
QCAD
A Framework for Total Quality Development

in an
Object Oriented Knowledge Based Engineering Environment

by

Yale Goldis

B.S., Mechanical Engineering
Tufts University, 1991

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

at the
Massachusetts Institute of Technology

February 1994

© 1994 Massachusetts Institute of Technology
All rights reserved

Signature of Author............................ ..
Department of Mechanical Engineering

January 14, 1994

Certified by,...
Don P. Cl sing

Bernard M. Gordon Adjunct Professor of
.... , gin4ering Innovation and Practice

Thesis Advisor

Accepted by ..
Ain Sonin

Chairman Departmental Graduate Committee
Department of Mechanical Engineering

MASSACHUSETTS INSTI'TUTE
OF TF"'lt'll nly

MAR 08 1994

UBRARIE$

QCAD
A Framework for Total Quality Development

in an
Object Oriented Knowledge Based Engineering Environment

by

Yale Goldis

Submitted to the Department of Mechanical Engineering
on January 14, 1994 in partial fulfillment of the

requirements for the Degreee of

Master of Science in Mechanical Engineering

Abstract

Conventional knowledge based engineering (KBE) systems connect engineers to
engineers. These design systems integrate corporate engineering practices into a
computerized framework. The intention is to quickly and efficiently create a product
specification, leaving engineers time for other design tasks. KBE applications address
conceptual design, geometric design, and part manufacturability, but do so in a segmented
fashion.

This segmentation is reminiscent of the throw it over the wall approach to design.
Each program optimizes its own task at the expense of the overall system. Many
companies today use multifunctional product development teams and total quality
development methods to break down barriers among departments. KBE design systems
should follow suit.

To expand the horizons of computerized knowledge based engineering, this thesis
develops the Quality Computer Aided Design (QCAD) system and tests it with both an
easy to understand clamp model and a more complex copier model. The QCAD
rrthodology consists of two parts: (1) a design process framework and (2) a computer
program for use with the design framework. It is intended that a multifunctional product
development team use QCAD to assist in developing both new and variational products
from function designation to hardware definition to process specification.

The QCAD system was implemented in the ICAD design language (IDL). ICAD
is the leading supplier of commercial knowledge based engineering software worldwide.
IDL is a super set of common lisp, an object oriented programming language, and is
geared toward modeling products in the ICAD user interface.

Comments are expressed about the benefits and drawbacks of combining the two
design methods in a product development environment. Future improvements and
research work are also suggested.

Thesis Advisor: Don P. Clausing
Title: Bernard M. Gordon Adjunct Professor of Engineering Innovation and Practice

2

Acknowledgments

First, I would like to thank my advisor, Professor Don Clausing, for his support,
guidance, and assistance on this thesis. I appreciate the direction and freedom he gave me
to explore this topic. I am most grateful to him for teaching me about total quality
development and for giving me the opportunity to study cultural change with him. I am
truly fortunate to have him as an advisor.

Second, I would like to thank Professor Ron Andrade, who is here on sabbatical,
but gave his assistance with my thesis anyway. Moreover, I appreciate our countless
philosophical discussions about life, the universe, and everything.

Third I would like to thank Diane de Alderete for her indispensable administrative
support.

Fourth, I would like to thank all of the people at ICAD for their assistance with
this project, including: Larry Rosenfeld for his support; Tom Smith, June Powers, and
Phil Stockton for the training sessions; Mark Ouelette, Bill Brand, and Ralph Verrilli for
their interviews; Mark Ouelette and Bob Phillips for the innumerable conversations and
programming support.

Furthermore, I would like to thank the people at MIT for their assistance with this
project, including: Professor George Chryssolorus and the students in his lab for the use
of their workstation; Kevin Spratt for his assistance in configuring that workstation; and
Afiita Flynn in the artificial intelligence lab for her assistance with the initial installation of
ICAD.

Lastly, I would like to thank my parents and friends for their patience and
understanding.

I would also like to thank the Leaders for Manufacturing Program for its support
of this work.

3

Table of Contents

1. Introduction .. 7

2. Review of Total Quality Development ... 12
2.1. Overview ... 12
2.2. Design Process Structure ... 13
2.3. Basic Quality Function Deployment ... 15
2.4. Pugh Concept Selection ... 20
2.5. Enhanced Quality Function Deployment .. 22
2.6. Taguchi System of Quality Engineering ... 24

3. Review of Computers in Design 31
3.1. Overview ... 31
3.2. Introduction to Knowledge Based Engineering .. 32
3.3. Conventional Design Assistants 34

3.3.1. Technically Focused Assistants .. 35
3.3.2. Quality Focused Assistants .. 36

3.4. Design History System s .. 37
3.4.1. Design Representation Form ats ... 37

3.5. Knowledge Based Design Systems ... 38
3.5.1. CAD Systems ... 39
3.5.2. ICAD ... 40

3.5.2.1. Representative ICAD Projects ... 41
3.5.3. Quality Design Systems ... 42

3.6. Summ ary ... 44

4. QCAD Definition47
4.1. Overview ... 47
4.2. Initial Development ... 48
4.3. Basic QCAD Framework ... 55
4.4. Design Process in QCAD .. 59

4.4.1. Function Hierarchy .. 62
4.4.2. Hardware Hierarchy ... 66
4.4.3. Process Hierarchy .. 69

4.5. Computerized Elements of QCAD 71
4.5.1. Description of Clamp Product M odel ... 72
4.5.2. Function Hierarchy .. 74

4.5.2.1. Function Identification 74
4.5.2.2. Constraints75
4.5.2.3. QFD House of Quality M atrix .. 76
4.5.2.4. Function Diagram .. 79
4.5.2.5. Concept Generation 81
4.5.2.6. Concept Selection ... 82

4

4.5.2.7. Concept Review .. 84
4.5.2.8. Additional Comments .. 85

4.5.3. Hardware Hierarchy ... 85
4.5.3.1. Product Structure Diagram 86
4.5.3.2. QFD Design Matrix ... 87
4.5.3.3. Hardware Parameters .. 88
4.5.3.4. Product Parameter Design .. 89
4.5.3.5. Material and Process Selection .. 90
4.5.3.6. Concept Review .. 91
4.5.3.7. Additional Comments .. 92

4.5.4. Process Hierarchy .. 93
4.5.4.1. Bill of Materials ... 93
4.5.4.2. Process Parameters 94
4.5.4.3. Process Parameter Design ... 94
4.5.4.4. QFD Process and Production Matrices 94
4.5.4.5. Additional Comments 9...... 96

4.5.4.5.1. Part Formation 99
4.5.4.5.2. Part Finalization ... 100
4.5.4.5.3. Instruction for Quality Assurance Check

Points .. 100
4.5.4.5.4. Process Feedback ... 100

4.5.5. Miscellaneous ... 101
4.5.5.1. Fault Trees .. 101
4.5.5.2. Miscellaneous ... 102

5. Discussion of QCAD Implementation 104
5.1. Overview .. 104
5.2. QCAD Case Studies .. 104

5.2.1. Generic QCAD Structure 105
5.2.2. Clamp Product Model 111
5.2.3. Copier Product Model .. 123
5.2.4. Larger Product Models .. 132

5.3. Observations from QCAD Case Studies 133
5.3.1. QCAD and TQD 133

5.3.1.1. QCAD Improvements over TQD 133
5.3.1.2. QCAD Difficulties with TQD .. 137

5.3.2. QCAD and KBE 140
5.3.2.1. QCAD Improvements over KBE 140
5.3.2.2. QCAD Difficulties with KBE 142

5.3.3. Summary .. 143
5.4. QCAD in Product Development .. 145

5.4.1. QCAD Uses in Product Development 146
5.4.2. Additional QCAD Uses for Incremental Product Improvements... 150

5

6. Conclusions and Future Work 152
6.1. Summary and Conclusions 152
6.2. Future W ork .. 154

References... 157

Appendix A 162

Appendix B ... 167

Appendix C ... 180

6

Chapter 1

Introduction

Computers are deeply embedded in our society. They are used in many

applications, including magnetic resonance imaging, information processing, routine

calculations, and human thought process modeling. It is hard to imagine life without

computers. They have inundated all divisions of corporations, with applications in

communication, data storage and retrieval, and analysis work. More specifically, in

corporate product development, computers are mainly used for analysis, including design

assistant functions and routine redesign tasks.

Design assistant programs perform specific tasks to help designers with

calculations and sensitivity analyses. Some examples include finite clement packages,

math packages, and spreadsheets. A more general class of systems, which are used as

design assistants, but are also used for routine redesign, include CAD' systems, expert

systems, and knowledge based engineering systems. These systems use corporate design

knowledge, engineering principles, and rules of thumb to explore designs and to make

quick changes to designs. Some knowledge based and expert systems are even used to

coordinate information, combining data from other design analysis programs and releasing

processed information to those same programs. In general, computers have made

available a means for quickly performing a pre-designated set of calculations and design

tasks to speed up product development work and to make fewer mistakes.

Along these same lines, Xerox has identified three goals where computers can be

used for improving product development (Heatley and Spear 1992).

"1. Reduce the time required to develop and deliver electromechanical

systems to the market.

I This definition of CAD, Computer Aided Design, includes the geometry modeling capabilities and the
analysis features, including circuit analysis, computer aided manufacturing, parametric design, etc.

7

2. Improve quality of our products - consistency, accuracy, and

manufacturability. This increases customer satisfaction with our

products.

3. Reuse and incrementally improve existing designs, sub-systems,

components."

The Xerox quote not only identifies possible uses of computers in product

development, but also exemplifies a commitment to satisfying customer wants and needs

with robust products. The latter is a rare find in literature on computers in design. This

perhaps stems from artificial intelligence research longing to model human thought

processes (Edwards 1991) and companies wishing to develop products faster.

In general, using computers doesn't change the design process used in

companies-computers reinforce it, standardize it, institutionalize it, and accelerate it.

Expert system programmers are trained to extract design rules from engineers and code

them into a program (Edwards 1991), whether or not they are relevant to satisfying the

company's customers. Unless a company is already looking at customer wants and needs

in designs, computers will not help satisfy those needs.

Computers may even make it harder for people to communicate and to improve

products through collaborative effort. Computers tend to reinforce individualism (Moses

1990) and a narrow focus on a small area of the problem thus making them lose sight of

the overall design and how their part interacts with other parts (Reddy 1991). The

traditional product development process is characterized by intense rivalries among

departments, with one department throwing a design over the wall to the next department

(Clausing 1991). In such a situation, the computer system bought by one department may

not even be compatible with the computer system purchased by another, further increasing

the barriers in product development.

8

Instead of, or in addition to, using computers to accelerate the design process,

some companies are using concurrent engineering techniques to overcome the barriers in

traditional product development. Synonyms for concurrent engineering include

simultaneous engineering, life-cycle engineering, and company wide quality control. The

essence of these practices is to get people to interact, to see things from a different

perspective and to design more cost-efficient, manufacturable, and serviceable products.

Takeuchi and Nonaka (1986) compare this new approach to a rugby team moving a scrum

down the field. The old approach is likened to that of a relay race.

For comparison, Figure 1.1 shows three typical product development processes.

The Type A process is the traditional, sequential approach, with distinct barriers between

phases. The Type B process, used by NASA, has some overlap, but is still dysfunctional.

The Type C process is the concurrent process, with extensive overlap. Note that a

concurrent process shortens the product development cycle time.

Figure 1.1 - Product Development Phases (Takeuchi and Nonaka 1986, Exhibit I)

In addition to concurrent engineering methodologies, Clausing (1994) has

developed a Total Quality Development (TQD) approach to design, which promotes a

9

focus on quality, cost and delivery, an emphasis on customer satisfaction and an emphasis

on competitive benchmarking. TQD uses visual connective methods and team experience

to build understanding, consensus and a strong commitment to decisions.

Given that new paradigms are emerging in product development that are replacing

the traditional, outdated processes, a new look should be taken at how computers are used

in the design process. More specifically, how should computers be used with TQD and

how should TQD be used with computers?

This thesis is an initial study of these questions. It assumes that computers should

be used in product development and thus specifies and tests a framework for a Quality

Computer Aided Design workspace called QCAD. QCAD facilitates the design and

analysis of a product as it moves from total system concept definition to detailed part

feature design and from function definition to process specification. Written in the ICAD

Design Language (ICAD 1993), QCAD incorporates all of the features of the leading

knowledge based engineering software in world with the quality design methods proven to

facilitate enhanced product development. Traditional knowledge based engineering

connects engineers to engineers-QCAD connects customers to the factory floor.

The remaining chapters follow the organization and description below:

Chapter 2: Review of Total Quality Development. This chapter presents the

conccpts and techniques of Total Quality Development. It starts out with a discussion of

several common views of the design process and describes a generally accepted structure

for the design process. The chapter then goes on to explain concepts and methods specific

to Total Quality Development, including Enhanced Quality Function Deployment, Pugh

Concept Selection, and the Taguchi system of quality engineering.

Chapter 3: Review of Computers in Design. As mentioned above, computers

are used in many ways in the design process. This chapter describes several trends in the

use of computers for product development to show some of the ideas that went into the

development of QCAD. The chapter begins with a general introduction to knowledge

10

based engineering and then describes conventional design assistant programs and design

history systems. The latter two types of systems are then used to help explain knowledge

based engineering systems, with emphasis on ICAD KBE applications. The chapter also

emphasizes programs that facilitate using the quality methods described in Chapter 2. The

last part of the chapter brings together all of the presented information and shows how it

relates to QCAD.

Chapter 4: QCAD Definition. Based on the discussion in the last two chapters,

this chapter sets out to define the requirements for using computers in a total quality

development environment. This chapter defines both a design process framework for a

PDT to follow, and a specification for a computerized quality development system. The

specification uses several examples to show where and how information is organized in

QCAD. To facilitate explanation, the concepts in this chapter are explained using a simple

clamp model.

Chapter 5: Discussion of QCAD Implementation. Given the definition for

QCAD developed in Chapter 4, this chapter describes the implementation of the

methodology with a simple clamp and a complex copier. The copier has both a broad and

a deep range of sub-systems that challenge the computer's ability to decompose and

recombine product information. The second part of the chapter extrapolates some

learnings about the use of computers in design, as learned from the two case studies. The

third part of the chapter describes how a product development team could use QCAD for

design.

Chapter 6: Conclusions and Future Work. This chapter summarizes the thesis

work and presents some of the notable results identified in the QCAD system specification

and case studies. Also discussed are suggestions for future research on QCAD and in the

use of computers in total quality development.

11

Chapter 2

Review of Total Quality Development

2.1. Overview

Products have been created to help man harness nature since prehistoric times.

Many of these early designs were created from common sense, experience, and empirical

data. Designs were then improved throughout the ages. Only recently, within the last two

hundred years, has engineering design become more scientifically oriented, with designers

searching vast collections of data on the understanding of nature (Krick 1965). A design

process is needed to help understand how to select an appropriate solution to a problem.

Cross proposed two ways of looking at the design process, including descriptive

and prescriptive methods (Cross 1989). Descriptive methods analyze how designers

design and attempt to specify heuristics that model the design process. This is the model

that knowledge engineers use to solicit information to put into an expert system. The

information entered into the computer model attempts to imitate the process that a

designer uses to develop a product.

Alternatively, prescriptive methods attempt to create a design process to be

followed when designing a product. "Many of these prescriptive models have emphasized

the need for more analytical work to precede the generation of solution concepts. The

intention is to try to ensure that the design problem is fully understood, that no important

elements of it are overlooked and that the 'real' problem is identified. There are plenty of

examples of excellent solutions to the wrong problem! (Cross 1989)"

A generally accepted framework for a prescriptive design model includes function

analysis, concept synthesis, and evaluation. The goal of function analysis is to define the

design criteria and set the performance specifications in a way that represents the correct

problem to be solved. Concept synthesis is used to generate solutions that match the

requirements set by the function analysis. Lastly, an evaluation mechanism is provided to

12

help select among the design alternatives, before the design is fully specified, such that the

final design has a high fidelity with the function specifications.

There are many prescriptive models for the design process (Asimow 1962; Krick

1965; Pahl and Beitz 1984; Cross 1989; Pugh 1991; etc.). Total Quality Development

(TQD) is also a prescriptive method. It has a quality focused approach to design. TQD

uses a concurrent process that emphasizes customer satisfaction, competitive

benchmarking, robustness, and a focus on quality, cost, and delivery.

The following sections describe the fundamental parts of the TQD process. Other

TQD tools and concepts that are used in the QCAD system are described as necessary in

subsequent chapters. The reader is referred to Don Clausing's book on Total Quality

Development (1994) for a more elaborate description of the methodology.

2.2. Design Process Structure

A design can be thought of at several levels of abstraction. The total system level

describes the overall product, including its high level functions, hardware, and processes.

The total system is broken into sub-systems, which are more detailed sections of the

product. A design can also have sub-sub-systems and sub-sub-sub-systems, and so on,

until the design is broken down to the piece part level. The piece part level describes the

individual components that comprise a design. At the final level of detail are part features

that describe critical 2 areas of a part.

Figure 2.1 is a partial hardware tree for a Xerox copier, which shows the basic

hierarchical structure of a design. The dotted lines show places where other hardware

pieces could go. Breaking apart a design is subjective and can be different for different

designers. A graphic representation of the hardware is shown in Figure 2.2 to further

explain the concept of abstraction levels.

2 Critical parts are those parts that are crucial in satisfying a product's functional or safety requirements;
those parts that define most of the product's costs and manufacturing lead time; and those parts that are
expected to cause the most difficulties in manufacturing or design (Florusse and Clausing, 1992).

13

copier

I 1 1 1

document handling image transfer paper handling support system
system unit system

I I I I

paper tray paper feeder paper drive output tray
system

lower support plate

I I I

support ribs retard roll screw bosses
support

Figure 2.1 - Hardware Tree for Copier

The total system level is a copier. The copier can be broken into several sub-

systems: original documents handler, image transfer unit, blank paper handling system and

a copier support system. Each of these sub-systems have other sub-systems, for example,

the paper feeder. A piece part would be the lower plate that supports some of the parts on

the paper feeder. Part features include the flanges, bosses, and ribs on the support plate.

The natural flow of a design starts with a total system definition, then goes to sub-

systems to piece parts and then to part features. The total system starts with a detailed list

of customer wants and needs, also known as the voice of the customer, and deploys those

characteristics to product expectations. The total system definition ends with selecting a

concept for further refinement. The rest of the levels start with higher level expectations,

translate them to expectations for the current level, and then select a concept for that

level. These tasks are facilitated with quality function deployment and concept selection.

14

VAY
.S

FEED
BELT-

IMt I AnU MULL

(a) Copier Total System Architecture (b) Paper Feeder Sub-system
(Clausing and Pugh 1991, fig. 4) (Clausing 1994, fig. 5.7)

Figure 2.2 - Copier Hardware

Deploying product expectations and selecting hardware and process concepts,

does not mean that the design has the best product or process parameters, or the most

economical tolerancing and on-line quality control procedures. Taguchi's system of

quality engineering is used to optimize the product and process with respect to

environmental conditions and customer satisfaction.

2.3. Basic Quality Function Deployment

Quality Function Deployment was formalized in 1972 by Akao, Mizuno, and

Furukawa at the Mitsubishi Heavy Industries's Kobe shipyards in Japan (Akao 1990, xv).

QFD is a method for translating customer needs to product expectations to hardware

characteristics to process planning and to production planning. It does this through a

series of matrices, shown in Figure 2.3. The matrices are called houses, with the first

house being called the House of Quality. The QFD process is performed by a

multifunctional product development team (PDT) and is used to immerse them in the

15

l

II

,, ,

design to help them understand the design problem and to help identify possible hardware

solutions.

Product Planning Design Process Planning Production Operations
Planning

I t I

I I IF I I I I II II

Ill

of the
Customer

p. Om I . 'P-cdzcim. I
I A,;=n' I , PMCM I [C'= =jboC P Op

I IF~pE Rnh Ch PFn

'WX~Pe~I 1X CFW
D Ii
D Ii

DlI
DL

Figure 2.3 - Basic Quality Function Deployment
(Clausing and Pugh 1991, fig. 1 modified)

Room 1

A Room 3

/A

- I - I

I Roo7

I R. oom 8 I

Figure 2.4 - The House of Quality (Hauser and Clausing 1988, Exhibit IX modified)

16

I I I I I

n
Factory
Floor

I I
Room 2

I I

I I
Room 5
I I

11 I11

The House of Quality improves on current product development practices by

relating development efforts to the voice of the customer, comparing the company's

product with the best products on the market, and by creating a clear, commonly

understood specification for the rest of product development. The House of Quality is

shown in Figure 2.4 and its rooms are explained below.

Room 1 - Voice of the Customer. This room is the input to the house of quality.

It contains the customer wants and needs. These requirements are found through

qualitative interviews with customers and are left in qualitative terms. Also in room 1 is

an importance rating for each customer input. This is usually a qualitative assessment by

the product development team, however, a customer ranking of the requirements is

preferable (Clausing 1994). More information on identifying customer needs can be found

in a working paper by Griffin and Hauser (1991), titled The Voice of the Customer.

Room 2 - Product Expectations. The product expectations are the company's

metrics for measuring product performance. These metrics are preferably continuous,

quantitative, technical attributes that can be measured on a continuous scale. Since these

attributes are in engineering language, they are easier to design for than the qualitative

voice of the customer (Clausing 1994).

Room 3 - Relationship Matrix. This room is the translation part of quality

function deployment. In this room, the PDT matches the voice of the customer in room 1

to the product expectations in room 2. Usually, the voice of the customer does not

translate directly to the expectations in a one to one relationship. One voice of the

customer can be measured by several expectations; or one expectation can measure

several voices of the customer. The degree of correlation is indicated in room 3, with the

following symbols: G) strong; O moderate; and A weak. Boxes with no symbols indicate

a really weak or no correlation between the rows and columns.

After the matrix is completed, it is checked for fidelity. Every row and column

should have at least one strong interaction. If a row does not have a strong interaction,

17

then the product expectations do not strongly measure that customer voice, leaving the

potential for a dissatisfied customer. If a column does not have a strong interaction, then

the company may be inefficiently allocating resources to improve metrics that do not

strongly affect customer satisfaction (Clausing 1994).

Rooms 4 and 5 - Competitive Benchmarking. These rooms show how the

product is positioned with respect to other products on the market. Room 4 shows the

competitive evaluation from the customer's perspective. Room 5 is a quantitative

evaluation from the corporation's perspective, is identified from engineering tests. Both

evaluations are compared to verify that the corporation and its customers have the same

understanding of how the product is positioned in the market. These evaluations are also

used in part to develop target values for the product expectations (Clausing 1994).

Room 6 - Correlation Matrix. This room, also known as the attic, shows the

relationships among the product expectations. In many situations, improving one

expectation may enhance or degrade another expectation. Room 6 shows both positive

and negative interactions:) strong positive; O weak positive; * strong negative; and X

weak negative. These interactions show the PDT where most of the technical effort will

be focused. A strong negative interaction shows where providing more satisfaction for the

customer on one dimension will decrease satisfaction on the other dimension. Resolving

these interactions requires streamlining the current technology or creating a new

technology. This room is also used in part to develop target values for the product

expectations (Clausing 1994).

Room 7 - Technical Importance. The overall technical importance summarizes

the relative importance ratings of the product expectations with respect to the customer

requirements. The importance rating is calculated by multiplying the customer importance

ratings by the relationships in the relationship matrix (room 3).

18

n

i=,

wheie Ij is the overall importance rating for column j, n is the number of rows, Wi is the

importance rating for row i, and Rij is the relationship between row i and column j. The

relationship symbols have the following weightings: ®) = 9; O = 3, and A = 1. Other

weighting systems can be used. The large difference in weights is to explicitly distinguish

between the those product characteristics that really satisfy a customer voice and those

that only partially satisfy a customer voice.

Sometimes a high score is obtained because that column was completed in more

detail than the other columns. This effect can be countered by making sure that the

relationship matrix is completed at a consistent level of detail or by normalizing the scores

with respect to the number of relationships in the column.

n 1

Ij = -x W x RV
i= Nj

where Ii is the normalized importance rating for column j and Nj is the number of

indicated relationships in each column.

The columns with higher importance ratings show a greater relationship to

customer satisfaction. These columns are the metrics that the PDT should pay the most

attention to when developing this product.

Another section of this room indicates the technical difficulty of moving closer to

the ideal value for this characteristic. The evaluations are done on a 5 point scale, with 5

being the most difficult.

The importance ratings, difficulty assessment, and the correlations (in room 6) are

used as aids in planning the subsequent work (Clausing 1994).

19

Room 8 - Targets, Quantified Expectations. Target values and tolerances for

each product expectation are recorded in room 8. These target values come from a PDT

assessment of competitive products in rooms 4 and 5, importance ratings calculated in

room 7, and correlations indicated in room 6. The basic idea for this room is to set target

values to create a best in its class product (Clausing 1994).

2.4. Pugh Concept Selection

The Pugh Concept Selection method is a qualtitative tool that immerses the

product development team into the criteria and the concepts to facilitate the creation of

new concept ideas. The Pugh Concept Selection matrix is shown in Figure 2.5.

A + + -D

B - S + + S A

C + + + - T

D S S + - U

E + S S M

Ze 2 1 4 2 0

ES 1 2 0 1 2

Z- 2 2 1 2 3

Figure 2.5 - Pugh Concept Selection Process (Pugh 1981)

The concepts are displayed across the top, in the columns of the matrix. The

criteria are listed in the rows. The criteria usually come from the columns of the House of

Quality. However, other criteria can be used. The criteria are subjectively ranked in order

of importance, from top to bottom. The rankings are not given weightings. The goal of

20

the method is to think about the design in qualitative terms, not to engage in mind

numbing numerology.

