|C} = \max q(1-q^*-q) + \delta V_D = (1-q^*)^2/4 + \frac{\delta}{9(1-\delta)}$
- Equilibrium iff

$$q*(1-2q*) \ge (1-\delta)(1-q*)^2/4+\delta/9$$

•
$$\Leftrightarrow$$
 $q^* \ge \frac{9 - 5\delta}{3(9 - \delta)}$



Carrot and Stick

Produce $\frac{1}{4}$ at the beginning; at ant t > 0, produce $\frac{1}{4}$ if both produced $\frac{1}{4}$ or both produced x at t-1; otherwise, produce x.

Two Phase: Cartel & Punishment

$$V_C = 1/8(1-\delta)$$
. $V_x = x(1-2x) + \delta V_C$.

$$V_{D|C} = \max q(1-1/4-q) + \delta V_X = (3/8)^2 + \delta V_X$$

$$V_{D|x} = \max q(1-x-q) + \delta V_X = (1-x)^2/4 + \delta V_X$$

$$V_C \ge V_{DIC} \Leftrightarrow V_C \ge (3/8)^2 + \delta^2 V_C + \delta x (1-2x)$$

$$\Leftrightarrow (1-\delta^2) V_C - (3/8)^2 \ge \delta x (1-2x) \Leftrightarrow (1+\delta)/8 - (3/8)^2 \ge \delta x (1-2x)$$

$$\begin{split} V_X &\geq V_{D|C} \Leftrightarrow (1-\delta)V_x \geq (1-x)^2/4 \Leftrightarrow (1-\delta)(x(1-2x)+\delta/8(1-\delta)) \geq (1-x)^2/4 \\ \Leftrightarrow (1-\delta)x(1-2x)+\delta/8 \geq (1-x)^2/4 \end{split}$$

$$2x^2 - x + 1/8 - 9/64\delta \ge 0$$

$$(9/4-2\delta)x^2 - (3-2\delta)x + \delta/8(1-\delta) \le 0$$