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SUtNARY

This status report presents a brief description of the research carried

out by faculty, staff and students of the M.I.T. Department of Electrical

Engineering and Computer Science under NSF Grant ECS-8700903. The principal

investigator for this research is Prof. Alan S. Willsky, the co-principal

investigator is Bernard C. Levy (at U.C. Davis since September 1987), and

Profs. George C. Verghese and Sanjoy K. Mitter are the other major faculty

contributors. The period covered by the report is August 1, 1987 to April 15,

1988.

The basic scope of the grant is to carry out fundamental research on

several interrelated classes of problems involving estimation and signal

processing of spatial data. Our research is divided into three broad areas:

I. Efficient Estimation and Signal Processing for Spatial Data. The

major emphasis here is on using notions of recursion, spatial

decomposition and symmetry to obtain recursive and highly parallel

algorithms for the estimation of 2D processes.

II. Estimation and Identification Approaches to Inverse and Signal

Reconstruction Problems. Among the problems of interest are the

development of generalized tomographic methods for exact and

approximate solution of 2D and 3D inverse scattering problems, and

the development of algorithms operating at multiple spatial scales.

III. Computational Vision and Geometric Estimation and Reconstruction.

Our approach here is via system- and estimation-theoretic

formulations of problems involving reconstructing geometric objects

from uncertain measurements of geometric features.
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In the following three sections we briefly describe our results in each

of these areas, and present our research directions. A list of publications

supported in whole or in part by this grant is also included.
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I. Efficient Estimation and Signal Processing for Spatial Data

Our work in this area has concentrated on two main topics: (i) boundary

value problems for discrete-time noncausal descriptor systems; and

(ii) recursive estimation and spectral estimation for 2D isotropic random

fields. Our main results in these initial months have been for boundary value

descriptor systems, and they are summarized here.

As described in the original proposal for this project, our work is

motivated by the need to develop methods for dealing with noncausal models

arising in spatial problems. As is often the case when examining questions

for 2D processes, it was realized that the corresponding theory for 1D

processes is incompletely developed. This has led us to focus on two-point

boundary value descriptor systems (TPBVDSs) of the form:

Ex(k+l) = Ax(k) + Bu(k), 0 < k < N-1 (1.1)

with the two-point boundary value condition

Vix(O) + Vfx(N) = v . (1.2)

Here E, A, and B are constant matrices, with E and A square, x and v are

n-dimensional vectors, and u is an m-dimensional vector.

It is known that, without loss of generality, we can assume the system

(1.1)-(1.2) is in standard form, i.e. it satisfies the following two

properties: (i) there exist some scalars a and P such that

aE + PA = I , (1.3)

which implies that E and A commute; and (ii) the boundary matrices Vi and Vf

are such that

VIEN + VfAN =I . (1.4)
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Our earlier work has established that there are two natural notions of

recursion here, namely inward from the boundaries and outward toward the

boundaries, with associated notions of reachability and observability. More

recent results, described in [6], concern stability, its relation to the

property of stochastic stationarity, and the study of these via generalized

Lyapunov equations for TPBVDSs.

Since TPBVDSs are defined only over a finite interval, the concept of

stability is not easy to formulate for these systems. Our concept of internal

stability requires that, as the interval of definition N increases, the

effects of the boundary conditions v on the states located close to the center

of the interval should go to zero. To properly develop this concept, the

notion of time invariance is introduced.

A TPBVDS is time invariant if the Green's function G(k,l) appearing in

the solution of the TPBVDS (1.1)-(1.2) depends only on the difference between

arguments k and 1, so that G(k,l) = G(k-l). Unlike for causal systems, the

fact that the matrices E and A are constant is not sufficient to guarantee

that the TPBVDS (1.1)-(1.2) is time invariant. It was established in our

earlier work that a TPBVDS is time invariant if and only if the matrices E and

A commute with both Vi and Vf.

The following decomposition of a time invariant TPBVDS allows us to

deduce a necessary and sufficient condition for internal stability:

(Decomposition of a time invariant TPBVDS into forwards, backwards and

marginally stable components): Through the use of a state

transformation, and by left multiplication of (1.1) and (1.2) by

invertible matrices, an arbitrary time invariant TPBVDS can be decomposed
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into three decoupled subsystems of the form

xf(k+l) = Afxf(k) + Bfu(k) , Vilxf(O) + VflXf(N) = V1 , (1.5a)

xb(k) = Abxb(k+l) - Bbu(k) , Vi2xb(O) + Vf2xb(N) = v2 , (1.5b)

xm(k+l) = UXm(k) + Bmu(k) , Vi3xm(O) + Vf3Xm(N) = v3 , (1.5c)

where the matrices Af and Ab have their roots inside the unit circle, and

U has its roots on the unit circle. The subsystems (1.5a)-(1.5c) are

time invariant and in standard form, and correspond respectively to the

forwards, backwards and marginally stable components of the original

TPBVDS (1.1)-(1.2).