After constructing the matrix, the next step is to choose a datum. The datum

should be the design that is considered by the PDT to be the best. The rest of the

concepts are then individually compared against the datum using a 3 point scale. The

concept is either better than (+), worse than (-), or the same as (s) the datum in satisfying

a criterion.

Once the matrix is completed, two activities of attacking the negatives and

enhancing the positives are used to generate better designs. Concepts that perform worse

than the datum on certain criteria can be combined with concepts that perform better than

the datum to create new concepts. Likewise, concepts that perform better than the datum

can benefit from other concepts that perform better than the datum.

To aid in selecting the best concept, the number of pluses, minuses, and sames are

totaled at the bottom of the matrix. This step is just a formality because after completing

the matrix, the PDT generally knows which is the best concept.

The team started the matrix with several concepts. After completing the matrix,

some of the concepts were dropped, but a few more were added. Another matrix is

completed, with perhaps even different criteria. The next round also eliminates some

concepts, but adds a few more. This iteration cycle continues until the PDT converges on

one dominant concept (Figure 2.6) (Clausing 1994).

21

Number

of

Time

Concept Selected

Figure 2.6 - Concept Iteration Cycle (Clausing 1994, fig. 3.9)

2.5. Enhanced Quality Function Deployment

Basic QFD is a serial process that deploys engineering characteristics from the

total system to production. It is a relatively straight forward process, yet only works for

simple, conceptually static designs. Enhanced Quality Function Deployment improves on

these shortcomings of Basic QFD in two ways: (1) deployment through the levels and (2)

the addition of Pugh Concept Selection.

The second phase of basic QFD translates total system expectations to piece part

expectations. This is fine for small products, but not for products as large and complex as

a car or a copier. Thus, as shown in Figure 2.7, EQFD translates expectations from the

total system to sub-systems to piece parts. Each QFD matrix is essentially the same as

described in Section 2.3, only the inputs and outputs have changed in abstraction level.

EQFD also integrates Pugh Concept Selection into the deployment from total

system to piece parts to production. At every deployment, there is the opportunity to

modify a product design. The concept selection matrix helps pick both hardware concepts

and materials and processes to manufacture the hardware.

22

A product that uses the same concept for every product generation is conceptually

static. Conversely, a product that changes every part and concept is 100% dynamic. In

reality, a product generation that lies somewhere between the two extremes is best. The

combination of the concept selection matrices and the explicit translation of requirements

by QFD facilitates the development of appropriately dynamic products.

Production Production
Process Operations

Specifications Design Engineering Planning

Figure 2.7 - Enhanced Quality Function Deployment
(Sontow and Clausing 1993, modified from Clausing and Pugh 1991)

23

2.6. Taguchi System of Quality Engineering

Quality is measured in terms of how well a product satisfies the voice of the

customer. In most situations, the customer's measure of quality is continuous. It does not

stay zero until the product reaches the manufacturing specification limits and then

skyrocket to infinity outside of those limits. Taguchi defines the customer's quality loss

with a quadratic function, based on the deviation from the ideal value:

L(y) = k(y- m) 2, where k = A O

This equation is also shown graphically in Figure 2.8. The customer quality loss increases

as the product deviates from the ideal performance. It is not enough to mandate that the

quality loss be reduced, because the tighter the manufacturing tolerance, the more costly

the product is to produce. The sum of the quality loss cost and the manufacturing cost

must be reduced to a minimal level.

key:
L(y) - quality loss
y- quality characteristic
Ao - quality loss at A0
m - ideal performance
A0 - deviation from m

y

Figure 2.8 - Quality Loss Function (Phadke 1989, fig. 2.3)

There are three different types of quality characteristics: smaller is better, larger is

better, and nominal is best. Figure 2.8 shows a nominal is best type of characteristic. The

24

i

other two characteristics are self-explanatory, where smaller is better strives for zero as a

goal and larger is better moves toward infinity. There is another type of characteristic that

is dynamic with respect to the input. For more information on characteristics, see

Clausing (1994) and Phadke (1989).

The quality loss is a measure of the cost to society of a product that does not

satisfy customer needs. The cost data is built into the constant k which is defined to

incorporate all of the costs that are incurred after the product is sold to a customer. These

costs can be a result of problems caused by an out of tolerance part, by enviromental

conditions, or by part deterioration.

There are four places where the company can affect the quality loss of a product.

These places are shown in Figure 2.9.

Figure 2.9 - Dr. Taguchi's System of Quality Engineering
(Clausing 1994, fig. 3.11)

Only one of these interaction points can help minimize product quality loss from all

sources-the other three can only help minimize quality loss due to variations in

25

manufacturing processes. Once the product is shipped, the company cannot do anything

to reduce the inherent quality loss (Taguchi 1986). Service operations will still affect the

quality loss.

The quality loss should be measured against the actual use conditions of the

product, not just the ideal laboratory conditions. Throughout its life, the product is

subjected to a wide variety of noises, all of which try to degrade product performance and

increase quality loss. A product that functions well in a wide variety of noises is said to be

robust.

The first interaction point is in product parameter design. This event happens

while the product is being designed, before it goes to the manufacturing floor. At this

time, values for product parameters are selected that most enhance the successful

fulfillment of the product's function. This can be done using design of experiments.

Clausing (1994) discusses seven steps for parameter design (see also Taguchi

1987):

1. Define objective; best functional metric. A customer will evaluate a product on

several different criteria. The most important criteria should be defined in a

measurable way, on a continuous scale. These criteria, also known as quality

characteristics, will be the metrics on which the design is evaluated.

2. Define feasible alternative design values. In this step, the PDT selects several

control factors that are believed to affect the objective. Control factors are design

parameters, such as dimensions or material properties, that the PDT can change.

Three feasible values for each control factor, which are neither too broad nor too

narrow in range, are selected. The idea is to vary the control factors enough to get

a feel for the design space in order to improve the design along the dimension of

the quality characteristic.

26

3. Select some options for evaluation. Once the control factors and levels are

defined, an experimentation plan for testing the product at the different factor

levels needs to be selected. When optimizing a design, it has been common

practice to change one control factor at a time and select the best value for each

parameter. However, this technique does not model the interactions among

control factors and can become time consuming if there are a large number of

variables to change. Taguchi recommends changing multiple control factors at a

time, following a design of experiments methodology.

Noise
Factors

a)
E
a)Q.x
wL

1

2
3
4
5

6
7
8
9

Control
Factors

1234

1 122
1212
1221

1

2
3

0,

z

Figure 2.10 - Example of a Designed Experiment

Figure 2.10 shows a designed experiment, composed of fully crossed inner and

outer arrays. The inner array, on the left side, is composed of four control factors,

each with three different factor levels. The factors and levels are organized into

nine different experiments. The '2' in the fourth row of column one means use the

27

1222
1333
2123 1

231 2312

3213
3321

Results
from

Designed
Experiments

-------- l

F--

second level of factor one in experiment number four. This inner array is called an

L9 (34) array because it has nine experiments, using four factors at three different

levels.

4. Impose noises. Noises are changes in inputs to a product, or changes in

environmental conditions in which the product is used, that are not controllable by

the design engineers. A robust product is one that performs well despite the

noises. To evaluate robust performance, the design team performs all of the inner

array experiments against all of the noise combinations. In Figure 2.10, the outer,

noise array is an L4(23) orthogonal array, with three factors at two levels. If

experimental evaluation will be difficult, the noise array is usually replaced by two

levels of a compound noise factor.

5. Evaluate performance of selected options. Every experimental design is

measured with respect to the quality characteristic selected in step 1. To facilitate

interpretation of the measurements, the data is transformed using signal to noise

ratios. The signal to noise ratios are in the far right column of Figure 2.10. These

ratios are specific to the type of quality characteristic used, that is, whether it is

smaller is better, larger is better, or nominal is best:

Smaller is better: SN = -10 log y2

Larger is better. SN = -10 l og 1nfy
Nominal is best: SN = 10log

These are static SN ratios. In most cases a dynamic SN ratio will provide

the greatest benefit (see Phadke 1989, 114).

28

Once the overall signal to noise ratios have been calculated, it is easy to

calculate the signal to noise ratio for each design parameter. In Figure 2.10, each

of the three levels of each the control factor was tested three times in the design.

The SN ratio for each factor level is the average of the overall signal to noise ratios

at that level. For example, the SN ratio for factor 2, level 2 is the average of the

overall SN ratios for experiments 2, 5, and 8.

6. Select best design values. The signal to noise ratios are defined in such a way

that the largest SN ratio represents the best value for the control factor. Thus, the

best design is the design where all of control factors are set to the values with the

maximum signal to noise ratios.

7. Confirm robust performance. In Figure 2.10, only 9 of the 81 possible design

configurations were tested. This means that it is unlikely that the best design of

the 9 already tested is actually the best overall design. This step is to confirm that

the experimentally determined best design is actually the best design for the

product. If everything goes well, the predicted signal to noise ratio for the best

product should be close to the actual ratio determined in this confirmatory

experiment.

The ideas presented in the rest of this section are not essential to understanding the

QCAD methodology, but are briefly explained here for completeness. More information is

available in Clausing (1994).

After product parameter design, the next place where the corporation can

intervene to prevent quality loss is in tolerance design (Figure 2.9). The goal of tolerance

design is to select the most economical precision level for the dimensions on critical parts.

29

The idea here is not to select the tolerance levels for the product, but to select a

manufacturing process that is precise enough to minimize the total cost.

Usually, there is a higher manufacturing cost associated with tighter tolerances and

in an effort to reduce costs, the company will want to loosen tolerances. The quality loss

function, pictured in Figure 2.8, provides a way to quantitatively measure the costs

associated with tighter and looser tolerances. Tighter manufacturing tolerances will cost

$x based on quantifiable manufacturing costs, while looser design tolerances will cost $y

based on the quality loss function. The production process is selected that minimizes both

the manufacturing cost and the quality loss cost.

With the manufacturing process selected, the operating conditions for the process

should be optimized to reduce manufacturing variation as much as possible. The process

parameter design methodology, used in this interaction point is much the same as the

product parameter design described above. A quality characteristic is selected; several

control factors and their levels are determined; a designed experiment is performed; signal

to noise ratios are calculated; and the optimal parameters are tested in a trial run. One

main difference in the two methods is that product parameter design imposes noises on the

experiments, while no noises are intentionally imposed in process design. It is assumed

that the process is being tested under normal operating conditions and that any noises that

would exist in the manufacturing environment are automatically present during

experimentation.

The last interaction point for the company to reduce manul, turing cost and

quality loss is in on-line quality control. Even if a process has been optimized using

process parameter design, there will still be some variation in the output dimensions. The

company makes a trade off between the cost of intervention and the quality loss of

deviating from the target. Too much intervention has costs in terms of time and

intervention. Too little intervention has costs in terms of customer quality loss. Trading

off these two costs helps a company determine the least costly intervention plan.

30

Chapter 3

Review of Computers in Design

3.1. Overview

"There are a number of strands evident in current design
automation research. These include attempts at understanding the design
process itself, attempts at automating routine redesign, attempts at
integrating knowledge of past designs and approaches towards the
development of design assistants to work with the human design expert.
We believe that attempts at automating the whole of the design process are
futile, given the current level of technology. In fact, the benefit of ever
doing this, we believe, is dubious (Hunt and Lee 1992)"

Current trends in the design process were discussed in Chapter 2, with primary

emphasis on describing the total quality development process (Clausing 1994). TQD is a

prescriptive design method to help designers: (1) create products that satisfy customer

wants and needs, (2) benchmark with the best products in the industry, and (3) improve

product robustness, quality, cost, and delivery.

The hypothesis is that computers are very efficient at performing quantitative

tasks. They can be used to assist in and perform the detailed design work, to free time for

engineers to concentrate on the up front conceptual work.

This chapter describes trends in the use of computers for product development. Of

particular interest is computer software that helps designers use quality methods. The

sections below are not meant to be mutually exclusive or collectively exhaustive. They are

meant to show some of the ideas that went into developing QCAD.

The first section presents an introduction of knowledge based engineering, defining

what it is and how it is used in design. This section is meant to put the rest of the chapter

into perspective with respect to computer based design programs. Following that brief

introduction, the next two sections take a step back to look at two types of systems used

in design: (1) Conventional design assistants which have been around for years and are

31

still prominent in design, and (2) Design history systems which are somewhat in use, but

are primarily still being developed. Section four combines these two ideas to describe

several KBE systems, including the ICAD brand of KBE. The last section summarizes

how the computer design concepts described in this chapter impact the understanding of

what a computerized quality design system should do.

3.2. Introduction to Knowledge Based Engineering

Before discussing knowledge based engineering, some background in artificial

intelligence is necessary. Artificial intelligence (AI) is concerned with modeling human

thought processes (Edwards 1991, 2). Al has been divided into several areas: knowledge

based systems, natural language understanding, pattern recognition, intelligent computer-

assisted learning, speech recognition, and models of human cognition (see Figure 3.1).

Figure 3.1 - Six Areas of AI (Edwards 1991, 6)

32

Knowledge based engineering (KBE) involves using computer systems to support

or to automate tasks usually performed by human experts. These human experts use

interpersonal skills, expertise and judgment, that has been acquired over several years in

carrying out these tasks (Edwards 1991, 6).

Knowledge based engineering (KBE) in general is the use of knowledge, be it

stored in a computer, a handbook, or someone's brain, to solve a problem. Problems can

range in scope from adding two numbers to determining the piece part design from higher

level design inputs to learning how to perform a task. John Edwards (1991) has defined

six roles of KBE systems:

· assistant - help perform part of a larger task
critic - reviews previously performed work
second opinion - compares task results with the user

· expert consultant - offers advice based on input information
· tutor - trains the user to perform a task
· automaton - completes tasks independently and reports results

In product development, KBE systems have most commonly been used as design

assistants. Design assistants can be used to perform a small set of tasks for a designer,

such as helping to select material from a database, or can be used to perform a large task

as in configuring an entire vending machine (Edwards 1991).

Expert consultant type systems are also common in product development work.

An expert consultant, also known as an expert system, provides guidance in solving a

problem. One example is a system that selects a machine tool after asking the designer a

series of questions (Traughber 1986).

Critic systems can also be used in product development, however their use is not

wide spread. One system currently being developed critiques designs from various points

of view. The central idea of the model is to create a roundtable design review, where

various experts discuss the proposed design and suggest improvements (Ishii and Krizan

1991).

33

The other three KBE roles are less common in product development tasks. The

second opinion type systems examine a situation using different techniques or by using

more information, thereby providing a second reference for decisions. An example of a

second opinion system is used in stock market analysis. An analyst can look at a few

leading indicators to make decisions, but computers can look at hundreds of indicators to

make a decision.

The tutor role uses the computer to teach about an idea, and as such, can help train

new designers, but is not meant to help develop products.

Lastly, the automaton system completely automates tasks, such that the task is

automatically completed, with only a report left for the user to see. This is analogous to a

coordinate measuring machine on a manufacturing line that just measures dimensions and

outputs a report of the dimensions, perhaps emitting a signal when a part is out of

tolerance (Edwards 1991).

3.3. Conventional Design Assistants

Design assistants are computer programs that perform a specific task as part of a

larger task. The size of a design assistant's task can vary from performing a short set of

calculations to developing a finite element mesh and recording a stress profile. In the

conventional assistant programs, the designer knows the type of analysis to be performed

and uses the program to run the calculations.

The design assistants discussed in this section do rely on some type of knowledge.

However, the difference between the design assistants discussed in this section and the

design assistants discussed in Section 3.5 pertains to the degree which the user can modify

the design reasoning in the program. In this section, the user is limited to performing the

analysis specified by the program. The user is free to choose a different program that

better suits the analysis, or the user can change the inputs to the program, but the user

cannot change the nature of the analysis.

34

This section is split into two parts: one describing technical, or engineering related,

design assistants and the other describing quality related design assistants.

3.3.1. Technically Focused Assistants

Finite element analysis (FEA) is a design assistant type program. It performs, for

example, stress or heat transfer analysis on a specified geometry. A user inputs a

geometry, material properties, and boundary conditions. The program outputs stress

contour lines, which the user analyzes to identify a new geometry design to minimize

stresses (Swanson Analysis Systems 1993, Algor 1993). In this case, the FEA program

performs a specific task, which is part of the larger task of specifying a component

geometry.

There is an abundance of design assistant software available. For example,

Mechanical Engineering magazine has an electronic bulletin board with over 4000

programs to assist mechanical engineering designers. These programs cover many facets

of mechanical engineering work, from material selection to dynamics analysis to pressure

vessel design (Jackson 1992).

Computer aided design (CAD) systems can also be thought of as design assistants.

They store and manipulate geometric data. Designers can use the systems to specify parts

and to check tolerances, without the expense of creating a costly prototype. In recent

years, CAD systems have expanded their capabilities to include, electrical circuit analysis,

and computer aided manufacturing modules (Cadence 1993; Head, Pietra, and Segal 1989;

Parametric Technology 1993). There is more discussion of CAD design systems in

Section 3.5.

Design assistants don't have to be programs that calculate complex engineering

formulas. They can also be spreadsheets programmed to create charts to calculate the

weight of an assembly, given different material properties. A designer can then use the

information in the chart to identify an appropriate material.

35

3.3.2. Quality Focused Assistants

This section describes a set of design assistants that are not as technically oriented

as those discussed in the previous section. These systems are less concerned with number

crunching and creating a design, but are more concerned with manipulating numeric or

text data to facilitate the use of quality design methods, such as those discussed in Chapter

2.

One commercially available design assistant helps with design of experiments. The

Taguchi Expert software, by Quality Engineering Services (1992) helps designers select

design arrays and compute signal to noise ratios. This software asks for user inputs and

then leaves it up to the designer to evaluate the outputs.

Several systems are available to help a product development team use QFD

matrices. For example, ITI markets a system called QFD/Capture, that helps designers

store QFD matrices, calculate the importances, and generate reports (ITI 1992).

At Lamar University in Texas, Sriraman, Tosirisuk, and Chu (1990) programmed a

series of QFD matrices from the voice of the customer through to process variables, using

object oriented programming techniques. The idea behind the system is to create a

compact database that relates customer needs to production quality control, to support

manufacturing control activities.

Ford Motor Company has developed the Technical Information Engineering

System (TIES), a computer program that propagates information by linking several layers

of QFD charts together to facilitate total vehicle design (Vora, Jackson, and Veres 1989).

This system helps maintain the integrity of the data base, while the designers use the

program output to help conceptually design a product.

36

3.4. Design History Systems

The design assistant systems discussed in the last section, perform specialized

design tasks to free the engineer's time for other duties. A design history system is meant

to record the intent behind a design. Many decisions are made in the design process

without engineering equations or decision matrices. The design history systems store the

designs and the rationale behind them at the moment decisions are made. "A record of the

design process may be used for: 1) verifying the design, 2) explaining the design, 3)

determining the effect of modifications to the design, and 4) reusing all or part of a design

in a different context (Ganeshan, Finger, and Garrett 1991)."

Several researchers are investigating design history systems (Baiiares-Alcdintara

1991; Chen et. al. 1990; Garcia and Howard 1991). Kuffner and Ullman (1990) are

researching what information mechanical designers want when evaluating a design. In

their study, three professional, mechanical design engineers were given the initial design

specifications and a complete set of engineering drawings. The designers were then asked

to modify the designs. The result from the exploratory study showed that 47% of the

questions asked were concerned with how to fabricate a part, 22% with how one part is

positioned with respect to another part, 20% with how a part works, and 11 I% with the

purpose of a part. Kuffner and Ullman believe that an intelligent CAD tool would provide

the best platform to store this additional design information (Kuffner and Ullman 1990).

3.4.1. Design Representation Formats

Design history systems are not only concerned with capturing and retrieving design

information, but also with storing the information. Designs can be represented in terms of

form or function (Finger and Dixon 1989).

Conventional CAD systems model geometric data. They use wire frame models to

represent the shape, dimensioning, and positioning of a part. This information on its own,

does not say much about a design, since a cylinder can represent either a hole or a knob.

37

Solid modelers provide more clarity of information, as the computer represents the graphic

objects as solid pieces. If a cylinder is a hole, then it is an empty space in the model.

However, representing geometry doesn't capture all of the design information (Finger and

Dixon 1989).

The other approach, based on part behavior, describes the representation of design

functions (Finger and Dixon 1989). Several techniques are available to represent

functional behaviors: Pahl and Beitz (1984) have a function structure method, the U.S. Air

Force has an IDEF methodology (United States Congress 1981), and Paynter (1960) has a

bond graph representation.

Feature representations are an attempt to combine the two types of

representations. Dixon (1988) defines a feature as an entity with both form and function.

Most of the research on feature systems has been in the area of design and manufacturing

(Finger and Dixon 1989). One system has been developed by Drake and Sela (1989) to

use features to evaluate the manufacturability of a design.

Features represent some information about a design. Product models, incorporate

even more information. Eastman (1981) said that computers should represent the

semantic, geometric, and hierarchical features of a design. The term semantic refers to the

consistency of information in a design. One example of semantic integrity, asks if the

moment of inertia of a simply supported beam is large enough to carry the desired load?

The reference to geometry is self explanatory, in that it refers to the physical

characteristics of the product. Lastly, the term hierarchical, refers to a multi-layered

representation of the relationships in a product. Eastman's grouping of information has

now become known as a product model (Finger and Dixon 1989).

3.5. Knowledge Based Design Systems

Section 3.3 described technical and quality focused design assistants that help the

designer with specific tasks. Section 3.4 described design representation systems which

38

model product information as it is being designed. This section takes more of a systems

perspective on the design process by describing several knowledge based applications in

terms of design representation methods and design assistant applications. The systems

described in this section also have the common theme that they perform activities which

normally require human expertise (Edwards 1991). Expertise, or knowledge, is different

from data, in that data refers to information and knowledge refers to an understanding of

that information (Ramamoorthy and Wah 1989).

The systems discussed in this section add knowledge, not just data, in the form of

human expertise, or design intent, to the computerized design task. CAD systems model

geometry. However, new programming capabilities enable designers to automate design

tasks and incorporate some design knowledge. The ICAD system provides a

programming language that allows designers to incorporate even more automation and

design knowledge into a product model. Quality design systems provide yet another

method to model design knowledge.

3.5.1. CAD Systems

CAD systems play a prominent role in product design and development. As

described in Section 3.3.1, they are intrinsically design assistants, but they also serve as a

central hub to interact with various design assistant programs. Several CAD systems are

now equipped with programming languages to further increase CAD's role in the

development process. Increasingly, CAD systems are being programmed to build product

models that incorporate both geometric and non-geometric data into a design. It is this

programming capability that creates the possibility for the user to code knowledge and

thusly design intent into the model. Currently, there are two types of CAD design systems

that are predominately available: parametric and variational (CIME 1989).

Parametric design systems link geometric features to design rules. These rules act

like constraints on the design, such that when a part or dimension is changed, the

39

associated parts or dimensions are also changed. For example, if the length of a screw

depends on the thickness of a plate, then as the plate thickness increases, the screw length

increases. All of the design rules must be defined before using the system and there is little

flexibility to use different rule sets while the system is running. As such, parametric

systems are best suited for well understood designs (Chung and Schussel 1990).

Variational design systems also link geometric features to design rules. However,

the product model does not have to be fully dimensioned before using the system. A

designer can investigate the product model while it is not fully constrained. The

advantage of this system is that the designer can change the nature of the problem in the

middle of exploring a design. For example, a designer can look at the range of motion of

a robot arm in one instant. While in the next instant, the designer can see the motion the

robot arm makes to move along a specified trajectory (Chung and Schussel 1990).

3.5.2. ICAD

The previous section described CAD tools with a parametric or variational

programming language. ICAD is a parametric programming language with a CAD

interface. However, since ICAD has a programming language, the language can be used

to write a constraint based design approach similar to variational geometry.

This section describes the ICAD system and its applications. Since this thesis uses

the ICAD knowledge system to implement QCAD, an understanding of ICAD's

applications and program structure will facilitate comprehension of the QCAD concept

and implementation.

ICAD is the leading supplier of knowledge based engineering systems worldwide.

The ICAD SystemTM is best used for design tasks that are similar, but different, which

includes both products that require several iterations to optimize a design, and product

platforms that are designed using the same set of rules.

40

In most companies, a design is specified based on years of experience with creating

a particular product or process. In ICAD, this knowledge is stored in a product model,

which contains a hierarchical set of rules to describe the product's geometry and design

intent. The hierarchy is organized as a product structure tree, and generally breaks the

product down into components. Rules, which are composed of attributes and equations,

are embedded at every level of the tree. The attributes are variables that hold information,

like part cost, yield stress, and material type. The equations can be engineering formulas

or design heuristics (rules of thumb), which relate the attributes to the final part

specification.

The rules in the product model can also link external programs, such as CAD

systems, FEA programs, and design assistants, to the product model. The product model

can supply inputs to or analyze outputs from those other programs to optimize a design.

By linking corporate design practices, including both design rules and design programs, to

the part geometry, ICAD provides an environment to capture the design intent of a

product.

3.5.2.1. Representative ICAD Projects

The ICAD system has been used effectively in the following design situations:

semi-custom, one-of-a-kind, generative tooling, generative process planning, and product

configuration. A few representative projects as described in an ICAD brochure (ICAD

1992) are as follows:

Semi-Custom Products. There is a specific design process for boilers that rarely

changes. However, a new boiler design to meet specific needs can take between 500 and

2,000 hours. ICAD is used to automate the boiler design process, including the design of

several boiler components, the selection of several components from a catalog, and the

generation of production intent drawings and a cost estimate; all of which are based on

engineering rules.

41

One-of-a-Kind Products. Satellite antenna design is a highly iterative process

with tradeoffs being made among weight, reliability, and volume. Engineers use an ICAD

product model to prototype the antenna design such that design specifications can be

changed to see how the overall design is affected.

Generative Tooling. A new injection molded part requires a customized mold

base. The ICAD model is used to select and customize a standardized mold base using

design rules, when given part geometries and production volumes.

