
14.12 Game Theory Lecture Notes∗ 

Lectures 7-9 

In these lectures we analyze dynamic games (with complete information). We first 

analyze the perfect information games, where each information set is singleton, and 

develop the notion of backwards induction. Then, considering more general dynamic 

games, we will introduce the concept of the subgame perfection. We explain these 

concepts on economic problems, most of which can be found in Gibbons. 

1 Backwards induction 

The concept of backwards induction corresponds to the assumption that it is common 

knowledge that each player will act rationally at each node where he moves — even if 

his rationality would imply that such a node will not be reached.1 Mechanically, it is 

computed as follows. Consider a finite horizon perfect information game. Consider any 

node that comes just before terminal nodes, that is, after each move stemming from this 

node, the game ends. If the player who moves at this node acts rationally, he will choose 

the best move for himself. Hence, we select one of the moves that give this player the 

highest payoff. Assigning the payoff vector associated with this move to the node at 

hand, we delete all the moves stemming from this node so that we have a shorter game, 

where our node is a terminal node. Repeat this procedure until we reach the origin. 
∗These notes do not include all the topics that will be covered in the class. See the slides for a more 

complete picture. 
1More precisely: at each node i the player is certain that all the players will act rationally at all 

nodes j that follow node i; and at each node i the player is certain that at each node j that follows 

node i the player who moves at j will be certain that all the players will act rationally at all nodes k 

that follow node j,...ad infinitum. 
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Example: consider the following well-known game, called as the centipedes game. 

This game illustrates the situation where it is mutually beneficial for all players to stay 

in a relation, while a player would like to exit the relation, if she knows that the other 

player will exit in the next day. 

1 A 2 a 1 α 
(2,5) 

D 

• • • 

d δ 

(1,1) (0,4) (3,3) 

In the third day, player 1 moves, choosing between going across (α) or down (δ). If 

he goes across, he would get 2; if he goes down, he will get 3. Hence, we reckon that he 

will go down. Therefore, we reduce the game as follows: 

1 A 2 a 
(3,3) 

D 

• • 

d 

(1,1) (0,4) 

In the second day, player 2 moves, choosing between going across (a) or down (d). If 

she goes across, she will get 3; if she goes down, she will get 4. Hence, we reckon that 

she will go down. Therefore, we reduce the game further as follows: 
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1 A 
(0,4) 

D 

• 

(1,1) 

Now, player 1 gets 0 if he goes across (A), and gets 1 if he goes down (D). Therefore, 

he goes down. The equilibrium that we have constructed is as follows: 

1 A 2 a 1 α 
(2,5) 

D 

• • • 

d δ 

(1,1) (0,4) (3,3) 

That is, at each node, the player who is to move goes down, exiting the relation. 

Let’s go over the assumptions that we have made in constructing our equilibrium. 

We assumed that player 1 will act rationally at the last date, when we reckoned that he 

goes down. When we reckoned that player 2 goes down in the second day, we assumed 

that player 2 assumes that player 1 will act rationally on the third day, and also assumed 

that she is rational, too. On the first day, player 1 anticipates all these. That is, he is 

assumed to know that player 2 is rational, and that she will keep believing that player 

1 will act rationally on the third day. 

This example also illustrates another notion associated with backwards induction — 

commitment (or the lack of commitment). Note that the outcomes on the third day 

(i.e., (3,3) and (2,5)) are both strictly better than the equilibrium outcome (1,0). But 

they cannot reach these outcomes, because player 2 cannot commit to go across, whence 

player 1 exits the relation in the first day. There is also a further commitment problem 

in this example. If player 1 where able to commit to go across on the third day, player 
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2 would definitely go across on the second day, whence player 1 would go across on the 

first. Of course, player 1 cannot commit to go across on the third day, and the game 

ends in the first day, yielding the low payoffs (1,0). 