It is then shown in [6] that a time invariant TPBVDS is internally stable

if and only if, in the decomposition (1.5) of the system, the boundary value

matrices Vii and Vf2 are invertible and the system does not have any eigenmode

on the unit circle (i.e. the marginally stable part in the decomposition (1.5)

does not exist).

We have also examined the implications of the above results for

stochastic systems of the form (1.1)-(1.2), where u(k) is a zero-mean white

Gaussian noise with unit intensity, and where v is a zero-mean Gaussian random

vector independent of u(k) for all k, and with covariance Q. A TPBVDS is said

to be stochasticaltly stationary if

M[x(k)x (l)] = R(k,l) = R(k-l) . (1.6)

If the TPBVDS (1.1)-(1.2) is stochastically stationary, then the variance

matrix P(k) = R(k,k) of x(k) must obviously be constant, i.e., P(k) = P for

all k.

An important issue for stationarity is again the fact that (1.1)-(1.2) is

defined only over a finite interval. It is therefore of interest to see

whether a given time invariant TPBVDS defined over a finite interval is
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extendible to a larger interval in some appropriate way. A time invariant

TPBVDS given by (1.1)-(1.2) is said to be extendible if, given any interval

[K,L] containing [CO,N], i.e. such that K < 0 < N < L, there exists a TPBVDS

over this larger interval with the same dynamics as in (1.1), but with new

boundary matrices Vi(K,L) and Vf(K,L) such that the new extended system is

time invariant and the Green's function G(k-l) of the original system is the

restriction of the Green's function Ge(k-l) of the new extended system.

The class of time invariant, extendible TPBVDSs -- which we term

deterministically stationary TPBVDSs -- turns out to be quite large. We have

shown that, given an arbitrary time invariant TPBVDS defined over [CO,N], where

it is assumed that N > 2n, there exists an "almost identical" extendible

system. By "almost identical", we mean here that for any input sequence u(l),

the states x(k) and x'(k) of the two systems are identical for ke[n,N-n].

Extendibility turns out to have a simple characterization in terms of E, A, Vi

and Vf, see [6].

Assume now that the stochastic TPBVDS (1.1), (1.2) is deterministically

stationary and in standard form. It has then been shown in [6] that the

system is stochastically stationary if and only if the variance Q of the

boundary vector v satisfies the generalized Lyapunov equation

EQETA_ T =Y .BBTV.T - VfBBTVfT (1.7)

Even if Q does not satisfy this condition, it turns out that, if the

system (1.1)-(1.2) is internally stable, then the variance matrix of the

states located close to the center of the interval [CO,N] converges to the

solution P* of the following generalized Lyapunov equation with N = a:

EPET - APAT = (ViEN)BBT(VEN)T _- (VfAN)BBT(VfAAN)T (1.8)
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The above results contain significant extensions of our earlier ones for

TPBVDSs. We expect that the concepts of internal stability and stochastic

stationarity developed here will have the same far-ranging applications as the

usual notions for standard systems.
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II. Estimation and Identification Approaches to Inverse and Signal
Reconstruction Problems

The theme of examining inverse problems from the viewpoint of estimation

and identification is well represented by our work in [2], [7], which studies

parameter estimation aspects of an inverse conductivity problem that was

presented in our original proposal. We summarize the approach and conclusions

of that work first, to indicate the substantial progress that has already been

made on questions related to the theme of this section. This is followed by a

summary of our recent progress on approximate multidimensional inversion

methods, [9]-[12].

The inverse conductivity problem is stated as follows: estimate the

conductivity within the unit square, a 2D scalar function, based on a set of

experiments, each of which consists of applying a known potential distribution

along the boundary and measuring the current normal to the boundary.

In seeking a computationally efficient algorithm, we explore the idea of

solving the inverse problem at various spatial resolutions, starting at a very

coarse resolution, then progressing to finer and finer resolutions. The main

idea is that by starting at coarse resolutions involving fewer computations,

then building up to finer and finer resolutions using information from

previous resolutions, we arrive at a more computationally tractable algorithm,

one in which the degrees of freedom are better controlled, and which converges

faster than an algorithm aimed at solving the problem exclusively at the
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finest resolution. Moreover, it is plausible that a multi-resolution method

would help in avoiding local minima, because by solving a sequence of problems

at successively finer scales the estimate is likely to be guided towards the

global minimum of the problem at the finest scale.