Generative Process Planning. ICAD is used by the U.S. Navy in the RAMP

(Rapid Acquisition of Manufactured Parts) project to create a manufacturing rrocess plan,

including operation sheets, from a standardized part description.

Product Configuration. In this situation, ICAD is used by salespeople to design

products given customer requirements. The system prompts for specific inputs and

outputs a fully specified product.

3.5.3. Quality Design Systems

Quality design systems are distinct from the set of quality design assistants,

because they store information through the use of quality design methods for use in

subsequent designs.

Several researchers have created, or are currently researching, quality focused

design systems. Two quality design systems have already been completed at MIT. John

Berg and Tom Knight, in two separate projects, programmed the total quality

development process, including quality function deployment, Pugh concept selection, and

robust design on a computer. John Berg programmed the system using the C language,

while Tom Knight programmed the system on a Macintosh, using Hypercard. Both

systems guide the designer through the use of the design process. The designer is able to

record design information in the system. If the user gets stuck with how to perform a

42

certain part of the design process, the computer displays a help screen with relevant

information (Berg 1988; Knight 1990).

Two other quality systems that are still in the design stage, both use QFD as a

backbone. One is called Design Function Deployment (DFD) and is being pursued at City

University in London. The DFD system is a shell system that stores design information

and coordinates sets of design assistant modules. The design model in DFD has five

milestones: (1) establish customer requirements, (2) generate different conceptual

solutions, (3) develop detailed design of a few sub-systems, (4) define material and

manufacturing processes for the design, and (5) establish production plans for each viable

product. To progress through the milestones, the user can fill out a QFD matrix, look at a

morphological chart, experiment with a solid geometric model, access a set of databases,

or use a variety of design assistant tools, including finite element software and design for

manufacturability analyzers (Jebb, et. al. 1992; Jebb, Sivaloganathan, and Evbuomwan

1993).

Another design system that is still under development does not have a name, but is

referred to as a recursive model for the design process and is being pursued at the

University of Michigan. The model contends that design is actually recursive and not

iterative and that designers reason with sets of design options, not just one option at a

time. The design model has designers perform three basic operations on a design to help

explore and generate a solution for the design problem. The first type of operation

involves setting up the problem. The second type of operation involves breaking the

problem into parts. The third operation involves recombining the pieces after the problem

has been broken apart. The recursive model proposes to use QFD, Taguchi methods, and

design for methodologies to help with these operations. The system is intended to help

designers and design teams document and organize the design process. It may also be

possible to use the system to coordinate islands of automation (Ward 1990).

43

3.6. Summary

This chapter described three different ways computers are used in design in order

to show some of the ideas that went into developing QCAD. The chapter started by

describing design assistants that help with small, well defined portions of a design task. A

designer, using one of the many thousands of available programs, enters specific

information about the problem and asks the computer to calculate an answer. It is up to

the user to understand and apply the results to enhance the design.

Next, the chapter discussed a general theory of design history systems and

explored design representation formats. Neither design history systems nor design

representation formats calculate anything about a design. They store information about

the characteristics of the design. A design history system would store information about

the steps a designer took to develop a product and why certain decisions were made along

the way. A design representation format stores information about the design, such as the

product function and geometry.

In the final section, the chapter described knowledge based engineering design

systems, which both store a representation of the product and perform calculations to

create or enhance a design. Since the product is represented in the computer, the

procedures can be linked to different areas of the product model. When information is

changed in one part of the model, the appropriate procedures process the information and

change the design accordingly.

Mixed throughout the discussions in this chapter were descriptions of computer

design systems that use the quality methods from Chapter 2. The quality design systems

use the computer to not only crunch numbers, but also to store, retrieve, and organize

information. Even though quality design systems were only discussed in the design

assistant and knowledge based engineering sections, quality systems could also be

classified as design history systems, because some of the quality methods provide a format

for representing design intent.

44

This thesis is a cooperative project with ICAD. As such, the ICAD system was

taken as a starting point for research. ICAD is a knowledge based design system that

contains both a representation of the product and procedures to effect the design of the

product. The discussion in Section 3.5.2 shows that the ICAD system currently has many

applications in product development, ranging from one-of-a-kind designs to routine

product configuration designs. Although one manufacturing related design task was

mentioned, most of the ICAD applications concentrate on product geometry.

The quality design systems described in Section 3.5.3 are knowledge based

engineering systems, in that they both store and manipulate product information.

However, the quality design systems use quality structures to model product data, instead

of geometry as used in ICAD. In general, the quality design systems use QFD to deploy

and manipulate product information.

QFD takes a horizontal approach to product development, uniting customer needs

with the factory floor. ICAD takes a vertical approach to product development, mainly

concentrating on the hardware specification. One evidence of this is seen in the rigid

product structure tree that ICAD uses to model a product (ICAD 1993). All of the design

information feeds down from top to bottom. The tree structure facilitates the detailed

hardware design, but limits the horizontal sharing of information.

QCAD combines a design methodology, like those used in the quality design

systems with the processing capabilities of a knowledge based design system. The QCAD

system also has a design representation that models a product from the total system voice

of the customer to the part feature process specification. The QCAD methodology is

flexible such that it is compatible with whatever quality methods or design assistant

programs (see Section 3.3) the company already uses for design.

To get a better feel for QCAD, imagine a box with several holes in its sides. The

product being modeled is inside the box. Holes are punched in the sides of the box to

allow someone outside the box to see in. Each hole shows a different perspective on the

45

object inside. One hole shows a piece part manufacturing process, while another hole

shows a total system functional requirement. A third hole shows a solid model of the

product geometry. QCAD has several more views (see Section 4.3), each with a unique

perspective on the product.

In addition to just looking at the product, the user can manipulate the product

model. By providing different information at each hole in the box, the user can alter the

design. The product representation in the box can combine knowledge based design rules

with design assistant programs, to respond to the user's inputs. The information is stored

in the system according to a structured design methodology (Section 4.5). The user,

follows a similar methodology (Section 4.4) when supplying inputs to the system. Two

examples of the QCAD system in action are discussed in Section 5.2.

46

Chapter 4

QCAD Definition

4.1. Overview

QCAD, Quality Computer Aided Design, is a method for linking quality focused

design methods with computerized design software. It provides the capability to translate

the voice of the customer to the factory floor. To facilitate this deployment, QCAD has

two parts: (1) the design process used by a multi-functional product development team,

and (2) the computer program used with that design process. The QCAD structure is

specifically amorphous, such that it can be tailored to each application. It is up to the

PDT to determine how to use the system to its best advantage.

The first section below describes the development of the QCAD concept. The

next section explains the basic organizational framework that QCAD uses to model a

product. The third section briefly explains the sequence of design activities used with

QCAD. The design activity is a modified version of total quality development (Chapter

2), using additional design tools. The design process is the set of activities that the PDT

performs without the assistance of the computer; although the computer may be used to

retrieve information to aid the PDT in using the design tools. The last section explains the

design process modules used in the computer portion of QCAD and describes how the

modules are interrelated to create a computerized product model.

This chapter describes the QCAD theory, without mentioning specific details of

the computer implementation. Chapter 5 explains the computer implementation of QCAD

in the ICAD Design Language, using two case examples. The ICAD software and the

product model are inseperable in QCAD and thus are explained together.

47

4.2. Initial Development

The literature search gave some information on what types of computer design

systems are being used or are being researched today. However, only a few articles were

found that discussed a designer's reactions to computer design systems (Ishii and

Hornberger 1992). Since this thesis is a cooperative project with ICAD, interviews with

some ICAD customers and employees supplied information about how ICAD's knowledge

based system is used for product development.

Figure 4.1 shows the KJ, affinity diagram (Shiba, Graham, and Walden 1993)

describing ICAD's use in design, based on the interviews. The KJ shows connections

between different parts of a topic (See the question in the top right corner of Figure 4.1).

The bottom level sentences are direct quotes from the interviews. Some of the more

interesting quotes describe using ICAD to tie engineering groups together, mention that

the first design out the door doesn't save much time, but the benefit is in later designs, and

remark that it is difficult to write ICAD code to handle product variations.

Looking from left to right on the KJ diagram in Figure 4.1 shows the basic flow of

how an ICAD program, or product model, is constructed. First, the product or sub-

system to be modeled is selected and some of the details are sketched out. If the IDL

programmer is not familiar with the product, this first stage includes a series of interviews

to understand what knowledge is required for the product model. The second step

involves programming and debugging the product model, including the specification of

part geometries and coding the knowledge base. Lastly, there are two different ways to

use the ICAD system, one is in programmer mode, the other is in end-user mode. The

programmer mode provides a great deal of flexibility for the designer, as the designer can

change the underlying product model while experimenting in the browser. The end-user

mode is a little more constrained in that the user is expected to answer questions about the

product model using a pre-programmed set of questions. The user does not change the

programming in the product model.

48

n.o

am co

C

(Iao

. "20

C

_ 0

O 0

0,

,~

C,
a) .

N C(Uco

2 2 >

49

C

0

.
C

)

CauTo

riQ$
L.

0u
az

The final answer to the KJ was, "With proper planning, ICAD provides a way to

explore variations on a product." This raises the question about what constitutes proper

planning. Proper planning includes finding and organizing the information that goes into

the model. Thus, QCAD provides a framework, based on total quality development, for

planning and programming the product model for use in the browser.

A little more intuition about how this could be achieved was discovered by using

the House of Quality and Pugh Concept Selection. The rows of the House of Quality,

shown in Figure 4.2a, come from a combination of the philosophy of TQD and from the

more important interview voices about using ICAD. The rows were then translated to

metrics for the columns, which are shown in Figure 4.2b. The completed House of

Quality is shown in Figure 4.2c. Completing the House of Quality matrices gave some

insight as to how the design process and computers could be used synergistically. ICAD

is good at storing information, but TQD is good at organizing how the information should

be stored. Additionally, the ICAD software is demand driven, which can be used to bring

the relevant information into consideration when a decision is to be made.

The columns from the House of Quality were then used in a Pugh Concept

Selection matrix, as shown in Figure 4.3. The rows in this matrix are the columns from

the House of Quality. The matrix started with 8 different concepts, but the eighth concept

changed dramatically over the course of completing the matrix. The eighth concept came

to encompass all of the good features of the other ideas, while minimizing the bad

features. The end result is that QCAD provides design tools and a way to organize those

tools such that a variety of products can be modeled in the system.

50

Figure 4.2a - Rows for the House of Quality for QCAD3

Process Focuses on Meeting Expectations
focus on robust performance
Looks at Current Environment

emphasis on competitive benchmarking
emphasis on customer satisfaction

Resources are Pooled to Design a Product
Information is Coordinated to Focus on the Decision to be Made

bring relevant information to bear at an opportune time
consider related decisions together
production user should only see relevant information

Embodied Knowledge Works to Achieve One Goal
strong commitment to decisions
teamwork

Method to Attack Problem is Structured
start with specific rules
start with a small sub-system
design process is structured

Products are Described Flexibly
defparts are generic
rules are easily generalizable
designs are broken into building blocks

Tools Match the Product
provide a collection of tools
the program should allow the PUI to be easily added

Products are Amenable to the ICAD Environment
Product Has a Simple Structure

nodes have 2 - 10 leaves
design can be broken into a tree structure

Products Are Variations on a Design
different designs should have similar geometries
design rules must be known

product model must be demand driven

3 In Figures 4.2a-c, the row and column formatting represents a tree hierarchy.
* Every indention on a line represents a change in abstraction level. The

lines that start farthest to the left are at the highest level of abstraction.
· The lines that start with upper case letters represent categories.
· The lines that start with lower case letters are the lowest level entries under

each category.

51

Figure 4.2b - Columns (metrics) for the House of Quality for QCAD3

Degree Fidelity with the VoC
Taguchi methods included
External Input is Gathered

degree of competitive benchmarking
degree VoC is translated through system

Resources are Combined
Information is Coordinated for Decisions

relevant information is gathered for decisions
related decisions are brought together
production user only sees relevant information

Embodied Knowledge Works to Achieve One Goal
strong commitment to decisions
teamwork

Structured Method
start with specific rules
start with a small sub-system
stuctured process

Flexible Product Descriptions
generic defparts
generalizable rules
number of building blocks in design

Tools Match the Product
number of tools
ease which PUI can be added

Products Fit with ICAD
Products Have a Simple Structure

average number of branches/node
design fits a tree structure

Different Products have the Same Design Intent
designs have similar geometries
design of uncertainty in design rules

product model is demand driven

52

CI ora t call l @ 9I
S'mn Pa I 9

Poe; 0 3
hqobt X 3

RZ*on-in lAt Lo

Miodlrb 0 3
fot A

Pfoc. Fu. on tpq EpWotr

too c oto . .. p .r.onor-

Aob at Curert woircnrnrt

r oft.r co erdti bchrkeq

eplir. . Coatorr tleclfo.

Rno.m ofe Poo to OgD oa Pro d

ihtonmten Coeorotd to Foru o. I Ot hb. t to

bng releat bWototbi to bear ot rn ot)potuM tir

Om'eder nibted dCerIos toqdher

pmudcte ur rhoult oy r m rtnt ornottio

Er.bold'd Kmaodp Wor to Ahom. Ox tCot

ntroo codrnlmt to drtoea.

ethod b ttlck PNmbm SNuctued

taort *dh W cpd ru
t.

tor w4rl Ie s.ub-e.py

dc pra g r etocturd

Product, are _D.rd Fbld

ddprtb are getc

rr,'- am a prkobbl

drq. ore brokn nto buldgt bbb

Tool tItch th Product

aOwdl a blC at toeS

tkhe rgram ahoW oW th P o he .. added

Pr.ducltl o Anob to t t CA nrn ment

Pradutd Hoe a Sr Strtunl

nodas he 2 - 1tO tem

deeqn con e broe t a tram Itnt1c dtl

Podud, A V*reten o e DRWgn

d.ht dta eaWod Mol h e br geoMtre

dn. rube -ud b. koa

rWduCt ftde Mot b d-rcd d*o

rcTnh l khtr (1l. Sor)

Trtnilt hiWPetO (Pnwt)

Ioxrum Vkl = 10 0
- Trco r kortone (Pettt)

l.um V4l = 00

Figure 4.2c - House of Quality for QCAD3

53

Odn Prss od WC
lotoat Snpm
Y(a C.19
*y 24. 193

- -

.

o .(

a C$_r

E

a mo
0 C

C

-o c

I , V

cn I

C

a C

Co <

E
t- C.)

Vz

a

4I

i

!

+

I

!

S
D

32S
.)
S
D

E

3
S
5)

I

(ea

E

3

5J
2a

) COCC + C/) a + :/ C : +a

CO) +) + + c + a(

CO C CI)) C +) r . : . c + cr

C)

0

LO

0ra

u0

0
E
(U

2(U
0)

0
U);

co
tu

2-

.2a)C
a)Ca
c)

a)

co
._

0)

Y)

o0
"0

ao
(U

0

.0

C.c

0
10

C

0
E(UI

c
.0

o.'

0
m
cmC03o

D

9:0)

E
c.0E.0C

oE

'aC
E
VD

0
CD

(UC
CC(,a

0
CUt:
(U0(r
laCDR
C"S
o>

.c

5'E
CJ

. ,

o
0)
CD
a,

E
0

a.
(-

.0-o
.

t0.00)

0,

0
0
0m(Uo
.o
E
a

co(Da

VD

.
0
C

(D
coco
a)

54

C:

Cf.

cn

CO

7

coC/

CIf

Cf,

CO

CO

.S

.c0

a'
A-

r

, "I o

cm coI 'n 1o

c N co s mC

'!1 I 'I~

r Z'E

0 3
C, ts .5 .

O[ra - co

c2z oaco co =OI0 .0.-

CD
ao0
C0

CD

a,'3up052
5)
U

m

;D

2,
U2'

v)a
LIa
D

- l L_ i I i ,_L

- - - - . � - I - -
. - .

1I ,111

4.3. Basic QCAD Framework

QCAD has a basic backbone structure that coordinates information among

different parts of the design process. The structure is generic such that a variety of design

tools can be used with QCAD. However, the model is geared toward use with TQD.

Figure 4.4 shows the QCAD backbone structure. The structure is a network of

interacting layers that represents a design. As described in Chapter 2, a design can be seen

from several different levels of abstraction. These are listed from top to bottom on the left

side of the diagram.

The top part of the diagram shows how a design would be specified, from initial

problem definition through production. Both axiomatic design and quality function

deployment propose ways to traverse a design from definition to production. Axiomatic

design concentrates on the specific domains of a design in terms of the consumer domain,

the functional domain, the physical domain, and the process domain (Suh 1990). QFD, on

the other hand, concentrates on a set of planning matrices to translate customer voices to

engineering expectations to hardware expectations to process requirements and to

production requirements. The QCAD structure combines both methods of looking at a

design with current methods of product model programming in ICAD. Combining the

three methods together results in the three distinctions of functional requirements,

hardware parameters and process parameters.

A functional requirement is the purpose of the product. It is the reason the

product exists. For example, the purpose of one type of theater clamp is to position

theater lights. A more detailed example would be the purpose of a screw is to hold two

objects together.

The hardware is the physical description of the product being defined. It can be

the whole product or a dimension of the product, depending on what level of abstraction is

55

oC E
a)

L0-

E E
CU-

0- 0 4 LL g

E E ci

cu -, 0
X0 D I

56

desired. For example, the hardware to embody the function position theater lights is a c-

clamp. At a lower level of abstraction, a hardware parameter is the length of the c-clamp.

Process refers to how the hardware is to be manufactured. At a high level of

abstraction, the clamp is assembled. At a low level of abstraction, the clamp frame is sand

cast.

Each small circle in Figure 4.4 is an object4 . Each object can represent a function,

a hardware piece, or a process, depending on which designation it is under. The larger

circles represent layers of objects, such that each object in that layer can share information

with the other objects on that layer. The total system layer contains only one object,

because by definition, there is only one highest level function, hardware, or process

definition.

Each of these three categories form hierarchies, with more abstract total system

requirements at the top and more detailed, piece-part requirements at the bottom. Higher

levels of abstraction represent conceptual design; lower levels represent detailed design.

In Figure 4.4, this is represented by the arrows pointing down. Lower levels are

organized by higher levels such that specific design information can flow through the

hierarchy to where it is needed. The ideal is that objects on each layer can share

information without going up and down the hierarchy. This feature is indicative of a

layered structure.

The function, hardware, and process hierarchies are organized into different trees

because of the varying nature of the information they represent. The function tree, being

organized by functions is different from the hardware tree, which is organized by physical

sub-systems. The process tree may, or may not, be different from the hardware tree. If

the process tree is set up with assembly processes at the top and fabrication processes at

the bottom, then the process tree will closely match the hardware tree. However, there

4 An object is the basic building block of a program, that contains specialized information and executable
procedures. See Appendix B for more information on objects.

57

are other ways to think about processes, and as such, the process hierarchy is separate

from the hardware hierarchy.

The three hierarchies are separate, but highly interdependent, such that one

hierarchy constrains the choice of possible designs in the other hierarchies. The function

definition guides the hardware development and the hardware choice guides the

production process. This is represented in Figure 4.4 by the arrows pointing to the right.

All of the information flows from left to right and from top to bottom. A quick

glance at the QCAD structure shows what other objects will be affected by a change in a

single object.

The orderly flow of information in QCAD makes the design process look linear.

In reality, design is amorphous, with designers working on several levels of abstraction

and looking at several different criteria simultaneously. However, a well defined structure

is necessary for the computer.

Sometimes a designer likes to experiment with different hardware configurations

before selecting the exact nature of the function to be performed. The same is true with

the hardware-process relationship. This capability is modeled into the QCAD structure by

storing some hardware information in the function hierarchy and some process information

in the hardware hierarchy.

Furthermore, implicit in Figure 4.4, are diagonal information flows from the top

right objects to the bottom left objects. Going from right to left generally involves going

down one level of abstraction. Staying on the same level would be an iteration or a

feedback loop. For example, the type of hardware selected guides the functional

requirements at the next level down (Clausing 1994). There are no explicit diagonal

arrows in Figure 4.4 because the information that would normally flow in that direction is

already stored in the function and hardware trees, respectively.

This explanation oversimplifies the design process into a sequential set of

activities. In actuality, the design process is much more complicated. A designer may

58

start off in the function space and then move on to the hardware space, but will spend

some time in the middle exploring the boundary between the two regions. The process

can get even more complicated when considering that designers may also design on

several levels of abstraction at a time (Moses 1990). However, the computer dislikes

uncertainty, everything needs to be defined a priori. For this reason, in QCAD, (1) new

designs are developed by the PDT with minimal computer use and then programed into

the computer as certain details of the design are frozen, and (2) some of the design

information in the hierarchies are intermingled. Some elements of the hardware definition

are stored in the function tree; some elements of the process definition are stored in the

hardware tree (more on this in Section 4.5).

4.4. Design Process in QCAD

The previous section explained the organizational structure of a product in QCAD.

This section describes the sequence of design activities that a multi-functional product

development team would follow under the QCAD framework.

Before explaining the parts of the design process a few points should be expressed.

First, for new product development, the PDT goes through the design process on paper

first and then codes the information into the computer. Many of the quality design tools

use visual connective methods to use the synergy of the PDT to develop bold new

concepts. At the current state of computer technology, it is difficult to be entirely creative

if constrained by the computer user interface (Hunt and Lee 1992). In subsequent designs,

the computer may be used to help the PDT answer questions.

Second, the information recorded during the design process can be entered into the

computer part of QCAD. However it is up to the design team to decide what information

should be computerized and where in the structure it should be coded. For example, if the

product being modeled is a copier, and the PDT is only interested in the paper feeder, the

PDT can focus its efforts on the paper feeder sub-system and not worry about coding all

59

of the information for the rest of the copier. In this example, if the paper feeder is defined

at the third level of abstraction, then the PDT does not have to worry about filling in the

first two levels of abstraction. However, if the information is available, there is no

problem incorporating information for other sub-systems, or for the total system, into the

product model.

Third, the basic QCAD structure is generic. Many companies have their own

versions of quality programs that they use to develop products. The QCAD structure

provides a mechanism to use design information with the computer. If the PDT has other

techniques that help them define a product, those techniques can be incorporated into

QCAD.

Figure 4.5 shows the TQD tools superimposed over the QCAD structure. The rest

of this section will briefly describe the role of each part of the design process. Section 4.5

will elaborate on how the design process will be used with the computer.

Each object in Figure 4.4, the QCAD structure, holds the information generated by

the corresponding parts of the design process. The lines surrounding the design process

tools are wavy, to show that the boundaries are not absolute. The PDT goes through the

indicated design process steps in that general area of the product development cycle. The

next three sections describe a general ordering of the indicated design process steps.

Other variations on the design process steps are possible, and the team should taylor the

process as desired.

60

cu

E
0o

Ix.u

0
Lu

mI
4)
0Eco
&u

a.

a:
,
I)D a.

U-

< a-
C/)a.

*0

8) oC) (C Cc
E4-'' O C

0m 0 EO O

0O LL 0
0im

E
*0

In

Q

cn

t

a.
000
I1.

E
Cl)

I-

a LL O-a< 2 IL
CL

,, a

U-,

LL

<o.
a:I

1i:

U. C/)002
0<I-U- U

0u
0
c-4)
LL

at
a.

.-

C@a,
czo

Co c

.- C e-

C

. o -0

a XaaQC

0
x a.

. CO

. . - aE 00)G a:

i) IL IL 2I

-JmO-a.

Q .5

o CD OCo
C C -D C

LILL

.9 *)
4-> SŽ*E

61

4)
C~
&u
co

I

U-13o0
U.
:s

lz
em*0
em

ea
.50
eruz
U"

4.4.1. Function Hierarchy

This section describes the flow of information for the design process steps in the

function hierarchy. Even though the flow is depicted as linear, some events may feedback

information and other events may occur simultaneously.

F(N)

VoC

E2 (N-1)

E2 (N) F Hi

Key:
CR1 Concept Review Matrix 1 FN Function Net
CS Concept Selection FTA Fault Tree Analysis
E1 Customer Expectations Hi Sub-hardware
E2 Corporate Expectations HoQ House of Quality
F Function Definition (one of the previous Fs) N Abstraction Level
Fi Sub-functions VoC Voice of the Customer

Figure 4.6 - Design Process in Function Hierarchy at Level N
(Clausing 1994 modified)

62

Notes for Figures 4.6. 4.7. and 4.8

Each figure represents one domain in Figure 4.5. As such, each figure
represents one level of abstraction in one of the horizontal hierarchies.

Abstraction Level

To read the figures, replace N with the desired abstraction level. If N is
at the sub-system level, then N-1 is the total system level and N+1 is the piece
part level. If N is at the total system level, then N-1 does not exist. If N is at the
part feature level, then N+1 does not exist.

Horizontal Domain

Each figure starts with a 'F,' 'H,' or 'P' definition, representing function,
hardware, or process, respectively. The definition guides the application of the
subsequent activities in that domain. F, H, and P are either initially specified, or
are derived from previous design activities. The function definition flows from
higher level function to lower level function. The hardware definition flows from
same level function to same level hardware. The process definition flows from
same level hardware to same level process. Implicit in the figures is a flow of the
hardware definition down the hardware hierarchy and a flow of the process
definition down the process hierarchy.

In Figures 4.7 and 4.8, the HP, and the PPj are different from H and P, in
that HPi and PPi are parameters of the hardware and process, whereas H and P
are the overall hardware and process definitions. Both HPi and PPi are domain
dependent, i.e., they only flow down the corresponding hardware and process
hierarchies.

Abstraction Level and Horizontal Domain

In addition to the function, hardware, and process criteria moving
between domains, QFD expectations (E) move between domains. The different
subscripts on the Es represent different expectations. In general, the
expectations are defined in the columns of one QFD matrix and become rows of
the next horizontal and vertical QFD matrices. There are two exceptions: (1) E1
only goes into the first QFD matrix, and (2) E4 only goes into the next verical
QFD matrix.