As another example, let us apply backwards induction to the Matching Pennies with 

Perfect Information: 

1 

Head 

2 

Head 

Tail 

Tail 
2 Head 

Tail 

O 

O 

(-1, 1) 

(1, -1) 

(1, -1) 

(-1, 1) 

If player 1 chooses Head, player 2 will Head; and if 1 chooses Tail, player 2 will prefer 

Tail, too. Hence, the game is reduced to 

1 


Head 

Tail 

(-1,1) 

(-1,1) 

In that case, Player 1 will be indifferent between Head and Tail, choosing any of these 

two option or any randomization between these two acts will give us an equilibrium with 

backwards induction. 

At this point, you should stop and study the Stackelberg duopoly in Gib-

bons. You should also check that there is also a Nash equilibrium of this game in which 
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the follower produces the Cournot quantity irrespective of what the leader produces, 

and the leader produces the Cournot quantity. Of course, this is not consistent with 

backwards induction: when the follower knows that the leader has produced the Stack-

elberg quantity, he will change his mind and produce a lower quantity, the quantity that 

is computed during the backwards induction. For this reason, we say that this Nash 

equilibrium is based on a non-credible threat (of the follower). 

Backwards induction is a powerful solution concept with some intuitive appeal. Un-

fortunately, we cannot apply it beyond perfect information games with a finite horizon. 

Its intuition, however, can be extended beyond these games through subgame perfection. 

2 Subgame perfection 

A main property of backwards induction is that, when we confine ourselves to a sub-

game of the game, the equilibrium computed using backwards induction remains to be 

an equilibrium (computed again via backwards induction) of the subgame. Subgame 

perfection generalizes this notion to general dynamic games: 

Definition 1 A Nash equilibrium is said to be subgame perfect if an only if it is a Nash 

equilibrium in every subgame of the game. 

What is a subgame? In any given game, there may be some smaller games embedded; 

we call each such embedded game a subgame. Consider, for instance, the centipedes 

game (where the equilibrium is drawn in thick lines): 

1 A 2 a 1 α 
• • • 

d δ 

(2,5)


D 

(1,1) 

This game has three subgames. Here is one subgame: 
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1 α

• (2,5) 

δ 

(3,3) 

This is another subgame: 

2 a 1 α 
(2,5) 

d 

• • 

δ 

(0,4) (3,3) 

And the third subgame is the game itself. We call the first two subgames (excluding 

the game itself) proper. Note that, in each subgame, the equilibrium computed via 

backwards induction remains to be an equilibrium of the subgame. 

Now consider the matching penny game with perfect information. In this game, we 

have three subgames: one after player 1 chooses Head, one after player 1 chooses Tail, 

and the game itself. Again, the equilibrium computed through backwards induction is 

a Nash equilibrium at each subgame. 

Now consider the following game. 
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XE 

1 

1 

B 

2 

R L 

T 
(2,6) 

L R 

(0,1) (3,2) (-1,3) (1,5) 

We cannot apply backwards induction in this game, because it is not a perfect in-

formation game. But we can compute the subgame perfect equilibrium. This game has 

two subgames: one starts after player 1 plays E; the second one is the game itself. We 

compute the subgame perfect equilibria as follows. We first compute a Nash equilibrium 

of the subgame, then fixing the equilibrium actions as they are (in this subgame), and 

taking the equilibrium payoffs in this subgame as the payoffs for entering in the subgame, 

we compute a Nash equilibrium in the remaining game. 

The subgame has only one Nash equilibrium, as T dominates B: Player 1 plays T 

and 2 plays R, yielding the payoff vector (3,2). 

L 

1 

B 

2 

R R L 

T 

(0,1) (-1,3) (1,5) (3,2) 

Given this, the remaining game is 
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XE 

1 

(3,2) (2,6) 

where player 1 chooses E. Thus, the subgame-perfect equilibrium is as follows. 

1 

B 

X 

2 

R RL 

T 

E 
1 

(2,6) 

(0,1) ) (-1,3) (1,5) (3,2

L


Note that there are other Nash Equilibria; one of them is depicted below. 