To state this more concretely, consider the unit square, in which we wish

to estimate the 2D conductivity function. Within this domain the equations

governing the physics of this problem are Gauss's Law,

v - J = O (2.1)

where J is the vector current density function in 2D, and Ohm's Law,

J = a(x,y)E (2.2)

where a(x,y) is the unknown conductivity function and E is the electric field,

which can be related to the potential function as E = v(x,y). The

fundamental problem is to estimate a(x,y) within the unit square by applying

potentials along the boundary and taking measurements of the normal current

along the boundary.

The mathematical physics for the problem can be concisely summarized by a

partial differential equation (PDE) which must be satisfied within the unit

square. The excitations for each experiment provide boundary conditions on

the PDE. If we substitute (2.2) into (2.1) we obtain the following PDE:

v _ U(x,y)vXi(x,y) = 0 (2.3)

for 0 < x < 1, 0 < y < 1 with boundary conditions,

4i(s) = Bi(s) (2.4)

where ser, F being the boundary of the unit square, and Bi is the applied

potential function along F. The subscript i indexes the boundary conditions

and potential for a particular experiment. The available measurements can be
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concisely described by the following observation equation,

a (xy)
Ri(s) = a(s) + n. (2.5)

An 1
ss

where R. is the observation function, i indexes the particular experiment, and

ni is the additive noise function associated with the observation.

Our approach to estimating a(x,y) begins with a 2D piecewise constant

model for a(x,y). The domain, the unit square, becomes a grid of pixels in

which the value of a(x,y) within each pixel is a constant. The basic

structure of the estimation problem is then the following.

Within each square we must estimate the value of a(x,y) in that square

and, as a nuisance parameter, the potential along the edges non-adjacent to

the overall boundary, F, of the large unit square. The potential along r is

applied and therefore known. Our observations consist of the normal currents

along the edges. In the cases where the edges are adjacent to the boundary

the observations consist of actual measurements. In the remaining interior

edges we have what we can think of a pseudo-measurements consisting of

quantities associated with adjacent squares. This overall structure is

suggestive of a highly distributed algorithm for performing the optimization

necessary in computing the maximum likelihood estimate of a(x,y).

Our multi-resolution algorithm consists of a sequence of iterative

relaxation algorithms generating estimates at successively finer spatial

scales. The estimators at each scale have the same form, and consist of an

alternating sequence of linear estimators, each of which is highly

parallelizable. Proofs of convergence of these algorithms are given in [2].

11



The effects of fine-scale variations on coarse-scale estimation are

studied by estimating a constant background when in fact the true background

is spatially varying. Based on a linearization of the PDE, we derive

approximations to the bias and mean-square error for this case, and determine

performance characteristics based on Monte-Carlo simulations.

We also derive the Cramer-Rao lower bound on the mean-square error of the

estimate in the general case, and numerically compute this bound for the

four-pixel case, using various excitation schemes and various conductivity

backgrounds. For this case and the case in which the conductivity is

piecewise constant in sixteen distinct regions, the performance of the

algorithm is demonstrated on synthetic data. The speed of convergence and

accuracy of our algorithm when information from the previous scale is used is

compared to the performance when this information is ignored. We also examine

the ill-posedness of the problem by investigating the presence of local minima

of the cost function.

The conclusion derived from our work so far is that the multi-resolution

approach has several attractive and promising features, and suggests

interesting problems for continued research.

In the area of multidimensional inverse problems, we have pursued our

earlier efforts on the development of efficient linearized inversion methods.

For inversion methods based on wavefield backpropagation, we had developed

earlier an inversion technique for solving the distorted-wave Born inversion

problem with an arbitrary reference profile for a constant density acoustic

medium, where the objective is to reconstruct the medium velocity as a
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function of space. Our efforts during the past year have focused on extending

this inversion method to multiparameter inversion problems. In [9], the case

of a variable density acoustic medium was examined, where both the density and

velocity need to be reconstructed. In this case, the scalar image obtained by

wavefield backpropagation for a single experiment is not sufficient to

reconstruct both the velocity and density profiles, and at least two

experiments must be performed, where the source location is changed from one

experiment to the next. A least-squares technique was then used to

reconstruct separately the Fourier transforms of the velocity and density

perturbations. A similar approach was used in [10] to study the Born

inversion problem for EM waves in a lossless 3D medium

In parallel with this first approach, we have also continued our work on

tomographic inversion methods. During the past year, we have extended this

basic approach to the joint reconstruction of the velocity and density in an

acoustic medium [11], and to the elastic case [12]. For these problems,

several experiments with probing plane waves at various angles are necessary,

and a detailed analysis of the robustness properties of our inversion

procedure was performed. This analysis shows that joint inversion problems in

geophysics are rather ill-conditioned, and redundant data is important for

improving performance. The theoretical predictions have been confirmed with

extensive numerical simulations using synthetic data.