63

Keeping these caveats in mind, the design process follows the general pattern

outlined in Figure 4.6, at all levels of abstraction. Each of the acronyms mentioned in

Figure 4.6 are represented in this figure by a small icon. The icons approximate the visual

format of the design tool, with the arrows representing primary information flows from

and to the precise location on the design methods. Many other information transfer

arrows could be drawn into the figure, but were removed to reduce clutter and to

maximize drawing clarity. A case could be made for an arrow to be drawn from one

design method to every other design method and even from and to different sections of the

same design method.

The design process starts with an identified need, indicated by the boxed F on the

left side of Figure 4.6. This need is the functional requirement that a product or part of a

product is to satisfy. In the case of a theatrical lighting clamp, a high level need is to

position theater lights. A low level need is to attach the theater light to the clamp.

The initial function definition, feeds into the first three design methods, which may

be performed simultaneously or one at a time. At the top of the figure is the fault tree

analysis (FTA), which is used to explore the function space to identify possible sub-

functions and criteria for concept selection (Clausing 1994). The fault tree will also

provide a base for the fault trees in the hardware and process hierarchies and in the lower

level function hierarchy.

At the bottom of the figure is the first QFD matrix, also known as the house of

quality (HoQ). It is used to translate qualitative customer needs into quantitative

engineering expectations and to stimulate product concepts. The HoQ uses the function

definition as a focus for the activity. For example, in the rows, customer needs ae sought

for a product that satisfies that functional need, and higher level engineering expectations,

are used that further define the performance level for the function. The new set of product

expectations are used as criteria in the concept selection matrix (CS) (Clausing 1994).

See Sections 2.3 and 2.5 for a more detailed description of QFD. The 'E' variables, in the

64

rows and columns, represent expectations. Every deployment from a row to a column

increases the subscript on the 'E.' The 'N' represents the abstraction level. 'N-1' is a

higher abstraction level than 'N.'

In the middle of Figure 4.6 are a series of steps that refine and correlate the sub-

functions. First, a set of possible sub-functions is generated. Then, the set is checked for

abstraction using the level check (LC) procedure, described below. Last, the functions are

arranged into a function net (FN), displaying the interrelationship of the functions (See

Section 4.5.2.4.). The subscripts on the 'F's in the figure indicate that the function is a

sub-function of the initial function. The 'i' subscripts on the 'F' and the 'H' indicate

multiple sub-function and sub-hardware definitions.

The level check (LC) is used when defining functions, to make sure that all of the

functions are at the same level of abstraction. In Figure 4.6, the level check is represented

by a filter, allowing functions at the appropriate level of abstraction pass, rejecting the

other sub-functions. This is done by asking two questions about the relationship between

two functional requirements. The first question asks, "Does function B contribute to the

performance of function A?" If yes, function B is a sub-function of function A. If no, ask

the second question, "Does function A contribute to the performance of function B?" If

yes, function A is a sub-function of function B. If the answer to both questions is no, then

functions A and B are at the same level of abstraction (Sontow and Clausing 1993). A

level check is only needed at higher levels of abstraction, where there are a large number

of functions at differing abstraction levels. At lower levels, the level of abstraction of the

functional requirements is clearer.

Starting with the set of functions, a function matrix (FM) and function net (FN)

analysis is completed to organize the functions into a relationship diagram. The function

matrix (not shown in Figure 4.6) is derived from the design structure matrix (Eppinger et

al. 1990). The function net is a graphical representation of the function matrix. This step

gives new insight into the functions to help generate hardware ideas and selection criteria.

65

This technique can be used at any level in the design process, but is especially insightful at

higher levels of abstraction, where the function relationships may not be as clear.

While working with the design methods thus far, members of the PDT have

probably developed some hardware concepts. These concepts are documented in a

concept list (CL) (not shown in Figure 4.6). If more concepts are desired, some authors

(Pahl and Beitz 1984; Cross 1989) recommend brainstorming or a morphological analyses

to generate concepts. However, Pugh (1981) recommends deriving new concepts using

concept selection. Pugh concept selection (CS) is described in Section 2.4.

The output from concept selection is an agreed upon hardware concept and an

idea of how the concept will be designed in the hardware. As a final check before moving

on to another phase of the design, the PDT evaluates the design with a concept review

matrix. The concept review matrix matches the sub-functions with the hardware parts for

the selected concept and helps reveal the most important sub-functions (Fi) and sub-

hardware (Hi). Further sub-functions or sub-hardware may also be revealed by

completing the matrix (Sontow and Clausing 1993).

4.4.2. Hardware Hierarchy

This section describes the flow of information for the design process steps in the

hardware hierarchy. The same comments about reading the design process flow chart

mentioned in Section 4.4.1, for the function hierarchy, also apply to the hardware design

process, shown in Figure 4.7.

The hardware process also starts with a definition of the governing hardware,

indicated by the boxed H at the top center of the figure. The H is one of the His defined in

the function hierarchy. Like the function definition, the hardware definition influences

66

HPI (N-l)

] FTA

F2[

. P

PD

Pi E3 (N) HPi (N)

Key:
CR2 Concept Review Matrix 2 MAPS Material and Process Selection
E2 Corporate Expectations N Abstraction Level

E3 Product Expectations PD Product Parameter Design
FTA Fault Tree Analysis PSN Product Structure Net
H Hardware Definition (one of the Hs) QFD2 QFD Design Matrix
HPi Hardware Parameters

Figure 4.7 - Design Process in Hardware Hierarchy at Level N

three different design methods. At the top, left side of the figure is the second QFD

matrix (QFD2). Its purpose is to translate engineering expectations into product

expectations. While completing the matrix, some process concepts may develop that can

be used in the material and process selection matrix (MAPS) (Clausing 1994).

67

H(N)

The product expectations, from the columns of the QFD matrix are used as criteria

for material and process selection. Some additional criteria may also be used in the

evaluation. The MAPS matrix may follow the same format as the Pugh selection matrix,

described in Section 2.4, or may follow a more analytical approach. Whichever the case,

the output from the selection matrix is a process for manufacturing the hardware.

The manufacturing process is then compared with the hardware in a concept

review matrix (CR2). The CR2 matrix is exactly like the CR1 matrix, in that it helps

reveal the most important sub-hardware (Hi) and sub-processes (Pi). The concept review

matrix is also used as a final check before moving on to the process phase of the design.

Further sub-hardware or sub-processes may also be revealed by the matrix (Sontow and

Clausing 1993).

The hardware hierarchy not only defines the production process, but also assigns

values to the hardware parameters (HPi), which are variables that store dimensions and

material type for the hardware piece or sub-system. Note that higher level hardware

parameters may constrain values for parameters at the current level. Current level

parameters will then constrain parameters at the next lower level. Several design methods

provide insight for setting the correct values for the hardware parameters.

The QFD2 matrix brings the customer perspective as deployed from the HoQ

matrix. The product expectations in the columns have target values which the PDT

defines to be the ideal value for several hardware parameters. In reality, the hardware

parameters may not be able to achieve the target value, i.e. zero resistance for a wire

(Clausing 1994). See Sections 2.3 and 2.5 for a more detailed description of QFD.

The design structure matrix (DSM) (Eppinger et al. 1990) and product structure

net (PSN) are used in the same manner as the function matrix and function net, defined in

Section 4.4.1, except that the DSM and PSN give new insight into the hardware

parameters and provoke concepts for possible production processes (The DSM is not

shown in Figure 4.7).

68

Thz fault tree analysis (FTA) is used to identify critical functional parameters,

control factors, and noise factors for use in product parameter design (PD). Completing a

fault tree may also identify critical hardware parameters and equations for calculating

those parameter values (Clausing 1994).

Product parameter design is part of the Taguchi system of quality engineering

(Taguchi 1986). It is used to create hardware systems that are robust against noises that

degrade product performance. See Section 2.6 for more information on product

parameter design.

4.4.3. Process Hierarchy

This section describes the flow of information for the design process steps in the

process hierarchy. The same comments about reading the design process flow chart

mentioned in Section 4.4.1., for the function hierarchy, also apply to the design process in

the process hierarchy, shown in Figure 4.8.

The process hierarchy design flow is similar to the design flow in the hardware

hierarchy. The main difference is that the process hierarchy is the last category in the

horizontal series of categories and thus only defines its own parameters.

Similar to the design process flows for the function and hardware hierarchies, the

process hierarchy starts its design process with an overall process definition, indicated by

the boxed P at the top left of Figure 4.8. At a high level of abstraction, the process

definition can be assembly. At a low level, the process definition can be surface grinding.

The P is one of the Pis defined in the hardware hierarchy.

The process definition feeds into the third and fourth QFD matrices (QFD3 and

QFD4) and the fault tree analysis (FTA). No process structure net is needed for the

69

P(N) PP (N-1)

i."4K
F0PP 5IPPA

IN[DPP] __M . p3 p

PPD

E5 (N) E4 (N) PPi (N)

Key:
E3 Product Expectations PPi Process Parameters
E4 Process Requirements PPD Process Parameter Design
E5 Production Requirements QFD3 QFD Process Matrix
FTA Fault Tree Analysis QFD4 QFD Production Matrix
P Process Definition (one of the Pis)

Figure 4.8 - Design Process in Process Hierarchy at Level N

process hierarchy, as processes are usually arranged according to a time sequence of

events (i.e. hole A is drilled before hole B; gizmo D fits into hole Q before gizmo F locks

item Z into place).

QFD3 is the process planning matrix, which translates product expectations into

process requirements. QFD4 is the production planning matrix, which translates process

requirements into production requirements. Both matrices give insight into process and

70

E

E4

E5

J

production design and influence the values of process parameters (Clausing 1994). See

Sections 2.3 and 2.5 for a more detailed description of QFD.

Process parameters (PPi) contain detailed values that define how a production

processes operates. For example, a high level parameter would be the assembly sequence.

A low level parameter would be the mold temperature of a sand casting. Just like the

hardware, higher level process parameters constrain lower level process parameters.

In addition to the QFD matrices, the fault tree and process parameter design (PPD)

methods guide the definition of the process parameters. The fault tree is used to identify

control factors and noise factors for use in product parameter design (PPD). Completing

a fault tree may also identify critical process parameters and equations for calculating

those parameter values (Clausing 1994).

Process parameter design is part of the Taguchi system of quality engineering

(Taguchi 1986). It is used to optimize processes to manufacture robust products. See

Section 2.6 for more information on product parameter design.

The Taguchi system also has procedures to find an economical tolerance design

and an optimal intervention strategy for on-line quality control. Both Iethods are

discussed in Section 2.6, but are not used in the current QCAD methodology.

4.5. Computerized Elements of QCAD

The previous section briefly described the elements of the design process used with

the QCAD methodology and positioned those elements in the QCAD structure. This

section elaborates on those design tools as they are used with the computer. Many

examples are given using a theatrical lighting clamp. Some concepts from Chapter 2 are

repeated in the examples. Section 5.2.2 shows the computer implementation of the clamp

in QCAD.

This section is split into five parts. In the first part, the theater clamp model is

described, since it will be used to explain QCAD concepts. The next three parts examine

71

the function, hardware, and process hierarchies, respectively. The last part examines

concepts that apply to all three hierarchies.

4.5.1. Description of Clamp Product Model

This section describes a theatrical lighting clamp, which is a simple product that

will be used to describe QCAD. QCAD can be used with more complex products, as will

be shown in Chapter 5.

A theatrical lighting clamp is used to hang theater lights that weigh between 5 and

20 pounds on pipes in various places around a theater (for reference, the traditional cast

iron clamp weighs about 1.5 pounds, which is negligible compared to the weight of the

light). The pipes can be located up to 30 feet in the air, in any orientation, (i.e.,

horizontally, vertically, or diagonally) above both audience and cast members. Usually, a

lighting technician will attach the clamp to the light on the ground, carry the light up to the

catwalk, secure the light to a specific spot on a specific pipe, and then rotate the light to

the desired position.

Figure 4.9 is an annotated picture of the clamp. The light secures to the clamp at

the bottom of the barrel with a screw and a washer. To mount the clamp on a pipe, the

frame screw is unscrewed as far as necessary to allow the pipe to snugly fit through the

frame mouth. If the pipe is hung horizontally, the clamp and light can rest freely from the

top of the frame, which is also known as the hook. The frame screw tightens down with a

wrench against the pipe to stabilize both the clamp and the light and lock them in place.

Once locked down, the light can be rotated by loosening the barrel set screw. The barrel

is a cylindrical piece of aluminum, with a captivating lip, that is free to spin in the frame.

72

Frame Hook

Frame Scr

F
F

Frame

;et Screw
Barrel

Light Yoke

Washer

Barrel Screw

Figure 4.9 - Theatrical Lighting Clamp

73

Frame Mouth

4.5.2. Function Hierarchy

Each function is its own entity-each has its own name, a list of constraints, a

QFD matrix, and a set of associated concepts. The first three are used by the designer to

put the design problem into perspective, in order to create a set of hardware concepts that

will satisfy the function. In this way, the function is the basic mechanism used to organize

the storage and retrieval of several different hardware concepts.

QCAD enhances this feature of functions by dynamically linking them to hardware.

Two advantages include: 1) if the design needs to change, the function can call up all of

the hardware that satisfies that function, providing a holistic view of how a product can be

modified, what partsneed to be changed, and what the interactions are among those parts.

2) when redesigning a product, a designer can explore the design from the perspective of

different functions to get a different understanding of the product which will help generate

new ideas.

For reference, Figure 4.10 is the function hierarchy for the clamp. For clarity, part

feature functions are not listed here.

Position Theater Lights

I I I I I
Hook Over Pipe Secure to Pipe Lock Light Swivel Light Hold Light

H-i I IH-I
Frame Rests Pipe Fits Frame Locks Barrel Locks Barrel Barrel Holds Frame Holds

on Pipe in Frame in Place in Place Pans Light Barrel

Figure 4.10 - Clamp Function Hierarchy

4.5.2.1. Function Identification

All products exist to fill a need. That need at the highest level of abstraction is

called a total system functional requirement-it will be the focus of subsequent product

development work. As such, the total system functional requirement (FR) is the node

name at the top of the function hierarchy. The total system function is identified by a

74

company based on market research. For the clamp, it is defined as a device to position

theater lights.

Lower level functions are defined by higher level hardware pieces. For example,

when the PDT decided that the clamp would have a one piece frame, they created the

functional requirement that the frame must fit over the pipe. If the frame was two pieces,

there would be a different requirement that the pipe must fit in the frame. These FRs

become the names for the lower level function nodes.

4.5.2.2. Constraints

Just defining the function name is not enough. Each function has some constraints

on it due to the nature of the use environment or from customer needs identification.

Probably the best way to think about constraints, as used in QCAD, is that they represent

items that could be checklisted. They are either satisfied or not satisfied. Included in this

category are must-be Kano (Shiba, Graham, and Walden 1993) customer requirements,

government regulations, and safety requirements. The following constraints were found

for the clamp:

1. reversibly lockable (can be opened and closed many times),
2. use only human power,
3. support any orientation of a light,
4. interface with existing standard theater equipment (pipes, lights,

etc.), and
5. support human weight with a factor of safety.

In QCAD, two things can be done with these requirements. They can be left in an

attribute list (an attribute is another name for a variable) that can be called at any point in

the design process for guidance in decisions, or they can be converted into individual

attributes that specify constraints on parts further down in the design process. Generally,

a combination of both methods will be used.

75

For example, constraints 1, 2, and 3 would best be used in a textual list and

contemplated when concept selection decisions are made. Constraints 1 and 2 constrain

the concepts for selection. That is, welding cannot be used as a clamping concept because

it is not reversible, nor can it be done solely under manual power. These constraints are

textual constraints because they cannot be assigned a distinct numerical value, but do

guide the design process.

Constraint 3 is also a textual constraint, but it actually refers to the types of

engineering calculations that must be performed to validate a design. Likewise, constraint

1 could show that a fatigue calculation needs to be performed. (See Section 4.5.3.2 on

hardware product parameters for more information).

A different type of constraint is a numerical constraint. Constraints 4 and 5 can be

assigned to variables, with attributes such as :pipe-diameter = 2" and

:design-weight = :human-weight * :safety-factor.

If QCAD is used to unite several PDTs, each team can use the system to identify

constraints that must be satisfied. Changes made to constraints are propagated through

the model, ensuring that all affected components are changed, or all design teams are

informed of a change.

4.5.2.3. QFD House of Quality Matrix

Even though a function name and a set of constraints has been identified, there is

more information to decipher about functions. Many designers are comfortable working

with engineering metrics, but not with abstract requirements. The two can be correlated

on paper, by a PDT using a QFD matrix (Figure 4.11). There are many reasons to use

QFD, one of which is to submerse the designers in the design problem to help generate

novel ideas.

Computers are good tools at making calculations and at making reports (ITI

1992), but do tend to stifle human creativity. The computer requires structured input of

76

Hooks over pipe easily

Solidly secures to pipe

Stops light from panning

Light pans 3600

Light held firmly

Competitors

U)0
C,oc:CUt0
0.

E

4

5

5

4

5

A
B
C

Targets

Technical Importance

Technical Importance (%)

Technical Importance Graph

0a)0.
C0
m
C
r

..

OL

.0

41

18

+

CL
E

Co.0*D

co

C

-z

OO
45

45

20

0
-

C
O._

O
n-

.0

0C

45

20

C

cm

0
.e
c)

0O

@I

0

o051

51

22

.2c

0

1o
o0
0
U.

cu
4'

45

20

Figure 4.11 - House of Quality for the Clamp

77

O

a)

E
O

ABC

C- I- C- C- C I

I - II W-

A

I

II

111

II
I

- I

. .

- - --

+ 0 0o

7

information, which at the current state of technology is limiting for creativity (Hunt and

Lee 1992).

The computer is good at crunching numbers and thus is good for use in sensitivity

analysis. After a QFD matrix has been created off-line by a PDT and is input to a

computer, both interactions and importance ratings can be changed to show their influence

on the total design. Note that changing these parameters can help a person look at the

design problem differently-not to mention that attaching a dynamically changing product

to the QFD matrix takes the activity beyond the abstraction of conceptual design. This

feature is more useful in subsequent designs, after some hardware has been defined.

The system of EQFD matrices in the product model are linked together using the

technical importance ratings. Once a technical importance rating is calculated, it is linked

to the corresponding metric. Whatever sub-systems use that metric, inherit that metric's

importance rating. The importance ratings, however, are raw importances calculated by

multiplying the row importances by the number of relations in the relationship matrix.

This is fine if only one set of matrices is used. However, some engineering metrics may be

m:srepresented if multiple matrices are used and importance ratings from several different

matrices are combined into one matrix. For example, the relationship matrix of one QFD

matrix may be densely packed, while the relationship matrix of another may be sparsely

packed. Thus, the technical importance ratings should be normalized to a scale from one

to five, where five is the highest. The following formula may be used:

N, = x5
I+

where Ni is the normalized importance rating for metric i, Ii is the raw importance rating

for metric i, and I+ is the largest of the importance ratings.

The QFD matrix also has design targets for the engineering metrics, which can be

propagated to other design nodes. As described in Clausing (1994), target values can be

allocated to sub-systems in two ways: 1) The values are additive and are distributed to

78

each sub-system; or 2) The values are uniform across all sub-systems. For example, cost

is additive across sub-systems: A total system cost of $50 can be split into $25, $15, and

$10 sub-systems. However, minimum fatigue life is uniform across the clamp parts.

QFD matrices at levels of abstraction below the total system are used as described

above, except that the rows take information from the previous QFD matrix in addition to

the voice of the customer.

4.5.2.4. Function Diagram

In addition to listing constraints and completing a QFD matrix for a function, a

diagram of the function space should be used to show relationships among functions.

There are many methods that give a structure to functional requirements. One of the more

frequently mentioned techniques is a function structure developed by Pahl and Beitz

(1984).

For this initial definition of QCAD, a function diagram will be used. If desired,

future versions of QCAD can be upgraded to use a more complex function structure. A

function diagram is a graphical representation of the interactions among sub-system

functions, as shown in the Figure 4.12. Creating a function structure is a two step

process: 1) Determine the information flows among parts by creating a function matrix

(FM). 2) Translate the matrix into a diagram. Step one is performed by the PDT off line.

Step two is done by the computer.

A function matrix, much like a design structure matrix (Eppinger et al. 1990),

shows the direction of information flows among functions. Figure 4.12a is the FM for the

high level clamp functions. The sub-system functions are listed in both the rows and

columns of the matrix. An X in the matrix shows that the definition of a hardware coroept

for the function in the column will affect the hardware concept for the function in the row.

79

Hook Over Pipe
Secure to Pipe
Lock Light
Swivel Light
Hold Light

0D
a-

a.

00oo--r
x
X

a0
._

a-
.X0
el

x

_

_
le0-j

x

ar

7.
Co

X

X

-3

3o
Secure
to Pipe

Hool
Ovei
Pipe

a. Function Matrix b. Function Diagram

Figure 4.12 - Function Diagram for the Clamp

For example, changing the concept of how the light swivels, affects the concept for

how the light locks in place. Right now, the swivel mechanism concept is a barrel that

goes through the clamp frame. The barrel is locked in place with a side screw. If the

swivel mechanism concept was changed to a ball in socket, the light locking mechanism

would have to change.

The function diagram is a graphical representation of the function matrix. As

shown in Figure 4.12b, it is easier to understand than the matrix. The circles are the sub-

system functions and the arrows show the direction of influence.

An alternate way of looking at the matrix, or diagram, is that the functions in the

columns affect the corresponding functions in the rows. Thus, if a change is made to one

sub-system function concept, the designer can find other sub-systems that will be affected.

Alternatively, the matrix can be used to find what function concepts should be considered

when making changes. This method of storing information, when recorded in the

computer for easy access, helps the designer minimize design mistakes.

Even though the benefit of this module is more apparent when redesigning a

product, it can still be effective for original designs. A product structure diagram at the

80

7-

high level shows interactions between lower level sub-systems that design teams should

investigate to fully understand the product.

4.5.2.5. Concept Generation

While submerged in the function space via customer interviews and QFD matrices,

many concepts are generated by the PDT. A few of the more feasible ones are carried

through into development. A list of generated concepts is maintained in QCAD to store

ideas. These ideas form part of a design history showing what the original designers were

thinking as part of the design. The concept list contains information like a concept name,

a description of its intended functionality, and other comments about the design. In

subsequent designs, the list can point to ideas for evaluation and to reasons why certain

designs are not feasible and should not be pursued. All considered designs should be put

in this list, including both those being used and those that aren't. A sample concept list is

shown below.

ID Letter Concept Description Comments
A solid frame a solid frame connects both current solution

locking mechanisms

B hinged frame a hinged frame with locking hinge not robust
clasp

C solid frame with double solid frame with further evaluation
lock mechanism interconnected locking required

mechanism

The concept list is not intended to help first round designers create novel products.

It is intended to record a design history and to trigger ideas for subsequent round

designers. This capability can be augmented by continually adding concepts to the list.

Remember that each function is its own object and can be called no matter where the

81

function is in the hierarchy. Thus, wherever the function goes, the associated generated

concepts go with it.

4.5.2.6. Concept Selection

In TQD, the next step is to select a design based on a set of criteria. Usually, the

criteria used are the metrics, (columns) from the QFD matrix. The design team starts off

with about 30 concepts at the beginning and after several iterations narrows the choices

down to two or three for further work. These two or three alternatives are coded into a

concept selection matrix on the computer. The ideas that don't make it can be annotated

in the concept generation list.

Two methods can be used in the computer to model concept selection. The first

method would be to create a concept selection matrix in the computer as shown in Figure

4.13. In this figure, the criteria importance ratings are dynamically linked to the columns

of the QFD matrix. The relationships in the matrix come directly from the PCS matrix,

where +'s mean that the product is superior in that category, S's mean that the product is

the same in that category, and -'s mean that the product is inferior in that category. The

datum concept has a column filled with S's.

The best concept is then the one with the highest overall importance. This mind

numbing numerology is a deviation from PCS and is only being used for computer

programming purposes-a PDT using QCAD should not forget this distinction. With that

said, the overall importance ratings are computed from the weighted sum of the

relationships in the column:

n

WixRji=
i=l

where n is the number of evaluation criteria, Wi is the criteria importance rating for

criterion i, Rji is the relationship (+, S, -) for concept j on criterion i, and Ij is the overall

82

Force to hang on pipe

Pounds held by clamp

Rotational force held

Degrees light pans
, ,_

Force to release light

ca
Cat:

E

4

4.5

4.5

5

4.5

Overall Importance

Concept

A

S

S

S

S

S

0

B

S

S

S

-9.5

C

S

S

S
-

S

Legend
- =-1

S=O
+ = 1

Figure 4.13 - Concept Selection in QCAD for the Clamp

importance rating for concept j. The concept with the highest score is selected for further

refinement. Notice that if the voice of the customer importance ratings or the

relationships are changed in the QFD matrix, the column importances will change, and the

selected concept may change. Moreover, the importance ratings are linked throughout the

model, which could result in a wholesale change in the product. Additionally, as more

concepts are added to the model, the more powerful the product model becomes. There is

also a brief discussion of this kind of sensitivity analysis in the QFD matrix section above.

If the designer wants to work on a specific design regardless of the importance

ratings, QCAD allows the user to choose a concept for refinement.

The second method is to use a heuristic to select a concept. Sometimes a concept

selection matrix is not required to select a concept. Instead, a rule of thumb is used to

decide between ideas. For example, if the clamp is to hold more than 500 pounds, use

concept A; if the clamp is to hold between 50 and 100 pounds use concept B.

In general, the concept selection feature of QCAD is more useful for modifying

existing designs, rather than creating new designs.