1 

B 

X 

2 

L R RL 

T 

E 
1 

(2,6) 

(0,1) ) (-1,3) (1,5) (3,2

You should be able to check that this is a Nash equilibrium. But it is not subgame 

perfect, for, in the proper subgame, 2 plays a strictly dominated strategy. 
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Now, consider the following game, which is essentially the same game as above, with 

a slight difference that here player 1 makes his choices at once: 

X 
1 

B 

2 

L R L 

T 

(2,6)


R


(0,1) (3,2) (-1,3) (1,5) 

Note that the only subgame of this game is itself, hence any Nash equilibrium is 

subgame perfect. In particular, the non-subgame-perfect Nash equilibrium of the game 

above is subgame perfect. In the new game it takes the following form: 

X 
1 

B 

2 

L R RL 

T 

(2,6) 

(0,1) (-1,3) (1,5) (3,2) 

At this point you should stop reading and study “tariffs and imperfect 

international competition”. 

3 Sequential Bargaining 

Imagine that two players own a dollar, which they can use only after they decide how to 

divide it. Each player is risk-neutral and discounts the future exponentially. That is, if 
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a player gets x dollar at day t, his payoff is δt x for some δ ∈ (0, 1). The set of all feasible © ª 
divisions is D = (x, y) ∈ [0, 1]2 |x + y ≤ 1 . Consider the following scenario. In the 

first day player one makes an offer (x1, y1) ∈ D. Then, knowing what has been offered, 

player 2 accepts or rejects the offer. If he accepts the offer, the offer is implemented, 

yielding payoffs (x1, y1). If he rejects the offer, then they wait until the next day, when 

player 2 makes an offer (x2, y2) ∈ D. Now, knowing what player 2 has offered, player 

1 accepts or rejects the offer. If player 1 accepts the offer, the offer is implemented, 

yielding payoffs (δx2, δy2). If player two rejects the offer, then the game ends, when they 

lose the dollar and get payoffs (0,0). 

Let us analyze this game. On the second day, if player 1 rejects the offer, he gets 0. 

Hence, he accepts any offer that gives him more than 0, and he is indifferent between 

accepting and rejecting any offer that gives him 0. Assume that he accepts the offer 

(0,1).2 Then, player 2 would offer (0,1), which is the best player 2 can get. Therefore, 

if they do not agree on the first day, on the second day, player 2 takes the entire dollar, 

leaving player 1 nothing. The value of taking the dollar on the next day for player 2 is 

δ. Hence, on the first day, player 2 will accept any offer that gives him more than δ, will 

reject any offer that gives him less than δ, and he is indifferent between accepting and 

rejecting any offer that gives him δ. As above, assume that player 2 accepts the offer 

(1 − δ, δ). In that case, player 1 will offer (1 − δ, δ), which will be accepted. For any 

division that gives player 1 more than 1 − δ will give player 2 less than δ, and will be 

rejected. 

Now, consider the game in which the game above is repeated n times. That is, if they 

have not yet reached an agreement by the end of the second day, on the third day, player 

1 makes an offer (x3, y3) ∈ D. Then, knowing what has been offered, player 2 accepts 

or rejects the offer. If he accepts the offer, the offer is implemented, yielding payoffs ¡
δ2 x3, δ

2 y3 

¢ 
. If he rejects the offer, then they wait until the next day, when player 2 

makes an offer (x4, y4) ∈ D. Now, knowing what player 2 has offered, player 1 accepts or 

rejects the offer. If player 1 accepts the offer, the offer is implemented, yielding payoffs ¡
δ3 x4, δ

3 y4 

¢ 
. If player two rejects the offer, then they go to the 5th day... And this goes 

on like this until the end of day 2n. If they have not yet agreed at the end of that day, 
2In fact, player 1 must accept (0,1) in equilibrium. For, if he doesn’t accept (0,1), the best response 

of player 2 will be empty, inconsistent with an equilibrium. (Any offer (², 1 − ²) of player 2 will be 

accepted. But for any offer (², 1 − ²), there is a better offer (²/2, 1 − ²/2), which will also be accepted.) 
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the game ends, when they lose the dollar and get payoffs (0,0). 

The subgame perfect equilibrium will be as follows. At any day t = 2n − 2k (k is a 

non-negative integer), player 1 accepts any offer (x, y) with 

δ 
¡
1 − δ2k

¢ 
x ≥ 

1 +  δ 

and will reject any offer (x, y) with 

δ 
¡
1 − δ2k

¢ 
;x <  

1 +  δ 

and player 2 offers Ã ! Ã ! 

