# Lecture 6 Applications of Nash equilibrium

14.12 Game Theory

### Road Map

- 1. Cournot (quantity) Competition
  - 1. Nash Equilibrium in Cournot oligopoly
- 2. Bertrand (price) Competition
- 3. Commons Problem
- 4. Quiz
- 5. Mixed-strategy Nash equilibrium









## Bertrand (price) competition

- $N = \{1,2\}$  firms.
- Simultaneously, each firm i sets a price p<sub>i</sub>;
- If  $p_i < p_j$ , firm i sells  $Q = \max\{1 p_i, 0\}$ unit at price  $p_i$ ; the other firm gets 0.
- If  $p_1 = p_2$ , each firm sells Q/2 units at price  $p_1$ , where  $Q = \max\{1 p_1, 0\}$ .
- The marginal cost is 0.

$$\pi_1(p_1, p_2) = \begin{cases} p_1(1-p_1) & \text{if } p_1 < p_2 \\ p_1(1-p_1)/2 & \text{if } p_1 = p_2 \\ 0 & \text{otherwise.} \end{cases}$$

Bertrand duopoly -- Equilibrium Theorem: The only Nash equilibrium in the "Bertrand game" is  $p^* = (0,0)$ .

#### **Proof:**

- 1.  $p^{*}=(0,0)$  is an equilibrium.
- 2. If  $p = (p_1, p_2)$  is an equilibrium, then  $p = p^*$ .
  - 1. If  $p = (p_1, p_2)$  is an equilibrium, then  $p_1 = p_2$ .
    - If  $p_i > p_j = 0$ , for sufficiently small  $\epsilon > 0$ ,  $p_j' = \epsilon$  is a better response to  $p_i$  for j. If  $p_i > p_j > 0$ ,  $p_i' = p_j$  is a better response for i.
  - 2. Given any equilibrium  $p = (p_1, p_2)$  with  $p_1 = p_2$ ,  $p = p^*$ .
    - If  $p_1 = p_2 > 0$ , for sufficiently small  $\varepsilon > 0$ ,  $p_j' = p_j \varepsilon$  is a better response to  $p_j$  for i.

### **Commons Problem**

- N = {1,2,...,n} players, each with unlimited money;
- Simultaneously, each player i contributes x<sub>i</sub> ≥ 0 to produce y = x<sub>1</sub>+...x<sub>n</sub> unit of some public good, yielding payoff

$$U_i(x_i, y) = y^{1/2} - x_i$$
.

### Quiz

Each student i is to submit a real number  $x_i$ . We will pair the students randomly. For each pair (i,j), if  $x_i \neq x_j$ , the student who submits the number that is closer to  $(x_i+x_j)/4$  gets 100; the other student gets 20. If  $x_i = x_i$ , then each of i and j gets 50.











### Bertrand Competition with costly search

- $N = \{F1, F2, B\}; F1, F2$ are firms; B is buyer
- B needs 1 unit of good, worth 6;
- Firms sell the good; Marginal cost = 0.
- Possible prices  $P = {3,5}$ .
- Buyer can check the prices with a small cost c > 0.

Game:

- 1. Each firm i chooses price p<sub>i</sub>;
- 2. B decides whether to check the prices;
- 3. (Given) If he checks the prices, and p<sub>1</sub>≠p<sub>2</sub>, he buys the cheaper one; otherwise, he buys from any of the firm with probability <sup>1</sup>/<sub>2</sub>.