83

II j

_

4.5.2.7. Concept Review

As a kind of concept review, the PDT, without the help of the computer, should

mark relationships between the required functions and the parts in the selected concept.

The matrix pictorially represents the allocation of functions, making it easier for a PDT to

decide if the interactions are too complex to be dealt with efficiently. Once the PDT is

satisfied with the level of interactions, the matrix is programmed into the computer (Figure

4.14). For subsequent product designs, the matrix may already exist in the computer and

may be reused. A new matrix will be required for each' different product architecture.

This matrix also guides what information is sent to which sub-systems or piece-

parts. Constraints and QFD columns are allocated to certain functional requirements,

which are passed to the next system via the concept review matrix. Not all functions are

critical and require a QFD matrix. In such a case, constraint information and target values

can be ear marked for specific hardware concepts.

hook over pipe

secure to pipe

lock light

swivel light

hold light

0.
0.
:3

03
E
Cu

o5

X

X

E
Co

cu

E

0'
co
a)en

X

E

r
O

E
c)

X

X

E

0.o
a)
E
0)

r
0
MO

X

Figure 4.14 - Concept Review Matrix for the Clamp

84

_ _

The computer uses the matrix to link functions to hardware. In the product model, when

a function is selected, it will be possible to list and view all of the hardware pieces that satisfy that

function, facilitating engineering changes. This feature is also the mechanism for seeing the

product from different points of view, in terms of which parts perform what functions.

The concept review matrix can also be used to help decide where improvements to a

design should be made. It shows which functions have few interactions and would be easy to

change and those that have more complex hardware interactions.

4.5.2.8. Additional Comments

The use of the function hierarchy goes beyond just the use of modules. Listing out the

functions at each node name can be helpful in understanding the product. For example, it is

possible to look up and down the function tree for side-effect functions, as in those functions that

are necessary because of the chosen hardware architecture, but are not used directly in satisfying

the overall product function. Finding ways to reduce these side effect functions should improve

the product design.

4.5.3. Hardware Hierarchy

As discussed above, the function hierarchy is the starting point for each level of design

planning; the function space is defined and then searched for different hardware concepts. After

selecting hardware for the product, design decisions are made in the hardware tree. Higher level

design decisions in the hardware include general allocation of space to sub-systems and recording

issues involved when using those sub-systems. The product structure diagram helps organize

thoughts about the hardware design, which reflect the underlying product parameters.

At lower levels in the hardware hierarchy, the parameters become more concrete, referring

to specific dimensions, material and process selection, and parameter optimization through design

of experiments. For reference, Figure 4.15 is the hardware hierarchy for the clamp. For clarity,

hardware part features are not listed here.

85

Clamp

Clamp Support

Frame

Securing Mechanism

Frame Screw

I
Swivel Mechanism

I

Barrel Barrel Set
Screw

I
Light Holling Mechanism

I

I
Barrel Washer

I
Barrel Screw

Figure 4.15 - Clamp Hardware Hierarchy

4.5.3.1. Product Structure Diagram

Creating a product structure diagram is a two step process. 1) Determine the information

flows among parts by creating a design structure matrix (DSM). 2) Translate the matrix into a

diagram. Step one is performed by the PDT off line. Step two is done by the computer.

A design structure matrix (Eppinger et. al. 1990) shows the direction of information flows

in a set of design activities. Figure 4.16a. is the DSM for the high level clamp hardware. Note

that the hardware sub-systems are listed in both the rows and columns of the matrix. An X in the

matrix shows that the hardware in the row requires design information from the corresponding

hardware piece in the column.

frame

securing mechanism

swivel mechanism

light holding mechanism

E
C-

X

X

2
E

CEcoCQ2

X

X

E
u
Uco
a,4)
E
X

a

X

X

2aE

U.

E

0.G

.0

X

X

4

a. Design Structure Matrix b. Product Structure Diagram

Figure 4.16 - Product Structure Diagram for the Clamp

86

The product structure diagram is a graphical representation of the design structure matrix.

As shown in Figure 4.1 6b. it is easier to understand than the matrix. The circles are the sub-

systems as identified in the function hierarchy and the arrows show the direction of information

transfer.

An alternate way of looking at the matrix, or diagram, is that the hardware in the columns

affect the corresponding hardware in the rows. Thus if a change is made to one sub-system, the

designer can find what other sub-systems will be affected. Alternatively, the matrix can be used to

find what hardware should be considered when making changes. These two benefits, when

recorded in a computer for easy access, help the designer minimize design mistakes.

Even though the benefit of this module is more apparent when redesigning a product, it

can still be effective for original designs. A product structure diagram at the high level shows

interactions between lower level sub-systems that design teams should investigate to fully

understand the product.

4.5.3.2. QFD Design Matrix

The goal of the second QFD matrix is to relate hardware design parameters to the

engineering metrics defined in the first QFD matrix (see Figure 4.17 Both the rows and

importance ratings in this matrix come from the columns of the first matrix. However, the

function and hardware hierarchies are organized differently, meaning that there may not be a one

to one correlation between the function object where the first QFD matrix is and the hardware

object where the second matrix is. What happens instead is that the engineering metrics for the

rows come from the QFD matrices in all of this hardware's associated function nodes. The QFD

matrix then picks off the engineering metrics that relate to this hardware object.

87

Weight

Bending Moment Held

Torsion Held

Force Held by Frame

Force Held by Barrel

Importances

Targets

U)
a)

oC
E

3

5

5

4

41

E

.

27

.

To

a)

c

a)
E

Ii

A

93

cr

-

a)
E
c-1_

48

C
LO

.Z

.C
0)-r._I
aC)
E

A

48

,)

W

0a,)

c)C
0
-C

0
0.
Ca

CD

1..
L.

M

©
75

o

Figure 4.17 - QFD Design Matrix

The operation for the rest of the matrix is the same as described in Section 4.5.2.3. for the

House of Quality. The importances are calculated and normalized; the target values can be

assigned to attributes; and the design parameters in the columns are propagated, with their

importance rating to the next QFD matrix.

4.5.3.3. Hardware Parameters

Hardware parameters are the core of the product model. They are variables that store

information like dimensions, material used, and geometric architectures. At high le vels of

abstraction, the hardware parameters store sub-system target values as designated from the

previous QFD matrix. This information can include costs, reliability targets, and relative

88

- l -1 l-l II

A A

-- -- ,-

geometric proportions. For example, the high level geometric proportions for the clamp frame

would be a bounding box with dimensions 1.5" X 4" X 6".

At a lower level of abstraction, the hardware parameters store the actual dimensions and

materials used. For example, the length of the frame screw is 3 inches and is made from carbon

steel.

Hardware parameters generally come from engineering equations. The constraints

specified in the function tree are considered in this module. The textual constraints that weren't

used in selecting configuration designs will specify engineering analyses to be considered for

piece-part design. The numerical constraints give limit values for use in equations that solve for

product parameters. The textual constraints are more of an information management tool that

will have greater impact in initial product development, but can be used to a lesser extent in

subsequent product designs. Numerical constraints can be useful for either type of design. Just

changing the value of a constraint can automatically change the entire design.

Some designers, however, like to use rules of thumb for certain dimensions, especially

those that can't easily be modeled with engineering equations. QCAD, like many other knowledge

based systems, can help collect and standardize these rules of thumb to make design practices

uniform throughout the product.

4.5.3.4. Product Parameter Design

Another way to standardize a design and to reduce the number of thumbs, is to use design

of experiments. Product parameter design uses statistics and common sense about the underlying

physics to optimize a design with respect to a quality characteristic. The quality characteristic

measures the quality of a product or process with respect to customer expectations (Phadke,

1989).

Computers have been used with Taguchi experimentation in two ways: 1) they can be

used to model the product, with the simulation being used for experimentation; and 2) they can be

89

used to guide a designer through the process and to perform the analysis of variance calculations

(Quality Engineering Services 1992).

QCAD can be used for both. In the first scenario, the QCAD product model can be

created with modifiable control factors and can be used to output experimental results. For the

clamp, the frame height, frame width, frame thickness, and hook arc length can be specified as

inputs (the frame lip is the short extension where the frame screw goes through the frame). The

clamp strength, weight, and ease of use can be output to a report. The design simulation could be

linked to the analysis described below, but it would make using QCAD more involved than

necessary. It is easy enough to perform the experiments, write that data to a file, and read it back

in later. QCAD is flexible, if it is desired to link the robust experimentation and report functions,

it can be done.

In the second scenario, QCAD can accept experimental results from a design team,

calculate the analysis of variance, and set hardware parameters equal to tile optimized results.

4.5.3.5. Material and Process Selection

As the name states, the material and process selection module is used to help a PDT select

materials and processes for piece-parts. The use of this module is the same as that for concept

selection described in the section on QCAD functions. Material and process selection tends to be

more numerically oriented than conceptual design selection. Thus, the use of heuristics to

designate manufacturing processes may be more appropriate than a selection matrix.

Figure 4.18 is an example of a material and process selection matrix. The criteria in the

rows come from the second QFD matrix. Some additional criteria is also used in the matrix to

further distinguish among concepts in terms of cost and production feasibility. The numbers in

this matrix are added for use with the computer. When completing this matrix originally, the PDT

subjectively evaluates the concepts without the numbers.

90

Volume

Frame Thickness

Frame Width

Frame Height

Barrel Support Thickness

Production Volume

Tolerances

Production Cost

Weight

0
C

Ca

E

1.5

5

2.5

2.5

4

4

2.5

5

1

Overall Importance

C
U3
C
Co

Cu

C

S

S

S

S

S

S

S

S

S

0

C

O)

co

E
C0
E

.I

O)0)

u)
E B

o-

.-

._0O

co2a)
co

S

S

S

S

S

-

S

-6-.5

S

S

S

S

S

S

S

+

S

S

S

S

S

S

-11

Figure 4.18 - Material and Process Selection Matrix

The output of this module is a production process that will become a node name in the

process hierarchy. In general, there will be a one to one correlation between the hardware nodes

and the production process nodes.

4.5.3.6. Concept Review

This concept review matrix works the same way as the concept review matrix in the

function hierarchy. The only difference is that this matrix compares hardware to processes,

91

Legend
- =-1
S=O
+ = 1

11 II - | - r

- _, , ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I --r II

whereas the other matrix compared functions to hardware. Figure 4.19 is an example of this

concept review matrix.

clamp support

securing mechanism

swivel mechanism

light holding mechanism

0
Q.

u)

E
CU

E

X

E

CCu
c-

a,
a)E
0)
C
=J
...0C1)

.0
.Q

X

E
U)
.C
co

O
a)
E

U)

Cu
E

X

E
U)
._
Co-
a)
E

-o0
0

.0

X

Figure 4.19 - Concept Review Matrix

4.5.3.7. Additional Comments

Unlike the function hierarchy that stored a list of all viable, generated hardware concepts,

there is no such list production processes. In general, a generated list of processes that can be

used to manufacture a product can become rather extensive very quickly. Thus only those

choices considered, or explicitly not considered, should be stored in a documented list.

In addition to designating manufacturing processes in the hardware hierarchy, the PDT

creates a list of functions that the hardware sub-system is required to perform. These sub-systems

are sent back to the next level down in the function hierarchy along with the design parameters

and constraints list.

92

- l - | -

Lastly, parts can be called by any functional requirement or higher level sub-system

hardware node. As more and more parts are created, the product structure becomes more and

more flexible, which will be more useful in redesigns of the same product.

4.5.4. Process Hierarchy

The process parameter node looks to the hardware node for the defining manufacturing

process. The higher level nodes, that reference hardware assemblies will further define an

assembly process. The lower level nodes will further define manufacturing operations.

Assemble Clamp

I I I I
Assemble Clamp Assemble Securing Assemble Swivel Assemble Light

Support Mechanism Mechanism Holding Mechanism

I

Buy Screw Make Barrel Buy Barrel
Cast Frame Machine Frame I Set Screw

Cast Barrel Machine Barrel Buy Washer Buy Screw

Figure 4.20 - Process Hierarchy for the Clamp

The process hierarchy for the clamp is shown in Figure 4.20. The parts are broken down

like an MRP (Materials Requirement Planning) system with the overall process steps occurring

from left to right and from bottom to top (The manufacturing floor does not have to use an MRP

system to use this product model). Each node will have parameters that further define the

process. Some nodes may have QFD process planning and production planning matrices and/or a

list of optimal process parameters determined from a design of experiments.

4.5.4.1. Bill of Materials

For all of the assembly process nodes, a bill of materials is generated that itemizes the

parts in that assembly. For example, the bill of materials for the total system includes the clamp

93

support, securing mechanism, swivel mechanism, and the light holding mechanism; each of

quantity one. The swivel mechanism would include one barrel and one barrel set screw.

QCAD is also able to generate an itemized bill of materials for all of the piece-part

hardware components.

4.5.4.2. Process Parameters

A process parameter contains detailed values about the production process. For a high

level production process, one parameter would be the assembly sequence. At lower levels, the

parameter could include the speeds and feeds of a milling operation. Other more generic

parameters include lead time and tolerances.

4.5.4.3. Process Parameter Design

Taguchi design of experiments is generally not simulated on computer for production

processes. It is usually performed on the production floor on the actual machine under normal

operating conditions. The parameter design module lists the optimal operating parameters for the

production process.

4.5.4.4. QFD Process and Production Matrices

The third QFD matrix on process planning, translates hardware characteristics to process

requirements and is used the same way as the QFD matrix described in the hardware section (see

Figure 4.21). This matrix is used to understand hov different process requirements relate to the

functionality of the product with respect to the voice of the customer. The target values are

recorded as process parameters. A sensitivity analysis of the importance ratings and the

relationships will dynamically effect the importances of certain process parameters.

94

Volume

Frame Thickness

Frame Width

Frame Height

Barrel Support Thickness

Co

a)

0C

E

1.5

5

2.5

2.5

4

Importances

Targets

T3

aa
Ea
F-

a)

OCO0

@

on

369

o
O
I08)

o
a)

-

C

a)
E

0.

0
0
0'Oco

'
a)

CL

I
a)
E

LL

a)

0.,
0a

Cc-

QI

a)

I
E
cL

a)
a.03

C-o

a,CD

aI3
C)

cn

n
I-
Cd

'0

a)

.

a,

o
a)

mC.

a)

Ct_

0
0

@
55.E

co

0CO

13.5

L-

.C

45

C

45

.C

uLc
o .. ,.

36

C

1-

@
36
,

c-LO
04j

Figure 4.21 - QFD Process Planning Matrix

The fourth QFD matrix on production planning translates process requirements to

production requirements for use in determining production operation sheets and control charts

(see Figure 4.22) (Krinninger and Clausing 1991). The rows and importance ratings are from the

columns of the third QFD matrix.

Both of these matrices concentrate on process and production operations. QCAD doesn't

specifically use either of these matrices in assisting a designer to develop a product. However,

they store additional information in the system, for completeness.

95

- l- | I | l-

--

--

n
! v v

-II I lp a ·

Cast Metal Temperature

Cast Metal Pour Velocity

Cast Cooling Time

Frame Ho'e Drilling Speed

Frame Hole Tapping Speed

Barrel Screw Hole Drilling Speed

Barrel Screw Hole Tapping Speed

Ce

CV)t0cl
E

5

2

.5

1.5

1.5

1

1

Importances

Targets

..~~

a)M
1.j

1.
Q)

E
a)

W
0
co
C
L.

LL

45

oU-

LZicoI

a)

0Q
a)

no-.

CDVa)

U-

Cd
Ho

Q)
rL
E
ca)

0.
)C

W

a)

E r

r

Eao
0 5: I

. CC . C
w In U

Q)

en
'O

O404
W
:5

n-
'Oa)

'a
CMOc.

@
18

co
0
0 3

4.5

o

13.5

.

13

13.5

._u,
Li
NJ

9

-

9

U

LO
N\J

Figure 4.22 - QFD Production Planning Matrix

4.5.4.5. Additional Comments

The process and production planning phases of EQFD have been further developed by

Florusse and Clausing (1992) as part of the Rapid Acquisition of Manufactured Parts (RAMP)

project at the South Carolina Research Authority (SCRA). The revised procedure was developed

through a cooperative project with MIT, ICAD, and the SCRA.

96

- l - l- | l- l- l- l-

111

I

tRN
NV

II

"I

II

One goal of the new procedure was to address several concerns that United States

manufacturing companies expressed about the third QFD matrix. The most predominant concerns

are listed below (Krinninger and Clausing 1991):

" · unclear implementation of QFD in the product development process,
* undefined integration of other methods, e.g. quality planning methods, in the QFD

procedure,
* vaguely described role of blue collar workers in phases II and IV,
* weak management support,
* inadequate documentation of former production processes,
* insufficient QFD training, and
* inappropriate documentation of planning results."

The revised methodology consists of four main steps, which provide a detailed framework

for process planning in EQFD. The procedure emphasizes concurrent development among the

design of sub-systems, piece parts, and process planning (Florusse and Clausing 1992):

1. Select the appropriate material and process in terms of cost, function, safety, precision,
and possible engineering bottlenecks;

2. Translate part characteristics from the second QFD matrix to process parameters for
critical part values;

3. Transfer critical process parameter checks to production; and
4. Assess production difficulties and suggest possible resolutions for the future.

Figure 4.23 shows how these steps integrate with the design process. The next four

sections elaborate on how the revised process could be integrated into the QCAD system.

97

Assembly
Total System Operation
Total System Assembly Process Planning Planning

Chart

TSA/SS Design 1. Part Formation
Matrix

Subfunctions
. Subuntins= Corporate Assignment Process Sets .

ISSubsyste Expectations Matrix Part Charac- Concept Selectio
teristicsConcept'/ * *

S~e~ecio *SS Corporate Competitive
.*~ , .Expectations to Process Sets

Concept R ei e w Part Per Process
. Concept Review a

Level Check

Competitive aS bsystem Critical Part ProcessSubsystem Characteristics Process *
. - * X~~Split-up \Setsa

SS/PP Design
Matrix

Function Param a
Funion Pararn Competitive Assignment

a Concept Selection Process Sets Matrix
Piece Part aa
Concept Manufacturing _ Critical Part a

. S I ctr°,, .Route Critical Part Characteristics
Characteristics to Process Steps

' Concept Revie a
Level Check Manufacturing

a Function Param a Manufacturing Route a

2. Part Finalization a

Piece Part aic
DesignMatrix aAssignment Manufacturing Process Planning Operation I

Matrix FeaturesDeig ! :Asigmet Maufctrig rc Pani b: Planning a
Critical Part Chart a.

IPart Featur a Features to per Machine
WConceptt C car | Manufacturing Process Step
Ie fa Part Features

a Features

3. Instruction for Quality Assurance Check Points Process Contro

.Desin| QA Control Chart Sheet4.FeedBacko Processin Diffiuper Machine

iOperationi
4. Feed-Back of Processing Difficulties/Changes for Parts J l Planning

v (

Figure 4.23 - A Detailed Framework for EQFD Process Planning
(Sontow and Clausing 1993, according to Florusse and Clausing 1992)

98

4.5.4.5.1. Part Formation

Part formation is concerned with the appropriate selection of sub-system materials and

manufacturing processes. As such, this step explores sub-system hardware configurations for

different materials and manufacturing processes. This part formation step performs the same

function as the material and process selection step described in Section 4.5.3.5. of the hardware

hierarchy. QCAD users wishing to follow this revised methodology should substitute the four

matrices in this part formation step for the material and process selection matrix in the hardware

hierarchy. The rest of this section gives a brief description of the four matrices in this step. For

more information, see Florusse and Clausing (1992) and Sontow and Clausing (1994).

The fii, matrix, the assignment matrix, in the top, left corner of Figure 4.23, is used to

explore the feasible material and process options to fabricate a sub-system. For each feasible

option, the PDT formulates different piece part configurations and determines critical sub-system

characteristics related to the piece parts.

The second matrix, the concept selection matrix, in the top right corner, is used to make a

rough selection among the manufacturing processes, against a set of technical criteria including

technical feasibility, material cost, and production cost.

The third matrix, another assignment matrix, correlates critical part characteristics against

the remaining manufacturing processes. In this matrix, the remaining processes are further

defined by designating the types of machines used in the manufacturing process.

The fourth matrix, another concept selection matrix, is used to select the manufacturing

process for the piece parts. A new set of criteria is used in this matrix to help the PDT think

about critical part characteristics, manufacturing characteristics, engineering bottlenecks, and the

interdependence of part characteristics.

99

4.5.4.5.2. Part Finalization

The goal of this step is to translate critical piece part hardware parameters to

manufacturing features and then to process steps. The assignment matrix facilitates the first

translation, while the process planning chart facilitates the second translation. Both of these steps

occur after a manufacturing process has been selected and as such would be stored in the process

hierarchy in QCAD.

4.5.4.5.3. Instruction for Quality Assurance Check Points

This step is concerned with setting appropriate quality control check point positions and

measurements. Several tools can be used in this step. Among them are quality assurance charts,

SPC charts, and Taguchi optimization methods. These tools are used after the manufacturing

process is selected and would be stored in the process hierarchy in QCAD. However, one must

be careful of putting too much information into the QCAD system, such that the user would get

confused by all of the available data. It may be more appropriate to keep some of the quality

assurance information in another database that can be referenced by QCAD.

4.5.4.5.4. Process Feedback

This final step is concerned with providing feedback on the production operations

specified in the previous three steps. There arc many ways to monitor manufacturing processes to

see if they are performing as expected. These include using SPC charts to monitor the flow of

material through a production line, and using reports to document machine failures. Both types of

information would be stored in the process hierarchy in QCAD. However, it may be more

appropriate to document the feedback information in another database that can be referenced by

QCAD to keep excess information from confusing the user. QCAD does provide a way to store

failure information, in a fault tree, which is relatively easy for a designer to use. The fault tree is

described in Section 4.5.5.1.

100

4.5.5. Miscellaneous

4.5.5.1. Fault Trees

The fault tree is separate from the other three hierarchies because faults, or reasons why

the design doesn't work, can occur anywhere in the set of hierarchies. A production process

operation may cause a hardware dimension to go out of tolerance, which will then interface

incorrectly with other hardware pieces, which then won't fulfill a desired product function. A

detailed list of faults can be very useful when trying to determine why the product doesn't work.

Fault trees can become complex very quickly, making paper fault trees long and hard to

decipher. An abbreviated fault tree for the clamp is in Figure 4.24. The dotted lines show where

more faults are listed.

doesn't hook
over pipe

I

clamp doesn't work

doesn't disengage
pipe

light won't spin

I

clamp cavity
is too small

clamp mouth
is too small

I

frame screw
is too long

frame casting
is too small

I

casting shrank
too much

I

too much flash material
on inside of casting

Figure 4.24 - Fault Tree for the Clamp

In QCAD, each node has a fault list that describes causes for why that part would fail.

QCAD then has a command that will search the entire product model for fault data, correlate

them into a tree structure, and generate a report. The search process could also be limited by key

101

1

search parameters, narrowing the size of the generated tree, making it easier for people to

decipher.

The computerized fault tree can also help with subsequent product designs, especially if a

remark is stored every time a failure occurs in a sub-system. When the product design comes up

for review, a designer can call up the faults with the most remarks and study them to create a

more robust product.

4.5.5.2. Miscellaneous

In addition to finding fault attributes anywhere in the product model, other parameters

such as costs can be compiled, in the same manner, from anywhere in the tree.

In large product models, it can be difficult to keep track of all of the possible places where

an error might occur and what triggered those errors to occur. In QCAD, it is possible to specify

attributes anywhere in the product model that look for discrepancies and report errors. One type

of error could be that a screw doesn't fit into its corresponding hole. Another could be that a

manufacturing process was selected that the company does not own. The error locations work in

the same way as the fault trees in that they are distributed throughout the product model.

However, the error locations are linked directly to attribute values. Once a product model is

instantiated, the user can search for the locations with an error. Through the list of errors, the

user can locate the object that caused the error and look through the attribute values to discover

the cause.

The above discussions talked about the design process proceeding in a straight line from

start to finish. Even though this may be the ideal design case, in practice, there are feedback

loops. When backtracking in QCAD, the designer just has to move the cursor to the previous

node and resume working. If the designer is new or doesn't know what the previous node is, each

node has a list of both of its calling nodes to facilitate moving around in the design. For example,

the clamp barrel piece-part has two parents, one from the function hierarchy (swivel light) and one

from the hardware hierarchy (swivel mechanism).

102

After going up the hierarchy, the designer can get a broad view of the sub-system by

looking back down. The function node, swivel light, would show the user the frame, the barrel,

and the barrel set screw. The hardware node, swivel mechanism, would show the user the barrel

and the barrel set screw. These different views of the system also help a designer make changes

to interfacing parts, to help minimize mistakes.

Furthermore, QCAD is intended to be a flexible way to represent and design a product on

a computer. The product representation includes functional features, hardware fatures, and

process features. The flexible structure is expandable and customizable. The basic QCAD

framework was presented with several TQD modules. However, users should not feel restrained

to using only these modules, other modules that the PDT finds beneficial in design can also be

hung onto the QCAD structure.

Likewise, not all functions, hardware pieces, and processes are critical and need to be

designed using every available TQD tool. The modules described above can be selectively used,

as necessary.

103

Chapter 5

Discussion of QCAD Implementation

5.1. Overview

Chapter four defined a structure to enable the integration of total quality

development design methods with a computerized knowledge based engineering system.

The methodology includes a design process that the design team follows without the

assistance of the computer and a computer framework that supplements the design

process.

The first section of this chapter describes the implementation of QCAD in the

ICAD Design Language (IDL) and explains how both the clamp and copier products can

be used with QCAD. The second section describes insights gained from creating the

system and from modeling both products. The third section describes how a product

development team could use QCAD for design.