(xt, yt) =  
δ 
¡
1 − δ2k

¢ 
, 1 − 

δ 
¡
1 − δ2k

¢ 
≡ 

δ 
¡
1 − δ2k

¢ 
, 
1 +  δ2k+1 

. 
1 +  δ 1 +  δ 1 +  δ 1 +  δ 

And at any day t − 1 = 2n − 2k − 1, player 2 accepts an offer (x, y) iff 

y ≥ 
δ 
¡
1 +  δ2k+1

¢ 
;

1 +  δ 

and Player 1 will offer Ã ! Ã ! 

(xt−1, yt−1) =  1 − 
δ 
¡
1 +  δ2k+1

¢ 
, 
δ 
¡
1 +  δ2k+1

¢ 
≡ 

1 − δ2k+2 

, 
δ 
¡
1 +  δ2k+1

¢ 
. 

1 +  δ 1 +  δ 1 +  δ 1 +  δ 

We can prove this is the equilibrium given by backwards induction using mathemat-

ical induction on k. (That is, we first prove that it is true for k = 0; then assuming that 

it is true for some k − 1, we prove that it is true for k.) 

Proof. Note that for k = 0, we have the last two periods, identical to the 2-period 

example we analyzed above. Putting k = 0, we can easily check that the behavior 

described here is the same as the equilibrium behavior in the 2-period game. Now, 

assume that, for some k − 1 the equilibrium is as described above. That is, at the 

beginning of date t + 1  := 2n − 2 (k − 1) − 1 = 2n − 2k + 1, player 1 offers  ³ ´  Ã !  1 − δ2(k−1)+2 δ 1 +  δ2(k−1)+1  =
1 − δ2k 

, 
δ 
¡
1 +  δ2k−1

¢ 
;(xt+1, yt+1) =  ,

1 +  δ 1 +  δ 1 +  δ 1 +  δ 

and his offer is accepted. At date t = 2n − 2k, player one accepts an offer iff the offer is 

at least as good as having 1−δ
2k 
in the next day, which is worth 

δ(1−δ2k) . Therefore, he
1+δ 1+δ 

will accept an offer (x, y) iff 
δ 
¡
1 − δ2k

¢ 
;x ≥ 

1 +  δ 
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as we have described above. In that case, the best player 2 can do is to offer Ã ! Ã ! 

(xt, yt) =  
δ 
¡
1 − δ2k

¢ 
, 1 − 

δ 
¡
1 − δ2k

¢ 
= 

δ 
¡
1 − δ2k

¢ 
, 
1 +  δ2k+1 

. 
1 +  δ 1 +  δ 1 +  δ 1 +  δ 

For any offer that gives 2 more than yt will be rejected in which case player 2 will get 

δ2 
¡
1 +  δ2k−1

¢ 
< yt.δyt+1 = 

1 +  δ 

That is, at t player 2 offers (xt, yt) ;  and it is accepted. In that case, at t − 1, player 2 

will accept an offer (x, y) iff 

y ≥ δyt = 
δ 
¡
1 +  δ2k+1

¢ 
. 

1 +  δ 

In that case, at t − 1, player 1 will offer Ã ! 

(xt−1, yt−1) ≡ (1 − δyt, δyt) =  
1 − δ2k+2 

, 
δ 
¡
1 +  δ2k+1

¢ 
,

1 +  δ 1 +  δ 

completing the proof. 

Now, let n →∞. At any odd date t, player 1 will offer Ã ! 
∞ 1 δ 

(xt , yt 
∞) = lim 

1 − δ2k+2 

, 
δ 
¡
1 +  δ2k+1

¢ 
= 

µ 

1 +  δ 
, 
1 +  δ 

¶ 

; 
k→∞ 1 +  δ 1 +  δ 

and any even date t player 2 will offer Ã ! 
∞ ∞(xt , yt ) =  lim 

δ 
¡
1 − δ2k 

¢ 
, 
1 +  δ2k+1 δ 1 

k→∞ 1 +  δ 1 +  δ 
= 

µ 

1 +  δ 
, 
1 +  δ 

¶ 

; 

and the offers are barely accepted. 
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