We conclude this section by mentioning our survey in [5] of some key

papers in subspace methods for high-resolution spectral estimation. Of

particular interest is the increasing use of "total least squares" methods in
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situations where ordinary least squares would traditionally have been used.

We intend to further examine the use of subspace methods and total least

squares for inversion problems (continuing and extending the work of Weiss,

Willsky and Levy, which was carried out under partial support from our earlier

NSF Grant ECS-8312921; see Asilomar, November 1987).
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III. Computationat Vision and Geometric Reconstruction

Our third area of research involves the formulation and treatment of

problems in image analysis and computational vision from the viewpoint of

estimation, systems theory and optimization. The major effort in the initial

months of the project has been on reconstructing geometric objects from

partial information, and this is summarized below. We expect in the coming

months to build on this work and treat similar problems involving the movement

and shape evolution of geometric objects.

The report [1] continues the earlier NSF-supported work, under Grant

ECS-8312921, of Rossi and Willsky (which recently won the ASSP Paper Award

from the Acoustics, Speech and Signal Processing Society of the IEEE). The

main interest of [1] is in evaluating how accurately coarse features of object

geometry -- particularly size, elongation and orientation -- can be estimated

from noisy tomographic data. In many applications, knowledge of these

features suffices if it can be obtained much more efficiently, safely or

robustly than high-resolution images. A maximum-likelihood parameter

estimation formulation is used, and estimation performance is analyzed by

evaluation of the Cramer-Rao lower bound on the error variances of the

estimates. It is demonstrated, for measurements available at all projection

angles and at a given noise level, that: (i) the size and orientation of an

object are more accurately determined than its elongation; and (ii) reliable

estimation of orientation requires a minimum elongation, which depends

inversely on the signal-to-noise ratio.
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In [3], [4]1, [13], [14], we address the problem of image reconstruction

from noisy and limited-angle or sparse-angle tomographic projections. The

basic approach is first to estimate the full 2D Radon transform, or sinogram,

of the object. This estimation uses prior knowledge of object mass, center of

mass, and convex support, as well as information about fundamental

constraints, smoothness, and periodicity properties of the Radon transform.

The sinogram prior probability is given by a Markov random field (MRF), which

reflects this prior information. The object is then reconstructed using

convolution-backprojection applied to the estimate of the full Radon

transform.

The algorithm presented in [4] for maximum a postertort (MAP) estimation

of the sinogram is implemented using a primal-dual constrained optimization

procedure. The partial differential equation that governs the primal phase is

solved using an efficient local relaxation algorithm due to Kuo, Levy and

Musicus (SIAM J. Sct. Stat. Comp., 8, 550, 1987). The dual phase involves

only a simple Lagrange multiplier update.

The geometric information reflected in the MRF formulation is estimated

hierarchically via new set reconstruction algorithms developed in [4]. These

algorithms are based on probabilistic estimation formulations that incorporate

prior information about the size, position and shape of the object. In

particular, knowledge of the eccentricity, orientation and boundary curvature

may be used. New and interesting insights on the problem of convex set

reconstruction from support line measurements emerge from this work.

Problems of reconstruction from "shadows", i.e. from indicator sets of

orthogonal projections, were also posed in our original proposal, and progress

has been made on this, as described in [15], [16]. In [15] we present
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extensions of results of Van Hove and Verly (IEEE ICASSP, 1985) that relate

curvatures of shadows to curvatures of the projected object. Our derivation

uses the well-known fact that

(I O)[ A B][jI j] (BD-1C)- (3.1)

to streamline considerably the earlier derivation. Because of this, we have

been able to generalize to arbitrary dimensions some of the major results

shown earlier only for projections from 3D to 2D.

In particular, the results in [16] deal with finding an ellipsoid from

shadows. We consider determining the symmetric n x n matrix H from p

quadratic-form observations

H(i) = S(i)THS(i) ,S(i)TS(i) = I , 1 i < p (3.2)

where S(i) is n x mi. For a given set of "probes" S(i), a necessary and

sufficient condition for H to be uniquely determined, along with a procedure

for computing it, is given in [16]. These results are obtained in a natural

way by embedding the problem in the space of symmetric n x n matrices. This

gives rise to several insights that would be lost if (3.2) was simply treated

as a system of linear equations in n(n+1)/2 unknowns.

The generic implications of our results include the following:

(i) Shadows of an ellipsoid (of arbitrary dimension) on three

hyperplanes generically suffice to recover the ellipsoid.

(ii) Shadows of an ellipsoid (of arbitrary dimension) on two hyperplanes

and on a line generically suffice to recover the ellipsoid.

(iii) Shadows of an n x n ellipsoid on n(n+1)/2 lines generically suffice

to recover the ellipsoid.

Our results also permit the treatment of arbitrary non-generic cases,

however.
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