5.2. QCAD Case Studies

The QCAD system was developed on a Sun SparcStation 1+, with 64 MB RAM

and a 1.05 GB hard drive running SunOS 4.1.3. All programming was done under ICAD,

Version 4.0 running the Unigraphics II solid modeler, parasolids, Version 4.2.81. No

changes to the basic IDL program were necessary to implement QCAD, however, some

modifications would be necessary for a commercialized version of the system.

The IDL product models for the case studies presented in this section are stored

on the disk in the pocket on the back cover. Instructions for using the product models are

in Appendix A.

A brief overview of the most important ICAD concepts is given in Appendix B.

Both object oriented programming and IDL specific concepts are discussed.

104

As described in Appendix B, there are two methods of interacting with the ICAD

system: one through the programming language interface and the other through the

browser. As such, the QCAD implementation had two objectives: (1) make product

models easy to implement in the programming language, yet (2) make it easy to explore

product variations in the browser. In the initial stages of the research, the product models

were programmed in a specific manner, with limited parametric capability. As the QCAD

concepts proved viable for a specific case, the product model was reprogrammed to be

more generic, enabling more flexibile use of the product model. The generic structure is

described in Section 5.2.1.

5.2.1. Generic QCAD Structure

An ICAD product model organizes defparts into a tree structure, with a root node,

branches, and leaves. For the QCAD implementation, the root node is the QCAD defpart.

It organizes the highest level information in the product model. As such, the QCAD

defpart contains the selected function to be examined, the hardware embodiment of that

function, and the production process used to create that hardware. The QCAD defpart is

the foundation for the function, hardware, and process branches of the tree. These

branches are large and could be considered as trees in their own right. Chapter 4

described these three branches as hierarchies.

A fourth branch, stemming from the QCAD defpart is a miscellaneous defpart that

takes care of administrative functions for the product model. The miscellaneous defpart is

also the starting node for the fault tree, or fault branch in this case.

Figure 5.1 shows a QCAD defpart, with its four children, in the QCAD browser.

This figure displays the underlying QCAD structure without a product, hence no graphical

image is displayed in the graphics viewport, on the left side of the picture. In the figure,

the four branches are referred to as children, because only one defpart in each branch of

105

Figure 5.1 - QCAD Browser

106

I
.-

b
(A

F

5

1
'WI

* ·

a

!
...

the tree is displayed. In all, five defparts are shown: the root, QCAD defpart, the total

system function defpart, the total system hardware, the total system process defpart, and

the miscellaneous defpart. Of course, these defparts are the beginning of the four

branches, as is indicated by the dots.

Although displayed separately, the four hierarchies are interconnected, as shown in

Figure 5.2. All of the hierarchies are coordinated through the QCAD defpart, represented

by the large rectangle. Each of the QCAD defpart's four children are represented as four

large boxes that are half in and half out of the QCAD rectangle. This signifies that the

QCAD defpart defines its children and passes to them some defining attributes. After the

information is passed down, the children become parents and define new attributes and

children. In Chapter 4, there is a discussion about iterating between the function and

hardware trees to further define sub-functions; and a discussion about iterating between

the hardware and process trees to further define sub-hardware. The arrows in Figure 5.2

represent this iteration.

The arrows going from left to right show that the hardware defpart gets

information from the function defpart and that the process defpart gets information from

the hardware defpart. The two arrows in the QCAD outline are directly managed by the

QCAD defpart. These arrows are at the total system level of the product model.

The arrows outside the larger rectangle of the QCAD defpart are not actively

managed by the QCAD defpart. The definition of the total system defpart guides which

sub-system defparts will be created. The smaller boxes represent the sub-system level of

the product model. Each sub-system is a child of the larger total system defpart. In object

oriented programming, each child inherits attributes from its parent, which in this case is

the total system defpart. However, in QCAD, as the curved arrows show, information

flows not only from the parent, but also from the previous design step.

107

QCAD Defpart

Function Hardware Process
Defpart Defpart Defpart

I i--I I

| Miscellaneous
Defpart

1 JI I' 1 'I II'1

Figure 5.2 - QCAD Defpart Interconnectedness

The function tree has information about both functions and hardware. Thus, it is

able to define its children without specifically referencing the hardware tree. The

hardware tree however looks to the function tree for its definition. The process tree looks

to the hardware tree for its definition. At the highest level, this definition is performed by

the QCAD defpart. At lower levels of abstraction, this definition is performed by the

corresponding function or hardware defpart.

The miscellaneous defpart works a little bit differently. The information stored in

the miscellaneous defpart, such as the bill of material and fault tree, can come from any

defpart in the function, hardware, or process trees. As such, all of the information from

the three hierarchies is passed up to the QCAD defpart and sent to the miscellaneous

defpart, as shown in Figure 5.3. In the figure, imagine that the function, hardware, and

process trees are several layers deep and that the information can come from the bottom-

most defpart up to the QCAD defpart and over to the miscellaneous defpart. The

miscellaneous defpart is half in and half out of the QCAD box because the information

processing is performed in the miscellaneous defpart, and not in the QCAD defpart.

108

· ~~~~~~~~~~
I

I

r__1 F__-I F I II '\\- I I I I N\. I_ H " _ ' 1H ' H 1 v

Figure 5.3 - QCAD Miscellaneous Defpart Interconnectedness

Function Defpart Hardware Defpart Process Defpart Miscellaneous Defpart

* Function Matrix
* Function Net
* House of Quality
* Constraint
Attribute

* Fault Attribute
* Error Attribute
* Concept List
* Pugh Concept

Selection
* Concept Review

Matrix

* Design Structure
Matrix

* Product Structure
Net

* QFD Design
Matrix

* Hardware
Attribute

*Taguchi Attribute
* Fault Attribute
* Error Attribute
* Material and

Process List
* Materia! and

Process Selection
* Concept Review

Matrix

* QFD Process
Matrix

* QFD Production
Matrix

* Process Attribute
* Taguchi Attribute
* Cost Attribute
* Fault Attribute
* Error Attribute

* Numeric Constraint
Attribute

* Textual Constraint
Attribute

* Bill of Materials
* Total Cost
* Error Location
* Fault Tree

Table 5.1 - QCAD Defpart Contents

109

Table 5.1 lists the design process components that were included with each type of

defpart in the QCAD system. This table is comparable to Figure 4.5, which shows an

overlay of the design process on the QCAD structure. The table is provided to show the

defpart type where design components and attributes are defined. An attribute is a

variable that takes on a value. A component refers to a design method that involves

several attributes. For more information on a specific component or attribute, see Chapter

4 or Sections 5.2.2. and 5.2.3.

Furthermore, Table 5.1 lists a wide variety of design components and attributes to

be used in the system. These capabilities had to be implemented in such a way that they

would not be a burden to the programrmer. As such, the QCAD system uses mixins,

functions, and methods to assist in developing a product model.

A mixin is an easy way to customize a defpart. The defpart takes on all of the

properties of the mixin, but can modify those properties if necessary. Each defpart in the

function, hardware, and process trees uses a function, hardware, or process mixin

respectively. These mixins ask for user inputs and perform the calculations for the design

processes listed in the table above. Each defpart is customized with specific information

used by the mixin. The mixin provides a structure for adding design information to the

defparts. The design process steps in each mixin will only be used if the result from that

design process step is requested by the system or by the user.

The mixins provide a solid base on which to build each defpart. However, some

customizations cannot be created with mixins alone. Each child in the three hierarchies is

selected from a set of possible children. Each child has different parameters that it

requires for its definiticon. To facilitate the selection of children for each hierarchy, the

QCAD system uses functions that compare the child's name to a list of desired children. If

there is a match, the child is created and the information is passed down. If the child is not

on the list, it is not created. For example, if there are ten possible children for a hardware

defpart, the child selection function will be used to search a list of hardware designated by

110

the function hierarchy to create only the children that are both on the list and defined for

the hardware defpart.

Lastly, methods are used to assign constraint and Taguchi attribute values to

hardware and process attributes. The method is actually defined in the hardware and

process mixins, which cuts down on the clutter in the actual hardware and process

defparts. Both the constraint and Taguchi attribute lists are specified in certain locations

of the product model, which the methods access. The constraint information is collected

from the function hierarchy and stored in the miscellaneous defpart. The Taguchi

attributes are stored in the individual defpart. Once the appropriate list of attributes is

found, the method compares the designated attribute to the list and, if found, assigns the

value to that attribute.

5.2.2. Clamp Product Model

This section describes the clamp product model developed in the QCAD system.

Chapter 4 has a description of the clamp product and presents many examples of the

design methods using the clamp model. Figure 5.4 shows the QCAD browser, with a

picture of the clamp on the left and the four inter-connected hierarchies on the right. The

top branch of the tree is the function tree; the second is the hardware tree; the third is the

process tree; and the last is the miscellaneous tree. On the actual computer screen, each

tree is a different color.

The levels of abstraction go from left to right, with the total system level on the

left and the piece parts on the right. The part feature hardware nodes are not shown.

The clamp product model in QCAD was expanded from a hardware only product

model. A QCAD model does not have to be created in this way. However, it is assumed

that many ICAD users already have working hardware product models. This was a test to

make sure that the QCAD system could be retrofit on top of existing hardware product

models.

111

Figure 5.4 - QCAD Clamp Product Model

112

Figure 5.5 shows an example of geometric parametric capability. This is simulated

by using only the hardware tree to create the change. In the hardware tree, there are

formulas that calculate the height of several components based on the size of the pipe that

the clamp will fit around. The graphics viewport in the figure shows what happens to the

height of the clamp when the pipe diameter is changed from 2.1 inches to 4 inches.

Compare the picture of the clamp in Figure 5.5 with the picture in Figure 5.4. On the

right side of Figure 5.5, a modifiable attributes inspector window is shown in the middle of

the hardware tree. The window displays all of the attributes, associated with the clamp

defpart, that the user can change while the product model is instantiated. Note the new

value for the :max-pipe-diameter attribute.

In the QCAD system, there are two ways to change the :max-pipe-diameter

attribute, depending on the desired effect on the rest of the product model. The maximum

pipe diameter attribute is a numeric constraint. It was initially defined in the function tree.

If the user wants to change the value of that attribute for the entire product model, then it

should be changed in the function tree. If the user wants the change to affect only the

hardware and process trees, then the change should be made in the hardware tree as

described above. In Figure 4.4, the QCAD structure, it is easy to identify what parts of

the product model will be affected by a change in another part of the product model-a

change in one object affects the definition of the objects below it and to the right.

Figure 5.6 shows the House of Quality for the clamp. The matrix is stored in the

position theater lights function defpart. It appears on the screen through a modifiable

attributes inspector window in the same way that the maximum pipe diameter attribute

was displayed in the previous example. The window in the middle of the screen shows the

contents of the QFD 1-matrix attribute. The QFD matrix is a list of lists. As displayed, the

first list is the voice of the customer with importance ratings; the second list is the

engineering characteristics; the third list is the relationship matrix; the fourth list is the

113

4."

WF.0
+1
4.

Figure 5.5 - Parametric Clamp Instance

114

E

be

1!
ILJ'W

Figure 5.6 - Clamp House of Quality

115

.

correlation matrix; and the fifth list contains the target values. This window allows the

user to change any part of the matrix. The importance ratings for the voice of the

customer are stored nominally in the :qfd-matrix. A different attribute stores the actual

voice of the customer in order to facilitate programming and to simplify use by the end

user. The product model also calculates the column importance ratings by multiplying the

voice of the customer importances by the values in the relationship matrix. The final

importance ratings can be viewed by the user, but not changed.

Figure 5.7 shows the parametric capability using the QCAD routines in ICAD.

This example shows the use of QFD and concept selection matrices in QCAD. By

changing a few customer importance ratings the entire product changes. This is an

example of the type of dramatic change in hardware that is possible with the QCAD

system. Before, the hardware was a clamp, now it is a floor mount. This change

happened at the total system level as a result of a change in customer priorities. Changes

are also possible at the sub-system and piece part levels.

This past example is an example of a sensitivity analysis. The voice of the

customer importance ratings were modified and the hardware changed. There are a

number of different attributes in the QCAD system that can create a concept change,

which is different from a parametric value change, like that shown in Figure 5.5. Among

the attributes that can affect a concept change are the voice of the customer importances,

the QFD relationship matrices, the concept selection row weights, the concept selection

matrix relationships, the material and process selection matrices, and the concept review

matrices.

The miscellaneous defpart creates the opportunity for another type of sensitivity

analysis, based on total cost. The cost is determined by the material and process used to

create and assemble hardware pieces. All of the cost attributes are defined in the process

tree. The total cost attribute in the miscellaneous defpart adds up all of the costs in the

process tree.

116

U)

Figure 5.7 - Floor Mount

117

Figure 5.8 shows an example of the total cost attribute. For an iron sand cast

clamp frame, the clamp has a total cost of close to $29. The inspector window under c-

frame on the right side of the screen shows that the frame material is iron; The process

tree identifies a sand cast frame; And the inspector window under the miscellaneous

defpart shows the total cost.

In Figure 5.9, a different material and process is selected and the total cost goes up

to about $77. For this sensitivity analysis, the material and process selection matrix was

over-ridden by the user. In the top right corner of the figure, a choice attribute box shows

the user what materials and processes can be selected. In this case, the user chose the

steel machining option, resulting in a larger cost. Note that the process matrix now shows

a machined clamp frame instead of a sand cast frame.

The frame pictured on the left side of the figure did not change with the new

material and process selection. It could have changed. There is a way to link the

hardware to the selected material and process, however, for purposes of demonstrating the

functionality of the QCAD system, it was not deemed necessary to create a detailed

representation of the hardware. More detailed hardware can be developed in the ICAD

system.

Figure 5. 10 shows more detail of the miscellaneous defpart. The function,

hardware, and process trees are condensed to create room for the miscellaneous defpart

inspector window. In the top of the window is a list of the bill of materials for the clamp.

All six parts are listed there. The bill of materials is one list of a set of routines that search

all or part of the function, hardware, and process trees to collect information for a report.

For consistency, all of the search and report generation routines are located in the

miscellaneous defpart.

118

Figure 5.8 - Sand Cast Clamp Cost

119

b
4.
h

U,
u

r
III
4.

8

; ---~l s~s

F

Figure 5.9 Machined Clamp Cost

120

a.

ii

Figure 5.10 - Miscellaneous Defpart

121

I

14'
'WI[bLi

A little farther down in the inspector window of Figure 5.10 is the error locations

attribute. As described in Section 4.5.5.2, there are attributes throughout the product

model that signal errors. In the ICAD system, it makes more sense to instantiate the entire

product model before looking at product specific errors. The alternative is to stop the

product model instantiation process to signal the error. However, once stopped, the error

must be fixed and the model reinstantiated, which can be a very time consuming process

for large product models. Additionally, letting the model fully instantiate facilitates

parametric exploration of the product model, by letting erroneous instances be created.

The following is an example of how the error tracking notification system works.

In Figure 5.10, an error is identified by the error-locations attribute. It signals that the

error is in the light holding mechanism defpart. An inspector window is opened in the

error-locations attribute that looks at the light holding mechanism defpart. After some

exploration of the attribute values, the error is found. The barrel screw diameter is larger

than the hole that the barrel that it fits into. The screw is .8 inches wide, whereas the hole

is .5 inches wide. A knowledge of the product model indicates that the large bolt diameter

is caused by the small value for the yield stress. Now that the error has been identified, it

can be corrected. Note that it is difficult to find the problem by just looking at the graphic

picture and that some error indicator is necessary.

On the bottom, right of Figure 5.10 is the start of a fault tree for the clamp. The

rest of the tree runs off the bottom of the screen, but can be scrolled into view. The fault

tree is created by linking fault data embedded in the three hierarchies of the product

model. The miscellaneous defpart collects the fault attributes and organizes them into a

tree structure.

122

5.2.3. Copier Product Model

The clamp is a rather simple product, good for describing the QCAD methodology

and the computer implementation. However, most products are more complex than the

clamp, with more parts, more sub-systems, and many more interactions among the parts

and sub-systems. Even part features are affected by the choice of geometry and material

for other interfacing parts. The idea of this case study is to show that the QCAD

methodology works for a complex product.

The copier example has the same functionality as the clamp model, even though it

has roughly 1000 times as many hardware piece parts. The same methodology was used

to create the copier as the clamp. No rework in QCAD capabilities was necessary to

implement the copier. However, since it was the second case study using the ICAD

design language, the code is a little more compact.

Figure 2.2a shows the total system architecture for a Xerox 1075 copier, which

makes about 70 copies per minute (Clausing 1994). The copier has four main sub-systems

associated with: (1) positioning the original document to be copied, (2) positioning the

blank sheet to receive the image, (3) transferring the image from the original sheet to the

blank sheet, and (4) providing support for the first three sub-systems.

In QCAD, the copier was modeled two levels deep. The first level is shown with

graphics in Figure 5.11. The dots under each heading of the tree on the right side of the

figure indicate that that node has children. In the graphics viewport, each sub-system is

represented by a box that contains all of the sub-systems and piece parts that compose the

assembly. More detailed graphics are used at lower levels of abstraction. Figure 5.12

shows both the first and second level sub-systems for the copier. Due to the large tree

size, the browser window was modified to show three columns of the tree. The first

column shows the function tree; The second column shows the hardware tree; The third

column shows the process tree. Due to its length, only part of the function tree is shown.

There are no dots under the hardware and process tree nodes, because no further

123

Iia g & Lp 8 H E k. ;b '" g

· Y4 I& 1

L G ' e. 'l' VI a v
c I I U C I vl (l-

l v sk { s g ><'-

A

0

.3
a1

Figure 5.11 - QCAD Copier roduct Model

124

FIY

4.

8

w

N

4.

,%

a

b I

i
do

I1 ·

__ __ __ · _ __ ·n Im

ILo aEluac I
l

| -" " " " - --- |L-X--

t

Figure 5.12 - Copier Product Structure Tree

125

hardware or processes are defined for those trees (except for the feeder). However, there

are dots under the function tree nodes. Even though no further functions are defined for

the function tree, the dots represent the ability for the user to add sub-functions to the tree

and thus augment the product model.

In addition to modeling the high level sub-systems, the paper feeder sub-system

was modeled in detail. Figure 2.2b shows the paper feeder for the Xerox 1075 copier.

The QCAD model is shown in Figure 5.13. For ease in understanding the screen display,

only the hardware tree is shown. Additionally, each of the top level paper feeder sub-

systems are several more levels deep. However, for clarity, the multitudes of piece parts

and part features are not shown in the tree. The piece parts and part features are shown in

the graphics viewport, which has been changed to show four different views of the paper

feeder.

In the hardware tree in Figure 5.13, only one paper feeder and one paper feeder

tray is listed. However, the 1075 copier has two paper feeders, each with its own tray.

To add these two sub-systems to the copier, the user only has to add two functions to the

function tree. Of course, this is only a partially accurate statement, since the function

defparts and their related hardware and process defparts must already exist in the system.

In this case, the feed sheet and store sheet functions are already defined. The user only

has to add them to the function list under the transport blank sheet function.

Figure 5.14 shows the result of adding the two functions-a copier with two paper

feeders. The function tree displayed on the right side of the figure, shows two functions

for storing blank paper and two functions for feeding sheets. To add the two additional

functions, the user modified the :function-list attribute in the modifiable attributes

inspector window, shown directly beneath the transport blank sheets function node. Note

that both feeder sub-functions are identical. Even though the hardware tree is not shown,

126

o

Figure 5.13 - Paper Feeder

127

m

81L-

[1

1iI

Il

4)

0

Il

II1

I

I

9:: ==9

·,. s =, r . ,,

tW
a
WW-c
a,
8
:_l

1

71

_ e .,ro a
.t e

U H II ,
I C ,.IQ* ,=. dl .X

_, 0',*W .. I
__ u I C" *-

lat .. ,.

U' -

* - ~ I L U

78 u
I I

_. I · I * c ·I
,~ i I .I . . .· I?:~ _ ,: ~ : :, : h: ~ :
VII ~/ la, t'i 13i~i 6/i-' I tl

1//S;

o L L ~~~~I i
- 1

11~~~~~~~ 6I

Figure 5.14 - Copier with two Paper Feeders

128

In

I.

W

2

I
I

8

kd

I I

i
3 [t

LI'I RF

e 1k

= I
S

p, g
do

P.i

I

; I2

9 -1

b
'-I
U,'

IE,

4
U"I

an

I I a a
-

| n
I -I

l
- -··· -E

[] IYcc�

8
4

- - --~~~~~~~~~~~~

I 0 W IJ I CL (.1 " U-W I n wm =u IF---m -w-jj~ xmY nc CUWJLL -c

-------c�--

the graphics viewport on the left side of the figure shows identical paper feeders. The

second feeder is positioned below the first feeder.

The hardest part of modeling the copier was creating and positioning the hardware

components. The hardware and positioning for the clamp was relatively simple, since

there were only six pieces and about two levels of abstraction. The copier on the other

hand is about five levels deep, with positioning of parts occurring at different levels of

abstraction. The hardware geometry and positioning is inherent of the ICAD system and

does not affect the QCAD framework other than QCAD is written on top of IDL.

An interesting relationship between function and hardware can be seen by

comparing the function net with the hardware definition for a particular function. The

paper feeder connects to the paper tray by resting on two bearings. These bearings allow

the feeder to swivel to facilitate jam clearance and to enhance paper delivery. The swivel

mechanism can be easily seen in figure 5.13. In the lower right section of the graphics

viewport, labeled "Right View," two bearings can be seen extending beyond the length of

the feeder. These bearings connect to the top plate of the feeder and rest on the paper

tray.

Figure 5.15 shows a close up view of the front bearing assembly. The graphic

viewport is split into two sections: one which shows the full front view of the paper

feeder support plates, and one which shows a close up view of the bearing assembly

attached to the top plate. The front bearing assembly consists of a bearing and a shaft.

The right side of Figure 5.15 shows the function net for the connect to system bearing I

function, which defines the front bearing assembly. The function net is read, "The nature

of how the function rotate freely is satisfied depends on the nature of how the function

attach to feeder is satisfied." In this case, a solid cylindrical shaft is used to attach to the

feeder, and a bearing is press fit on the shaft to enable rotary motion.

129

3

0
co

Figure 5.15 - Front System Bearing

130

Figure 5.16 - Rear System Bearing

131

1

I.-

ia-.
4.
4.

0

1B

I
SC)

I1
I-

Figure 5.16 shows the rear bearing assembly, which looks completely different

from the front bearing assembly. The function net for the rear bearing shows three

interrelated functions. Two of the functions are the same, but the third function, provide

clutch access, changes the nature of how the attach feeder and rotate freely functions are

satisfied.

The belts and rollers on the paper feeder are driven by a central drive belt system,

such that all of the paper motion inside the copier is synchronized. The paper feeder uses

a clutch to engage and disengage from the centralized drive belt. Only two contact points

can be used to enable the feeder to pivot. As such, the clutch mechanism goes inside the

rear system bearing assembly. The bearing in this case sits loosely in the upper plate for

free rotation; Several washers and a clip hold the bearing in its axial position; and A large

hole inside the bearing provides room for the clutch mechanism.

5.2.4. Larger Product Models

The copier model was an exploration of the use of QCAD for the design of a

complex product. This section describes some considerations for even larger and more

complex product models.

Based on the scale up of the clamp to the copier, it stands to reason that the

QCAD methodology is capable of handling even larger products, such as a car or an

airplane. Boeing currently uses the ICAD system to assist with airplanes design (Gregory

and McIlroy 1990). However, some coordination of part names will be necessary, so as to

not cause confusion with identical part names for different parts, especially if they are at

different levels of abstraction.

Proper programming in IDL is based on creating generic defparts that can be

called from anywhere, if given the correct inputs. If the system is created in such a generic

manner, it is possible to build large products out of smaller sub-system models.

132

Another consideration for a larger product model is the amount of information that

is stored and collected in the system. For instance, the fault tree is composed of attributes

collected from the three product hierarchies. Suppose a model has over 1000 defparts,

each with one fault attribute (usually each defpart would have more than one fault

attribute). Compiling a full fault tree would result in about 1000 nodes on the tree. This

would be crazy for an engineer to look through to find the solution to a problem. A better

idea would be to only collect information from relevant parts of the system. The user

could enter keywords that the system would search for in collecting fault data and only

display the relevant data. This keyword search routine would also benefit the total cost

and error location attributes.

5.3. Observations from QCAD Case Studies

The next several sections examine the effect of the integration of total quality

development and knowledge based engineering through the use of the QCAD system.

Observations about the advantages and disadvantages of the integration are made from the

perspective of both the design process and knowledge based engineering.

5.3.1. QCAD and TQD

This section reflects on the use of a QCAD knowledge based engineering program

with the total quality development design framework.

5.3.1.1. QCAD Improvements over TQD

At a high level of abstraction, QCAD improves over the existing design process in

three areas:

1. Storing design information
2. Standardization
3. Exploring design concepts

133

The ability to store information is one of the strong points of the QCAD system. It

can store and retrieve large quantities of many types of design information. Piles of papers

and notebooks no longer need to be lost in file cabinets and storage sites. They can be

stored on the computer. Of course there are limitations to unrestrained information

storage, and these will be discussed in Section 5.3.1.2.

One of the by-products of storing the TQD design information in the computer is

that it gives the reasoning behind certain design decisions. The TQD matrices show what

the original designers thought about the relationships among different criteria, metrics, and

design options. This information, along with the function specifications, hardware

geometries, and process definitions, shows the original design intent. For future designers,

this information will assist in streamlining the design and adapting the product to new

requirements. The designer will be able to answer questions like "What does this gizmo

do?" and "How are we supposed to make this?" Additionally, for new designers on a

project, the system can help familiarize the designers with the product and with the design

process used.

When designing a large project with hundreds of parts, a company will most likely

break the product into sub-systems, assigning each sub-system to a product development

team. We have seen that unless a design is truly modular, each sub-system will interact

with other sub-systems (Wu and Azarm 1992, Ulrich 1992). These interactions can be

coded into the QCAD product model for retrieval by other groups. That is, as a design

progresses, PDTs can load information about the design into a central computer that

processes the information, makes sure everything is compatible, propagates error

messages to appropriate design teams, and disseminates information about constraints that

PDTs need to look into.

