Lectures 15-18 Dynamic Games with Incomplete Information

14.12 Game Theory

Road Map

- 1. Examples
- 2. Sequential Rationality
- 3. Perfect Bayesian Nash Equilibrium
- 4. Economic Applications
	- 1. Sequential Bargaining with incomplete information
	- 2. Reputation

Sequential Rationality

A player is said to be **sequentially rational** iff, at each information set he is to move, he maximizes his expected utility given his beliefs at the information set (and given that he is at the information set) – even if this information set is precluded by his own strategy.

Sequential Bargaining

- 1. 1-period bargaining 2 types
- 2. 2-period bargaining -2 types
- 3. 1-period bargaining continuum
- 4. 2-period bargaining continuum

Solution, 2-period 1. Let $\mu = Pr(v = 2|$ history at t=1). 2. At $t = 1$, buy iff $v \ge p$; 3. If $\mu > \frac{1}{2}$, $p_1 = 2$ 4. If $\mu < \frac{1}{2}$, $p_1 = 1$. 5. If $\mu = \frac{1}{2}$, mix between 1 and 2. 6. B with v=1 buys at t=0 if $p_0 \le 1$. 7. If $p_0 > 1$, $\mu = Pr(v = 2|p_0, t=1) \leq \pi$.

Sequential bargaining, v in [0,1] • 2 periods: (p_0, p_1) – At t = 0, B buys at p_0 iff $v \ge a(p_0)$; $-p_1 = a(p_0)/2;$ – Type $a(p_0)$ is indifferent: $a(p_0) - p_0 = \delta(a(p_0) - p_1) = \delta a(p_0)/2$ \Leftrightarrow a(p₀) = p₀/(1- δ /2) • S gets (n) (n) ² • FOC: $2p_0$ $2p_0$ $0 \ge 1$ (1) $\frac{0}{s}$ (2) $\left|p_0+\right| \frac{p_0}{2}$ $1 - \delta / 2$ ^{F_0} (2) $1-\frac{P_0}{1-\frac{S}{Q}}|p_0+\frac{P_0}{2-\frac{S}{Q}}|$ J $\left(\frac{p_0}{2} \right)$ \setminus $\left(1 - \frac{p_0}{1 - \delta/2}\right) p_0 + \left(\frac{p_0}{2 - \delta/2}\right) p_0$ \setminus $\left(1-\frac{p_0}{1-\delta/2}\right) p_0 + \left(\frac{p_0}{2-\delta}\right)$ $2(1 - 3\delta/4$ $0 \Rightarrow p_0 = \frac{(1 - \delta/2)}{\delta(1 - \delta/2)}$ 2 $\overline{2}$ j $1 - \delta / 2$ $\frac{2p_0}{1-\frac{2p_0}{2}} + \frac{2p_0}{2} = 0 \Rightarrow p_0 = \frac{(1-\delta/2)^2}{2}$ $\frac{0}{12} + \frac{2p_0}{2} = 0 \Rightarrow p_0$ δ δ $-\frac{2p_0}{1-\delta/2} + \frac{2p_0}{2-\delta} = 0 \Rightarrow p_0 = \frac{(1-\delta/2)^2}{2(1-3\delta/4)}$

If 2's payoff at any n is x and 2 is mixing,
\nthen
\n
$$
x = \mu_n(x+1) + (1 - \mu_n)[(x-1)p_n + (1-p_n)(x+1)]
$$
\n
$$
= \mu_n(x+1) + (1 - \mu_n)[(x+1) - 2p_n]
$$
\n
$$
= x+1 - 2p_n(1 - \mu_n)
$$
\n
$$
\Leftrightarrow (1 - \mu_n) p_n = 1/2
$$
\n
$$
\mu_{n-1} = \frac{\mu_n}{\mu_n + (1 - \mu_n)(1 - p_n)} = \frac{\mu_n}{\mu_n + (1 - \mu_n) - p_n(1 - \mu_n)} = 2\mu_n
$$
\n
$$
\mu_n = \frac{\mu_{n-1}}{2}
$$

