Lectures 7 Backward Induction

14.12 Game Theory

Road Map

- 1. Bertrand competition with costly search
- 2. Backward Induction
- 3. Stackelberg Competition
- 4. Sequential Bargaining
- 5. Quiz

Bertrand Competition with costly search

- N = {F1,F2,B}; F1, F2 are firms; B is buyer
- B needs 1 unit of good, worth 6;
- Firms sell the good;
 Marginal cost = 0.
- Possible prices $P = \{3,5\}$.
- Buyer can check the prices with a small cost c > 0.

Game:

- 1. Each firm i chooses price p_i;
- 2. B decides whether to check the prices;
- 3. (Given) If he checks the prices, and $p_1 \neq p_2$, he buys the cheaper one; otherwise, he buys from any of the firm with probability $\frac{1}{2}$.

Bertrand Competition with costly search

F1 F2	High	Low
High	5/2 5/2 1-c	0 1 3-c
Low	3 0 3-c	3/2 3/2 3-c

F2 F1	High	Low
High	5/2 5/2 1	5/2 3/2 2
Low	3/2 5/2 2	3/2 3/2 3

Check

Don't Check

Mixed-strategy equilibrium

- Symmetric equilibrium: Each firm charges "High" with probability q;
- Buyer Checks with probability r.
- U(check;q) = $q^21 + (1-q^2)3 c = 3 2q^2 c$;
- U(Don't;q) = q1 + (1-q)3 = 3 2q;
- Indifference: 2q(1-q) = c; i.e.,
- U(high;q,r) = 0.5(1-r(1-q))5;
- U(low;q,r) = qr3 + 0.5(1-qr)3
- Indifference: r = 2/(5-2q).

Dynamic Games of Perfect
Information
&
Backward Induction

Definitions

Perfect-Information game is a game in which all the information sets are singleton.

Sequential Rationality: A player is sequentially rational iff, at each node he is to move, he maximizes his expected utility conditional on that he is at the node – even if this node is precluded by his own strategy.

In a finite game of perfect information, the "common knowledge" of sequential rationality gives "Backward Induction" outcome.

A centipede game

Note

- There are Nash equilibria that are different from the Backward Induction outcome.
- Backward Induction always yields a Nash Equilibrium.
- That is, Sequential rationality is stronger than rationality.

Matching Pennies (wpi)

Stackelberg Duopoly

Game:

 $N = \{1,2\}$ firms w MC = 0;

- 1. Firm 1 produces q₁ units
- 2. Observing q_1 , Firm 2 produces q_2 units
- 3. Each sells the good at price $P = \max\{0,1-(q_1+q_2)\}.$

$$\pi_i(q_1, q_2) = q_i[1-(q_1+q_2)] \text{ if } q_1+q_2 < 1,$$
0 otherwise.

"Stackelberg equilibrium"

- If $q_1 > 1$, $q_2 * (q_1) = 0$.
- If $q_1 \le 1$, $q_2*(q_1) = (1-q_1)/2$.
- Given the function q_2^* , if $q_1 \le 1$

$$\pi_1(q_1;q_2*(q_1)) = q_1[1-(q_1+(1-q_1)/2)]$$

$$= q_1 (1-q_1)/2;$$

0 otherwise.

- $q_1 * = \frac{1}{2}$.
- $q_2*(q_1*) = \frac{1}{4}$.

Sequential Bargaining

- $N = \{1,2\}$
- X = feasibleexpected-utility pairs $(x,y \in X)$
- $U_i(x,t) = \delta_i^t x_i$
- $d = (0,0) \in D$ disagreement payoffs

Timeline – 2 period

At t = 1,

- Player 1 offers some (x_1, y_1) ,
- Player 2 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding (x₁,y₁),
- Otherwise, we proceed to date 2.

At t = 2,

- Player 2 offers some (x₂,y₂),
- Player 1 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding payoff $\delta(x_2,y_2)$.
- Otherwise, the game end yielding d = (0,0).

At t = 2,

- •Accept iff $y_2 \ge 0$.
- •Offer (0,1).

At t = 1,

- •Accept iff $x_2 \ge \delta$.
- •Offer $(1-\delta,\delta)$.

Timeline – 2n period

 $T = \{1,2,...,2n-1,2n\}$

If t is odd,

- Player 1 offers some (x_t, y_t) ,
- Player 2 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding $\delta^t(x_t, y_t)$,
- Otherwise, we proceed to date t+1.

If t is even

- Player 2 offers some (x_t,y_t),
- Player 1 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding payoff (x_t,y_t),
- Otherwise, we proceed to date t+1, except at t = 2n, when the game end yielding d = (0,0).