The computer not only stores information, but requires the information to be

stored in a certain way. The QCAD knowledge base is composed of engineering

equations. These equations are only coded in once, standardizing the way products are

134

designed. For example, if a company has multiple formulas to calculate the length of a

beam, one formula has to be selected for use in the computer. Alternatively, each formula

is only used under certain situations. The resulting output is that all of the parts are

designed using the same criteria.

Furthermore, once the design formulas are entered into the system, every time the

program is used to calculate a parameter, the same formula is used. There are no human

errors in running the calculations, other than when entering information or interpreting the

results, as long as the formula is entered correctly. The computer also calculates the

parameters quickly.

One of the ideas behind the QCAD system is to be able to store and select among

many different design possibilities, including sub-functions, hardware, and processes. A

small data base of these defparts is stored up for the first design. For the next generation

design, the same defparts are used, but a few defparts are added. In this way, the design is

based on the original design intent, but incremental changes are also possible. After some

time, a large data base is collected and many variations on the design can be possible.

In addition to just entering the company's product into the QCAD structure, a

competitor's product could be modeled in the system. This expansive modeling of

products assists the company in completing and recording a detailed competitive

benchmark, while expanding the number of design options.

Once an entire product is input to the system, sensitivity analyses can be performed

at several levels of abstraction. Current computer design systems, through parametric

design and variational geometry, change hardware components to see different design

configurations. With the addition of more abstract design levels, more radical design

variations can be seen. Changes in importance ratings or in perceived QFD interactions

can change the nature of the design, radically, providing stimulus for future, inventive

designs.

135

Furthermore, any sub-system that can be created to serve a function can be

implemented in QCAD. When added, each sub-system must fit in with the rest of the

product model, to ensure functionality and standardization. Each hardware piece is linked

to a function through the concept selection matrix. After a while, many sub-systems will

have been built up to provide even more flexibility in the design.

Another benefit can be seen when the design is in the prototype stage. After

testing the prototype, engineering changes may be needed. QCAD is set up to call

hardware based on the function it performs. If a change needs to be made to one sub-

system, that part's interactions with other pieces can be found in two ways. (1) The

hardware piece shows its calling function; that function can call all of the hardware pieces

that satisfy it. Each hardware piece can then be changed. (2) The hardware piece also

shows its immediate parent sub-system. That sub-system can call all of its children for

modification.

Along these same lines, QCAD is object oriented. Identical hardware pieces can

be created from the same defpart throughout the model. If an engineering change is more

than just a parametric variation, the defpart can be modified, which will implement the

change on all like pieces throughout the product model.

QCAD can also be useful farther down the product development process in

production and customer support. If there is a problem with a product, the design history

is stored in a computer for easy retrieval (this view is shared by Sriraman et. al. (1990)

who have implemented a QFD system in an object oriented environment). Additionally, if

fault information is coded into the product model, the computer can provide a structured

view of how to solve a problem. Notes could also be added to the model showing where

and why the sub-systems failed. This kind of knowledge can be very useful for next

generation designs.

136

5.3.1.2. QCAD Difficulties with TQD

Despite the advantages described in the previous section, there are some significant

difficulties when using QCAD with the design process:

1. Design rules must be known
2. Lots of programming
3. Mind numbing numerology

The first on the list states that the design rules used in QCAD must be known. I is

hard to program a computer if you do not know what to program. Unfortunately, this is

quite often the case in design. The general idea for the product exists, but the questions

often asked include, "What hardware design satisfies that function?" and "How can it be

made?"

There are a couple ways around this difficulty. One is to only program the parts of

the design that have known design rules. However, this information is the same as that

currently used with computers, limiting the usefulness of the QCAD system. A second

alternative is to use the QCAD system to store generic, or text, information until design

rules can be established for that particular hardware configuration. This second option is

more like the actual design process, in that information is gathered and stored, and then,

after sufficient information processing, portions of the design are solidified. The QCAD

system allows for the initial information to be stored with room to add in more detailed

information.

The second difficulty involves the amount of programming required to store a

product model in the system. A lot of design information can be stored in the QCAD

database, but that requires a sizable programming effort. Currently, most ICAD users

only model the product hardware and some of those models require considerable

programming effort. QCAD requests the user to include information about functionality,

processes, and alternatives for each, in addition to the hardware programming.

137

This issue should be explored from three different perspectives. The first

perspective is that the programming effort required is based on my subjective

observations. People who are more experienced with IDL may consider the programming

to require little additional effort. They may even see the QCAD system to require less

effort, since the old product model can be used with new design concepts. The new

product model can be stored with the old model.

A second perspective on the programming effort refers to how the information is

stored without QCAD. Perhaps there is little effort in storing the additional information in

QCAD. Currently, the information is stored in several different places: the QFD matrices

are stored in a QFD program; the geometry is stored in a CAD system; and some

calculations are done on spreadsheets. QCAD consolidates all of this information in one

place, making the programming effort look more time consuming, but really just

consolidating all of the effort in one place. Moreover, since the information is in one

system, the designer always knows where to look for information. With the system, the

information is available for the designer to use, which may not be the usual case.

Additionally, the information can be linked together to provide further benefits.

The third perspective is that the programming effort is specific to the ICAD

system, which is geared toward modeling hardware. QCAD provides a different product

modeling philosophy. Using the same interface for both philosophies may be increasing

the effort to model a product in QCAD. Additionally, while creating a user interface for

QCAD, there is an opportunity to design an interface such that information can be stored

without programming.

For now, the best way to address the programming concern is to start with a small

product model and build up complexity as necessary. Once the information is in the

system, it can stay there, and even more information can be added. One idea for where to

start, is with the portion of the model that provides the most customer satisfaction.

138

Starting with this part of the model makes sure that that part of the design receives the

proper attention with respect to the other sub-systems.

Furthermore, the QCAD system is only as good as the information stored in it. If

the information is outdated, then the system will supply old information. Many times a

system is started with the best intentions, but is not kept up for some reason or another

and information is lost and the system falls out of use. This question of updating the

system becomes even more of an issue, when dealing with design information. Most

designs continually evolve into a final product, which means that at every step of the way,

the information in the computer will have to be updated.

Another variation of the programming concern is that programming requires a

different skill than the creativity required in design. Constantly switching from

programming, to designing, to interfacing with the browser, breaks the designer's train of

thought. For example, the designer could be using the system to get rough cost estimates

for different hardware configurations. Somewhere in the middle of the task, the designer

could discover that a hardware configuration is missing and need to program it into the

system.

A different approach would be to use the hardware nodes to describe the indicated

hardware. This solution uses no geometry statements and no positioning commands. It

just describes the hardware with written statements, which permits flexibility in selecting

hardware, without the complexity of detailing the hardware geometry and positioning.

The nature of this kind of solution moves QCAD more towards the conceptual design

domain than the detailed domain.

Lastly, there is an inherent danger in using a computer for design concept

selection. Computers rely on numbers and make all decisions based on numbers. A

potential solution may make sense according to the numbers, but not according to

common sense. One area of the system where this problem could occur is in the

sensitivity analyses, where the design changes, with the importance ratings. One design

139

may not even fulfill the design requirements, but could be selected anyway, because that is

what the numbers indicated. An alert designer can watch out for this mind numbing

numerology and override the selection process if necessary. However, even an alert

designer could get all tied up in the numbers and lose track of the design.

5.3.2. QCAD and KBE

This section reflects on the use of a QCAD design process framework with

knowledge based engineering programs.

5.3.2.1. QCAD Improvements over KBE

At a high levels of abstraction, knowledge based engineering design programs gain

two benefits from the QCAD structure:

1. A framework for expanding the range of use of
traditional KBE software

2. A structured method for planning a knowledge base

Figure 5.17 shows the current range of use of the ICAD software in design,

superimposed over the QCAD structure. Most of the applications are in the hardware

domain. There are some ICAD applications at the total system level, however most are at

the sub-system, piece part, and part feature levels. This hierarchical distinction depends

on what is meant by the total system level of the product. One person's total system can

be another's piece part. Thus, the hierarchical distinction in this case is meaningless.

Of more importance are the relatively few applications in the function and process

domains. A few systems have been developed using ICAD for high level functional

specification (Oulette 1992). None have used ICAD for detailed functional specification.

Additionally, a few systems have used ICAD for detailed process definition (Florusse and

Clausing 1992). None have used ICAD for high level process definition. In these cases,

the level of abstraction is defined relative to the abstraction level of the hardware tree, not

140

v I

CU

Q0.a)
Aa)

a.

a)
4--

a)
LL

CU
1L

141

C

c:
2
L.taL

)

I I
C

L

a

a

I
MC

-)

b a)

i uI"E
C

D.
XU

C:c
w IQ)

!L.z.

0o

U)on

Da,

U

:3

0
N~

E

c~Co

I-

E

ci)

I
-o
CO

Un

relative to their individual trees, which make the hierarchical distinction possible. Both the

clamp and copier case studies define the product from high level functions to low level

processes, traversing the entire range of the design.

The QCAD framework also provides a method of structured planning for

knowledge based programs. By following the total quality development process, the

knowledge based product model can incorporate a focus on customer satisfaction, an

emphasis on robust design, and the ability to benchmark competitive products.

The TQD process follows EQFD, which is a systematic method to document

relationships among parts of the design. By thinking of the relationships, thoughts are

stimulated not only on how the part should be designed, but also on what information

should be captured in the product model. This rigorous analysis of the design attempts to

surface concerns about modeling the product while the PDT is meeting in a room

together, instead of several months later, when one or two people are coding the product

into the system.

5.3.2.2. QCAD Difficulties with KBE

The one main drawback of using QCAD with knowledge based engineering

programs deals with the amount of ambiguity in a design. The design process does not fit

precisely into categories. Sub-functions are specified after the hardware is selected. Some

hardware pieces are defined with process selection. A design does not fit neatly into the

objects on the computer as outlined in the QCAD structure. This creates some ambiguity

in defining the product model. The QCAD system attempts to resolve this issue by

straddling design information between boundaries, but the possibility for confusion does

exists.

One of the main differences between the QCAD structure and its implementation

in IDL deals with the hierarchical structure. The QCAD structure emphasizes layered

hierarchies, where each part of a layer can talk with any other part of the layer. In the

142

layered structure, design components at one level of abstraction interact with components

at the same level, at the level above, and at the level below. Parts of the design that

perform different functions or that reside in different sub-systems also interact. Some

design systems can operate in this way, however they are restricted to a few variables and

quickly become cumbersome to use (Wu and Azarm 1992). Even though a layered

structure is desirable, the QCAD system in IDL had to be arranged in a tree structure with

referencing chains.

Additionally, in the QCAD structure, most objects get information from two

different places: One type of information comes from a higher level of abstraction; The

other type of information comes from the object immediately to the left of it, at the same

level of abstraction. Although there are systems that can handle multiple parents, ICAD is

set up to handle one parent. This may be easier for product models that are concerned

only with the hardware. However, when functions and processes are considered, more

than one parent is desirable.

When inheriting down the ladder of abstraction, a specific reference does not need

to be made from the object to its parent to get information. The object just requests the

information as an input. In systems with single parent capability, information that does not

come from the object's parent or ancestors, must be specifically referenced. If the design

is dynamic, the specific referencing method may run into difficulties, especially if the

referenced objects do not exist.

5.3.3. Summary

The last two sections commented on the integration of the design process and

computerized knowledge based engineering. The major comments are summarized in the

table below. To interpret the table, read the column heading followed by the row heading.

For example, the first box in the top left corner describes the QCAD benefits from

knowledge based engineering.

143

An examination of the table above reveals some relationships among the benefits

and drawbacks of integrating the design process with knowledge based engineering, as

learned from the case studies.

Across the rows, it is clear that both knowledge based engineering and the design

process have different emphases on design. Knowledge based engineering prefers using

known, static design rules, that are easy to program. The programs are good at storing

information that can be used in later stages of the design. The knowledge based programs

store information in predetermined formats, for use in analyses, perhaps by people that

didn't even enter the information into the computer originally. Alternatively, the total

quality development process provides a framework and a set of structured tools to help

guide the way through the ambiguity of design. Although not specifically mentioned in

relation to QCAD, many of the TQD tools promote teamwork and alignment of individual

and group goals, which help a group of people focus on a path to follow in product

development.

Another observation about the rows is that some of the items in the benefits

column are inextricably linked to items in the drawbacks column. For example, the

knowledge based engineering program stores information, however, that information must

be representable in a known format before it can be entered into the computer. The design

144

QCAD Benefits from QCAD Drawbacks from
Knowledge 1. design information storage 1. design rules must be known
Based 2. standardization 2. lots of programming
Engineering 3. design concept exploration 3. mind numbing numerology

Design 1. framework for expanding the 1. ambiguity of design.
Process range of traditional KBE

2. structured method for
planning a knowledge base

process, on the other hand, provides a framework for the design, but it is a loose

framework that varies with different design situations.

The linkage of the benefits and drawbacks for the rows signifies that a middle

ground is necessary for a beneficial integration of the two design methodologies. Designs

that are constantly changing may not be the most suitable for use with the QCAD system,

nor would designs that are conceptually static. In the former, the design changes would

be so varied that the computer would not be able to handle the complex variations in the

design. In the latter, the design has been made hundreds or thousands of times and the

customer's requirements have evolved to the point where all of the design requirements

are known, such that the up front design work is not necessary.

5.4. QCAD in Product Development

The first three sections of this chapter discussed the implementation of QCAD in

IDL and show the concept's feasibility. The sections described two case studies, a clamp

and a copier, and projected potential implementation concerns for larger product models.

Based on the two case studies, the third section discussed observations about the

integration of computers and quality methods in product development.

From that experience, this section describes several uses for QCAD in product

development. The nature of the tasks performed change as the product flows through

development. Although no explicit distinction is made in this section, the style of

computer use is different in conceptual design, detailed design, and incremental product

improvement. A further distinction could be made between initial designs with QCAD

where no product model has been stored, and subsequent designs, where a product model

is already in the system.

QCAD use is discussed in the next two sections: the first section describes a new

product being developed in QCAD, and the second section describes additional ways to

use QCAD when incrementally improving a product. The distinction is arbitrary, a design

145

team can use any of the methods described in either section whenever they think the

method will help develop a product.

The overall theme, in the next two sections, is the human design process being

supplemented by the computer. QCAD mixes people's abilities to be creative and to cope

with uncertainty with the computer's affinity for structure and ability to store and retrieve

information.

5.4.1. QCAD Uses in Product Development

This section describes how a product development team could use the QCAD

methodology to develop a product. At the start of a product development effort, the

design team uses the product development process to explore the design problem.

Without the use of the computer, the team explores the voice of the customer, develops

engineering metrics, and obtains some understanding of the problem. The computer can

then be used in this process to reflect on models used in the past to understand the design.

The computer uses a function net representation, described in Section 4.5.2.4, to display

the interactions among the product functions.

Once the team has an understanding of the problem, the team generates hardware

ideas. Some ideas may already have been generated during problem exploration and are

documented in the computer for use in this stage of design. To generate solutions, the

team looks both inside and outside the group for ideas. The team should go out and look

at competitive products to stimulate ideas. The team can also solicit ideas from the

computer, by choosing different functions, and looking at the associated hardware options.

In their solution exploration process, the team may decide that they need to go back and

reformulate the problem.

At some point, the team will have generated a sufficient number of ideas to

perform Pugh concept selection. This matrix is done without the computer, such that the

team can become absorbed with the problem and be free to develop new concepts

146

(Clausing 1994). When filling out the matrix, some additional information may be

necessary to help evaluate ideas. Some of that information is stored in the computer and

could help in completing the matrix.

After finishing the matrix, and selecting a concept, the team records the matrix in

the computer. The final concept ideas are also stored. Everyone on the team can see

what ideas were explored in concept selection and can use this information when working

on the design.

From this point, the design team has several options of how to proceed. They can

further explore the hardware and manufacturing process; they can explore more detailed

hardware embodiments of the product; they can explore sub-functions; or they can explore

a combination of all three. If the team chooses to continue exploring functions then they

continue as already described, with finding the voice of the customer, creating an

understanding of the functions, and selecting a concept. The computer is used to jog new

ideas, store concepts, and help evaluate concepts. For sub-functions, the design team will

also have to pay attention to the higher level hardware configuration.

A second option is to look at how the hardware will be manufactured. In much

the same way as a hardware concept was chosen by looking at a set of functions, the

manufacturing process is chosen by looking at the hardware to be fabricated. The design

team starts the hardware exploration by completing a QFD design matrix. If the same

house of quality engineering metrics were used with previous product designs, then the

design team can use the product expectations already stored in the computer.

As the design team explores the hardware, possible manufacturing processes may

come to mind. These are recorded in the computer for later use in material and process

selection. The team can also get process ideas from comments that were stored in the

computer from previous designs, and from the set of processes recorded in the process

hierarchy.

147

For material and process selection, one set of criteria comes from the QFD matrix.

Another set of criteria is devised by the PDT using the group's knowledge. Other criteria

can be found in previously completed matrices, stored in the computer. The design team

completes the selection matrix in the same manner as Pugh concept selection, using the

computer to provide information to help fill in the matrix and to store the completed

matrix. After selecting a process, the team can continue by further defining the selected

process, by designing more detailed hardware, by exploring the next level functions, or by

doing all three.

Lastly, in the detailed hardware design option, QCAD provides a rigid framework

for defining and analyzing product components. A design team should first sketch out the

design on paper. As the design freezes, bits and pieces of the hardware are modeled into

the computer. In the best case scenario, many of the hardware pieces are already defined

in the system and the design task is composed of assembling the right elements together.

In a less developed system, hardware components will have to be defined before they are

used. Note that the more information in the product model, the more flexible and

powerful the model.

Since the computer looks for clearly defined hardware, as the team progressively

freezes the design and enters the design into the computer, the QCAD system surfaces

problems that would not normally be found until later. For example, in the computer, all

of the interfaces among different sub-systems and piece parts must be clearly defined and

consistent. The design team must resolve the inconsistencies before continuing with the

design, preempting downstream problems.

Once a consistent, product model is defined, designers can use the computer to

explore the design. As mentioned in Section 5.2.2, the designer can modify the design

parametrically in two ways: (1) by just changing the dimensions, and (2) by changing the

importance ratings and relationships in the matrices. These tools are used to help the

designers further understand the design problem and to explore potential solutions for the

148

design. In addition to the parametric design capabilities, the product model, or parts of

the model, can be sent to other programs, such as FEA, for analysis and optimization.

Other tools in QCAD that help the team explore the hardware design include the

product structure net, the Taguchi system of quality engineering, and constraint

propagation. The product structure net, as described in Section 4.5.3.1, is a method for

representing interactions among the hardware parts. The Taguchi system, as described in

Section 2.6, includes an experimental method to observe the interactions among hardware

parts. Constraint propagation is done by the computer, which stores the constraints that

designers should be aware of when designing, such as limitations on material properties

and dimensions, and indications of analyses to be performed. The constraints were

previously input by the design team.

After a design is defined, it goes through a prototyping cycle, to show that the

design works and that the manufacturing processes are suitable for production. In this

period of time, some problems will be found that require the design to be changed. The

computer can assist here too. The design team can change the design of a hardware

component where it was initially defined and be certain that the hardware definition will

change everywhere that hardware piece is used in the model.

If in testing, the product does not perform a function as well as it should, the

design team can look at the function definition in the system to find the root cause of the

problem. The team can start with the function and look at all of the hardware that satisfies

that function. Additionally, the team could look at the fault tree to find areas where the

product could be failing.

Throughout the development process, QCAD helps the design team organize and

use information. QFD matrices can be stored throughout the system. Notes can be left to

remind people of work that needs to be done, and comments can be left with reasons why

a design was defined in a specific manner. All of the information is in one place, in the

149

computer, making it easier for designers to find and use the information in product

development.

5.4.2. Additional QCAD Uses for Incremental Product Improvements

This section discusses ways that a product development team could use QCAD for

making small revisions to existing products, that were previously developed using QCAD.

The ideas discussed in this section can be combined with the ideas discussed in the last

section.

The first question asked when incrementally improving a design is, "Where to

start?" The team will have many different ideas of what can be done to improve the

design. One idea is to redesign the product to decrease the cost. Other ideas are to add

features or to improve the technology.

These statements are at rather high levels of abstraction. In order to get more of

an idea on what to change, the team should explore the computer model in at least one of

several ways.

One way is to look at the function hierarchy and ask, "What functions are

represented, but do not contribute directly to the primary function of the product?" That

is, "What secondary functions are created when a certain hardware configuration is chosen

over a different configuration?"

Another way to get ideas on how to change a design is to look at the hardware

parts that perform a similar function, but look different. The product cost can be reduced

by standardizing the different parts. A twist on this idea is to look at the hardware made

by the same process and to standardize the hardware design to simplify the process

operations.

Ideas for improvement can also be found in the design methods used in defining

the design. For example, the roof of the house of quality shows tradeoffs among different

corporate characteristics. Improving one tradeoff will increase customer satisfaction in

150

the product. Another place to look is in the concept selection matrices. Good ideas that

weren't chosen may be feasible now, given advances in technology.

Changing ideas in the product model is relatively simple, since the system is

modular. Instead of altering the currently defined model, a designer just adds new a

design variation to the system and augments the appropriate selection matrix to

incorporate the new design. If it turns out that the change is undesirable, then the system

is easily restored to its prior state.

Furthermore, adding new designs, instead of replacing old designs increases the

knowledge base in the model. In addition to hardware, both functions and processes can

be added to the product model to increase design flexibility.

151

Chapter 6

Conclusions and Future Work

6.1. Summary and Conclusions

Conventional KBE connects engineers to engineers.

QCAD connects customers to the factory floor.

These two statements express the intent behind this thesis. That is, to provide a

framework for using computerized knowledge based engineering design systems with a

product development process that focuses on quality, cost, and delivery. Characteristics

of the development process include emphases on customer wants and needs, competitive

benchmarking, and the Taguchi system of quality engineering.

This thesis outlined a Quality Computer Aided Design (QCAD) methodology

consisting of: (1) a design process framework and (2) a computer program for use with

the design framework. It is intended that a multifunctional product development team use

QCAD to assist in developing both new and variational products from function

designation to hardware definition to process specification.

The design process consists of a collection of tools that help a product

development team understand the functional requirements, synthesize hardware and

process concepts, and select feasible alternatives from a set of concepts. Some of the

tools include Enhanced Quality Function Deployment (EQFD), Pugh Concept Selection,

fault trees, and robust design of experiments. Many of the methods used are qualitative in

nature and require human creativity. Thus, the design methods are first completed by a

product development team and are then coded into the computer.

The computer both stores and manipulates information entered into the system to

help a designer explore a design concept. Both the design methods and the information

stored in the methods are assigned to a function, hardware, or process category. These

152

categories are broken down further into total system, sub-system, piece part, and part

feature abstraction levels.

Every product is different. As such, it is at the discretion of the PDT to decide

where to enter information into the system. The PDT may decide that the best use of

QCAD is to optimize the geometry of a part using finite element analyses of the part

shape, obviating the need for function and process hierarchies. Or, if a small sub-system is

being modeled, total system information may not be necessary, and the product model

contains information ranging from functions to processes and from sub-system to part

features.

The QCAD system was implemented in the ICAD design language (IDL). ICAD

is the leading supplier of commercial knowledge based engineering software worldwide.

IDL is a super set of common lisp and is geared toward modeling products in the browser.

The browser is the ICAD user interface, which has both a hierarchical and a geometric

representation of the hardware, and many commands to manipulate the product model.

Both an easy to understand clamp model and a more complex copier model were

developed in the methodology. These case studies not only tested and helped refine the

methodology, but also provided insight about combining total quality development with

computers.

There is a strong synergy between computers and quality design. KBE is a vast

resource for storing information. It standardizes product information and provides the

capability for accelerated what-if analysis. The design process provided a framework and

procedures for coordinating design information in the computer and a structured metbod

for organizing and planning a product model. Additionally, there is increased opportunity

to use the information since it is all stored in one place.

Even though there is a strong synergy between computers and quality design, there

are several drawbacks to the integration that have strong repercussions for designers. The

ambiguity of the design process does not lend itself to being structured into any one

153

methodology. Design is ambiguous by nature. It takes both analysis and human creativity

to develop feasible solutions. The computer is good at quantitative analyses, but to cope

with ambiguity, the QCAD system requires programming effort beyond that required by

geometry focused KBEs (The increased programming effort may be offset by increased

availablity of information and the decreased programming effort in other software).

Furthermore, any time computers are used in design, the designer must be careful

of mind numbing numerology. It is easy to get caught up in running analyses and making

all of the numbers work. However, a designer should never lose sight of the overall

picture.

Overall, QCAD provides one leap forward to the integrated use of computers and

quality design, by expanding the knowledge based product model to include functions,

hardware, and processes.

6.2. Future Work

The QCAD system, including both the design methodology and the computer

implementation, has several opportunities for future work, which range from design

process improvements to computer specific improvements. Five areas for focus are

presented.

1. Function tree development
2. Function matrix and function net
3. Information represented
4. User interface
5. Layered hierarchy implementation

The QCAD framework defines three intensely, interrelated trees: a function tree, a

hardware tree, and a process tree. The hardware and process trees are relatively straight

forward to create. ICAD usually tells its customers to set up the hardware tree in reverse

of how the product is manufactured. Function trees on the other hand are less familiar

154

product structures. The function trees for both the clamp and the copier could take on

several different forms depending on how the functions are grouped. Some exploration is

needed to determine the best organization of the function tree for different types of

product models.

To add to the confusion, the lower level functions and hardware parts are defined

by iterating back and forth between the function and hardware trees (Clausing 1994).

Different hardware embodiments that satisfy a given function will create different lower

level functional requirements.

A nominal function tree structure was used in this thesis to investigate the QCAD

methodology. However, variations on constructing a tree structure should be explored.

The ideal QCAD methodology designated a layered structure, but tree structures were

used to make the methodology compatible with IDL. A structured methodology for

creating function trees would advance the OCAD methodology, as implemented in ICAD.

In QCAD, the functions in the function tree are directly connected to specific

hardware that satisfy that function. The functions are diagrammed using a function net to

help specify the hardware concept. An example of the relationship between the function

net and the hardware is given in Section 5.2.3, describing the copier product model.

Different functions and combinations of functions result in different hardware. It seems

likely that different function diagrams would also generate different hardware ideas.

Function structures (Pahl and Beitz 1984) and Bond Graphs (Paynter 1960) are two

among several function diagramming systems that have been developed to chart out

functions. Further exploration of the hierarchical function tree structure, used with IDL,

may be necessary for experimentation with function , 'agramming methods.

QCAD is both a design assistant and a design history system. It can be used to

explore designs, run analyses, and store product specific information. Initial customer

concerns were addressed. The QCAD structure is flexible and can accommodate many

types of information that a PDT would want to use in the system. However, little

155

customer feedback was solicited (ICAD did review the proposed system). What

information do designers want in a quality design system, and how can that information be

integrated into QCAD?

One reason for seeking little customer feedback on the QCAD concept is that its

current implementation in IDL makes the concept hard to understand and system difficult

to use. An improved user interface should be created to enable users who are unfamiliar

with the product model to manipulate the model and to learn from the information stored

in the computer. Appendix C presents several ideas for a user interface, at the conceptual

level.

The QCAD system, as implemented in IDL, consists of three interconnected tree

structures, which is a deviation from the originally specified layered hierarchy. A more

accurate implementation of the methodology in a computer environment that can handle a

layered structure would enhance the flexibility of the product model.

156

References

Akao, Yoji. Quality Function Deployment: Integrating Customer Requirements into
Product Design. Cambridge, Mass.: Productivity Press, 1990.

Algor, Inc. ViviCad Manual. Version 11 Pittsburgh, Penn.: Algor, Inc., 1993.

Asimow, Morris. Introduction to Design. New Jersey: Prentice-Hall, Inc., 1962.

Bafiares-Alcantara, R. "Representing the Engineering Design Process: Two Hypotheses."
Artificial Intelligence in Design '91 (1991): 3-22.

Berg, John. "Computer Implementation of the Improved Product Development Process."
Mechanical Engineering Master's Thesis, Massachusetts Institute of Technology, 1988.

Cadence, Cadence User Guide. Version 4.2.1. San Jose, California: Cadence, 1993.

Chen, Aihua, Brian McGinnis, David G. Ullman, and Thomas G. Dietterich. "Design
History Knowledge Representation and its Basic Computer Implementation." Design
Theory and Methodology - DTM '90, ASME DE-Vol. 27 (September 1990): 175-184.

Chung, Jack C.H., and Martin D. Schussel. "Technical Evaluation of Variational and
Parametric Design." Proceedings of the 1990 ASME International Computers in
Engineering Conference and Exposition 1 (1990): 289-298.

CIME Staff Report "CAD Follows New Scripts." Mechanical Engineering 111, no. 11
(November 1989): 62-67.

Clausing, Don P. "Concurrent Engineering." Proceedings of the Design Productivity
International Conference (1991).

Clausing, Don P., and Stuart Pugh. "Enhanced Quality Function Deployment."
Proceedings of the Design Productivity International Conference (1991).

Clausing, Don P. Total Quality Development. Fairfield, New Jersey: ASME Press, 1994.

Cross, Nigel. Engineering Design Methods. New York: John Wiley & Sons, Inc., 1989.

Dixon, J.R. "Designing with Features: Building Manufacturing Knowledge into More
Intelligent CAD Systems." Proceedings of the ASME Symposium on Product and Process
Design 1 (1988): 51-57.

Drake, Samuel and Samuel Sela. "A Foundation for Features." Mechanical Engineering
11 (November 1989): 66-73.

157

Eastman, C.M. "Recent Developments in Representation in the Science of Design."
Proceedings of the 18th Design Automation Conference, ACM, IEEE (1981): 13-21.

Edwards, John S. Building Knowledge-Based Systems: Toward a Methodology. London:
Pitman Publishing, 1991.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala.
"Organizing the Tasks in Complex Design Projects." Design Theory and Methodology
(September 16-19, 1990): 39-46.

Feigenbaum, Edward A., and Pamela McCorduck. The Fifth Generation: Artificial
Intelligence and Japan's Computer Challenge to the World. Reading, Mass.: Addison-
Wesley, 1983.

Finger, Susan, and John R. Dixon. "A Review of Research in Mechanical Engineering
Design. Part II: Representations, Analysis, and Design for the Life Cycle." Research in
Engineering Design 1 (1989): 121-137.

Florusse, Leendert B. and Don P. Clausing. "A Detailed Framework for Quality Function
Deployment Phase 3, Process Engineering." LMP working paper. Massachusetts Institute
of Technology, December 28, 1992.

Ganeshan, R., S. Finger, and J. Garrett. "Representing and Reasoning with Design
Intent." Artificial Intelligence in Design '91 (1991): 737-755.

Garcia, A.C.B., and H.C. Howard. "Building a Model for Augmented Design
Documentation." Artificial Intelligence in Design '91 (1991): 723-736.

Gregory, Jack and Dan McIlroy. "Tool designers work to rule." Engineering. 230, no. 3
(March 1990): ACE15-ACE17.

Griffin, Abbie and John R. Hauser. "The Voice of the Customer." Working Paper, Sloan
School of Management. Massachusetts Institute of Technology, 1991.

Hauser, John R. and Don Clausing. "The House of Quality." Harvard Business Review
(May-June 1988): 63-73.

Head, George, Charles Pietra, and Kenneth Segal. The AutoCAD 3D Book. Chapel Hill,
North Carolina: Ventana Press, 1989.

Heatley, Lynn C. and William J. Spear. "Knowledge-Based Engineering Design at Xerox."
Artificial Intelligence in Engineering Design 3 (1992), v3.

Hu, David. Programmer's Reference Guide to Expert Systems. Indiana: Howard W. Sams
& Company, 1987.

158

Hunt, John E. and Mark H. Lee. "Towards a Knowledge-based Design Assistant."
Engineering Applications in Artificial Intelligence 5, no. 4 (1992): 275-287.

ICAD, Inc. The ICAD System User's Manual. Version 4.0. Cambridge, Mass.: ICAD,
Inc., 1993.

ICAD, Inc. About Understanding Knowledge-Based Engineering. Cambridge, Mass.:
ICAD, Inc., September 1992.

International TechneGroup Incorporated. QFD/Capture "Windows Version" User's
Manual. Milford, Ohio: International TechneGroup Incorporated, 1992.

Ishii, Kosuke and Krizan, Steven "Computer Aided Life-Cycle Design. " Aerospace
Product/Process Design Interface 912220 SAE International SP-886 (1991): 79-86.

Ishii, K. and L. Hornberger, "The Effective use and Implementation of Computer-aids for
Life-Cycle Product Design." Advances in Design Automation, DE-Vol. 44-1 (1992): 367-
374.

Jackson, Greg. "Shareware for Engineering." Mechanical Engineering 1 14, no. 10
(1992): 80-81.

Jebb, Alan, S. Sivaloganathan, and N.F.O. Evbuomwan. Design Function Deployment
User Guide. Engineering Design Center, City University, Northampton Square, London,
1993.

Jebb, A., S. Sivaloganathan, R.C. Edney, N.F.O. Evbuomwan, and H.P. Wynn. "Design
Function Deployment." ASME Engineering Systems Design and Analysis, PD-Vol. 47-1
(1992): 251-256.

Knight, Thomas P. "A Knowledge System for Functionally Integrated Product
Development." Mechanical Engineering Bachelors Thesis, Massachusetts Instititute of
Technology, 1990.

Krick, Edward V. "An Introduction to Engineering and Engineering Design." New York:
John Wiley & Sons, Inc., 1965.

Krinninger, Andreas and Don P. Clausing. "Quality Function Deployment for Production."
LMP working paper, Massachusetts Institute of Technology, August 1991.

Kuffner, Tom A. and David G. Ullman. "The Information Requests of Mechanical Design
Engineers." ASME Design Theory and Methodology - DTM '90, DE-Vol. 27 (1990): 167-
174.

159

Moses, Joel. Organization and Ideology. unpublished, 1990.

Oulette, Mark. "Form Verification for the Conceptual Design of Complex Mechanical
Systems." Masters Thesis, Georgia Institute of Technology, 1992.

Pahl, Gerhard, and Wolfgang Beitz. Engineering Design. London: The Design Council,
1984.

Parametric Technology Corp. Pro/Engineer User's Guide. Version 12 Waltham,
Massachusetts: Parametric Technology Corp., 1993.

Paynter, Henry M. Analysis and Design of Engineering Systems. Cambridge: The MIT
Press, 1960.

Phadke, Madhav S. Quality Engineering Using Robust Design, New Jersey: Prentice Hall,
1989

Pugh, Stuart. "Concept Selection - A Method that Works." Proceedings of the
International Conference on Engineering Design ICED'81 (1981): 497-506.

Pugh, Stuart Total Design. New York: Addison Wesley Publishing Co., 1990.

Quality Engineering Services. The Taguchi Expert Software User's Manual. Webster,
New York: Quality Engineering Services, 1992.

Ramamoorthy, C.V., and Benjamin W. Wah. "Knowledge and Data Engineering." IEEE
Transactions on Knowledge and Data Engineering 1, no. 1 (1989): 9-16.

Reddy, Ramana. "Editorial: System Support for Concurrent Engineering." International
Journal of Systems Automation: Research and Applications 1, no. 3 (1991): iii-iv.

Shiba, Shoji, Alan Graham, and David Walden. A New American TQM. Cambridge,
Mass.: Productivity Press, 1993.

Siegel, Paul. Expert Systems: A Non-Programmer's Guide to Development and
Applications. Pennsylvania: Tab Professional and Reference Books, 1986.

Sontow, Karsten and Don P. Clausing. "Integration of Quality Function Deployment with
Further Methods of Quality Planning" LMP working paper, Massachusetts Institute of
Technology, April 3, 1993.

Sriraman, Vedaraman, Phadhana Tosirisuk, and Hsing Wei Chu. "Object-Oriented
Databases for Quality Function Deployment and Taguchi Methods." Computers and
Industrial Engineering 19, no. 1-4 (1990): 285-289.

160

Suh, Nam P. The Principles of Design, New York: Oxford University Press: 1990.

Swanson Analysis Systems, Inc. ANSYS User's Manualfor Revision 5.0. Houston,
Pennsylvania: Swanson Analysis Systems, Inc. 1992.

Taguchi, Genichi. Introduction to Quality Engineering: Designing Quality into Products
and Processes. White Plains, New York: UNIPUB/Kraus International Publications, 1986.

Taguchi, Genichi. System of Experimental Design. 2 Vols. White Plains, New York:
UNIPUB/Kraus International Publications, 1987.

Takeuchi, Hirotaka, and Ikujiro Nonaka. "The new new product development game."
Harvard Business Review 64, no. 1 (1986): 137-146.

Traughber, Thomas J. "Expert System for Tool Selection." SAE International Congress &
Exposition on Artificial Intelligence 860338, SP-664 (1986): 37-41.

Vora, Lakshmi S., Philip C. Jackson, and Robert E. Veres. "Technical Information
Engineering System (TIES)." SME Technical Paper, MS89-736 (1989): 38-45.

Ulrich, Karl. The Role of ProductArchitecture in the Manufacturing Firm, Course Notes
for 2.739J, Product Development, Massachusetts Institute of Technology, October 1992.

United States Congress. "Integrated Computer-Aided Manufacturing (ICAM)
Architecture Part II Volume IV - Function Modeling Manual (IDEFO)." AFWAL-TR-81-
4023, Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio, 1981.

Ward, Allen C. "A Recursive Model for Managing the Design Process." ASME Design
Theory and Methodology - DTM '90, DE-Vol. 27 (1990): 47-52.

Wu, Bi-Chu and Shapour Azarm. "A Reduction Method for Nonhierarchichal
Optimization-Based Design." Advances in Design Automation 1 (Sept 13-16, 1992): 203-
212.

161

Appendix A

Starting QCAD Product Models in IDL

This appendix gives step by step instructions for starting the clamp and copier
product models in the ICAD Design Language (IDL). Both product models are in ascii
format on the DOS disk in the pocket on the inside back cover. An introductory course in
IDL is helpful for using a product model once it is running in the Browser. The
instructions assume that the user is familiar with the Unix operating system and with
emacs.

The product models were created using:

Workstation ICAD Software

* Sun SparcStation 1+ · ICAD, Version 4.0
* 64 MB RAM * Allegro Common LISP,
· 1.05 GB hard drive Version 4.1
* 200 MB swap space * Unigraphics II, parasolids,
* SunOS 4.1.3 Version 4.2.81
* Open Windows 3.0

The instructions below are written generically for any ICAD supported platform.
When appropriate, an example of the command is given, as it would be used on the above
described workstation. For reference, the machine name is "winston". As a typographic
convention, commands that the user types are printed in bold font and computer output is
printed in normal font.

1. Log in to an account with access to the ICAD system.

Login: qcad

2. Start the window system, if not already active. This should pop up several windows,
including a console and a cmdtool.

winston% openwin (the qcad account automatically starts Open Windows)

3. Load the product model files from the DOS disk into a new directory using dosread,
or a similar command. On winston, the clamp product model is in a directory called
clamp and the copier model is in a directory called copier.

162

The files with the .cla extension are part of the clamp product model. The files with
the .cop extension are part of the copier product model. All of the files, except for the
readme file should be changed to end in .lisp (i.e., function.cla.lisp).

The system.?.lisp file may need to be changed depending on the configuration of the
account running ICAD. (The ? represents cla or cop, referring to clamp or copier,
respectively). The system.?.lisp file has a line defining where to find the clamp and
copier files. Follow the instructions in the system.?.lisp file to change the directory
path that references the clamp and copier files.

4. Open an emacs window, if one is not already active. Position the mouse in an active
unix window and start emacs. The text cursor in the window may need to be activated
by clicking the left mouse button once, while the mouse is positioned in the desired
window.

winston% emacs & (the qcad account automatically starts emacs)

Emacs is used for bringing up the Browser and for interacting with IDL. Emacs
buffers are used for editing and compiling product models, debugging product models,
and issuing commands directly into IDL.

5. Start ICAD. With the mouse positioned in the emacs window, type <meta-x> icad.
On the Sun SparcStations, meta is the diamond key next to the space bar. Meta works
just like the shift key. Keep the meta key depressed while typing x. Type icad when
the cursor appears on the last line of the window. (The qcad account automatically
starts ICAD).

This command loads the IDL world (including Allegro Common LISP) and pops up
the Browser when it is done. The Browser accepts both keyboard and mouse
commands. In general, the mouse is used to select and run commands, while the
keyboard is used for supplemental information. The three mouse buttons have the
following assignments:

Mouse-left: Select
Mouse-middle: Match
Mouse-right: Pop up a menu

There are two actions involved with issuing a command. The first is to select a
command to run or an object to manipulate. The second is to match the command to
an object or to match the object to a command. The border around the selected item
will blink to signify that it is selected. Pressing ESC will de-select the item. Pressing
mouse-right on an item will pop up a menu of additional commands. The next
instruction gives a chance to practice issuing a command.

163

6. Start solid modeler.

a. Mouse-left on "Workspace" on the right side of the Browser to
open the workspace menu.

b. Mouse-left on "Start Solid Modeler" and a window will pop up.

c. Under "host", type the name of the machine licensed to run the solid
modeler. (winston is licensed to run the solid modeler). Ignore the
space about the journal file name.

d. Mouse-left on "Accept" to start the solid modeler. The pop up
window will disappear and the menu button will change to "Stop
Solid Modeler!" On winston, the Lisp buffer in emacs should say
"Started Parasolids Version 4.2.81."

7. Compile and load product models. The clamp and copier product models are stored in
several different files. The file, system.?.lisp, contains a script of files to compile and
load in order to run model ?, where ? stands for clamp or copier. In order to run the
script program, type <meta-x> open-lisp-listener and wait for the emacs buffer to
change. At the command prompt in the lisp listener type the series of commands listed
below. Some commands may take a long time to execute.

a. :cd -/directory-with-product-model-files This command
changes the active directory to the one with the product model files.
Replace the "directory-with-product-model-files" with the name of
the directory with the files that was created in step 3.

(on winston) for the clamp type: :cd -/clamp
for the copier type: :cd -/copier

b. :Id -/system.?.lisp This command creates the functions that
compile and load the desired product model. Replace the ? with
either cla or cop, for the clamp or copier models.

c. (compile-qcad) This command compiles the files that comprise the
product model and stores several binary files with the ".sparc"
extension in the directory specified in part a. An error may occur if
there is not enough disk space in that partition to create the binary
files.

d. (load-qcad) This command loads the compiled code into memory.

164

8. Instantiate QCAD. Now that the product model is loaded into memory, it can be
instantiated in the Browser.

a. Mouse-left on "Tree" on the right side of the Browser to open the
tree menu.

b. Mouse-left on "Make Part" and a window will pop up.

c. Type qcad under "part name" in the window. This tells IDL to
instantiate the qcad product model. Ignore the "more" button on
the bottom of the window.

d. Mouse-left to select the make part window. The border around the
window should blink.

e. Mouse-middle on the workspace rectangle on the left side of the
screen. After a few seconds, a top level inputs window will pop up
on the screen.

f. In the tree menu, mouse-left on the "close" button directly above
the menu title in order to close the menu.

g. In the top level inputs window, mouse-left on "accept" to use the
values for the top level inputs. One of the inputs is titled "strings-
for-display". It contains the name of the root node, which in this
case is qcad. The other input is titled "display-controls" and
contains values for how the part will be seen in the workspace. A
few seconds after choosing accept, the top level inputs window will
be replaced with a graphics viewport and the start of a product
structure tree.

165

9. Congratulations, you have just instantiated a QCAD product model. Several useful
commands for exploring the product model are listed below. The commands are
activated by the mouse, as described in step 5. You may also wish to try the mouse-
right command, which pops up menus. For further information on commands, see the
ICAD user's manual (1993). Have fun.

children:
leaves:
condense:

expand and draw:

Add one layer to the selected node on the tree.
Expand the entire selected region of the tree.
Shrink the selected region of the tree to the parent
node.
Expand the entire selected region of the tree and
draw the associated hardware (QCAD only
associates hardware with the hardware tree.
Drawing nodes on the other trees will display points
in the graphics viewport.

References

ICAD, Inc. The ICAD System User's Manual. Version 4.0. vols. 1, 2, 3, and 6.
Cambridge, Mass.: ICAD, Inc., 1993.

166

Appendix B

Overview of ICAD Concepts

This appendix describes the ICAD software, including the ICAD Design Language

(IDL) and the browser user interface. Only the major ICAD concepts are presented here.

More complete documentation is available in the ICAD User's Manual (ICAD 1993).

B.1. ICAD Design Language (IDL)

ICAD product models are created using the ICAD Design Language (IDL). IDL

is a super set of common lisp and is geared toward modeling products in the ICAD

browser interface. IDL extends the capabilities of common lisp, while keeping the

functionality of common lisp intact. IDL is an object oriented language. It is demand

driven, such that a variable is only evaluated if it is needed. In a conventional

programming language, like Fortran or C, all of the variables are evaluated in sequence,

whether they are needed or not (Harmon and Sawyer 1991; ICAD 1993).

Some features of object oriented programming languages are (1) described

generically in the first section below and (2) described in the context of IDL, in the second

section below.

B.1.1. Objects and Information Sharing

Object oriented languages have sets of building blocks, or objects, that are linked

together to create a program. An object is a structure that can store both information and

procedures. A structure is a generic term for a pattern of organization. In conventional

programming languages, a variable is a structure that stores information. The information

is usually of type integer, floating point, or string. In the C programming language, there

are structures that combine multiple types of information into one structure (this is done

with the struct command). One structure can have string, integer, and floating point

information (Harmon and Sawyer 1991, 2).

167

An object is an even more general structure that combines both information and

procedures. Whereas information just sits around waiting to be looked at, a procedure is a

routine that is executed when it is called. One reason to use objects is to separate the

program into categories such that one object only contains information and procedures

representative of a certain class of problems (Harmon and Sawyer 1991, 4).

Objects are linked together in three different ways to create an entire program.

One type of linking is called inheritance. Inheritance occurs when one object assumes all

of the information and procedures from another object. In Figure B. 1, Object A is said to

define a class of objects. The horizontal and vertical lines in Figure B. 1 represent lines of

inheritance. Object A has a base set of rules and procedures which objects B, C, and D

augment or modify in order to create a more specialized object (Taylor 1990, 29).

For example, imagine that the objects in Figure B. 1 represent a set of living animal

cells. Object A defines the part of the parts of the cell, i.e., the membrane, the nucleus, the

mitochondria, etc. Objects B, C, and D represent specialized cells, like a muscle cell, a

blood cell, and a nerve cell, each with the same parts defined in object A. A blood cell is

a type of living cell (Taylor 1990, 29). In ICAD terminology, objects B, C, and D mixin

the attributes of object A (ICAD 1993). This type of object linking will not be discussed

in the rest of this appendix.

The second type of linking, in an object oriented system, takes place when one

object needs information from another object. For example, if one object is calculating the

stress in a beam and doesn't have the beam's cross-sectional area, the object will send a

message to the appropriate object to request the cross-sectional area. Figure B.2 shows

five different objects, with different data and procedures. Object A is sending a message

to object B. Object B is responding to object A with the requested information. In an

object oriented language, one object can send a message to any other object, requesting

information (Taylor 1990, 41).

168

Figure B.1 - Object Inheritance Structure

information

Object C

Information and
Procedures

request

Figure B.2 - Sending and Responding to a Message

169

The third type of linking occurs when more sophisticated structures need to be

represented. This type of linking is actually an assembly of other objects and is called a

composite object. Figure B.3 shows a composite object, where object A is a composite

object with references to objects B and C. The lines in Figure B.3 are diagonal and

indicate references from object A to the other objects. This reference is different from the

inheritance concept described earlier, in that inheritance describes a type of relationship,

where the composite structure describes a part of relationship. For example, in Figure

B.3, a relationship is read as, "Object B is a part of object A." Whenever the information

and procedures in object A are desired, the links to objects B and C also come along

(Taylor 1990, 39).

Information and
Procedures

ObjectB / ObjectC

Information and Information and
Procedures Procedures

Figure B.3 - Composite Object

Objects B and C, in Figure B.3, could also be composite objects. When one or

more composite objects reference one another, the group of objects form a tree hierarchy,

as shown in Figure B.4 (Taylor 1990, 39). In Figure B.4, objects A and C aie composite

objects because they are composed of other objects. Table B. 1 explains some terminology

associated with a tree structure (ICAD 1993).

170

Figure B.4 - Nested5 Composite Objects

Example (See Figure B. 1)

node
root

parent
child
siblings
leaf

ancestor
descendants

Each object is a node.
A is the root node, because it is at the ti
the tree.
A is a parent to B and C.
D and E are children of C.
B and C are siblings.
B, D, and E are leaf nodes, because the,
have no children.
A is an ancestor of all of the objects.
All of the objects are descendants of A.

op of

v

Table B.1 - Tree Structure Terminology (ICAD 1993)

5 In this case, nested means that one composite object is part of the definition of another composite object.

171

Term

B.1.2. IDL Description

This section relates the generic concepts described in the last section to IDL

specific terms. Some new concepts associated with IDL objects are also introduced.

When reading this section, remember that IDL is used to model physical products, such as

compressors, engines, and vending machines. As such, objects, information, and

procedures are geared for geometric applications.

In IDL, an object is called a defpart, for definition of a part. Just like objects, each

defpart can contain both information and procedures. In IDL, the information and

procedures are organized into several sections. Each section is titled with a keyword.

The ICAD manual describes many different types of keywords, all of which divide the

defpart into specialized regions. At a high level of abstraction, the most common

keywords categorize information and procedures according to inputs, attributes, and parts.

Figure B.5 pictorially shows the sections of a defpart. The arrows show the direction of

information flow, both inside and outside the defpart (ICAD 1993).

From Parent
information

:attributes

information and
(procedures

:parts
information and procedures

organized according
to children.

To Children

Figure B.5 - Graphic Description of an ICAD Defpart

172

Defpart Table

User Inputs:
people
height _

Defpart Table-top

people
height

:attributes
diameter = 12 x # people

:parts
table-top A

diameter

:attributes

table height

:attributes

leg thickness

Figure B.6 - Tree Structure for a Table

The inputs section gets information from the parent defpart. If the defpart is the

root node, the information is requested from the user. In generic terminology, the defpart

sends a message to its parent or to the user requesting information. The attributes section

lists the information and procedures that characterize the defpart. For example, a defpart

representing a table, might have an input requesting the number of people sitting around a

table and have an attribute to calculate the size of the table to accommodate the number of

people. The parts section identifies more detailed parts of the table, that will become the

defpart's children. In generic terminology, the parts section references other defparts that

altogether create a composite object.

In IDL, most defparts are related to each other as composite objects. In a sense,

the entire product, modeled in IDL is one big composite object, which forms a tree

173

Defpart Legs

hierarchy. All messages are passed up and down the tree hierarchy to the appropriate

nodes (ICAD 1993).

Figure B.6 shows a tree structure for a table, along with representative information

flows (ICAD 1993). The table is made of a table top and legs. Note that both the table

top and legs are listed in the parts section of the table defpart. To create the table, both

the legs and the table top need more information, which they get from the table defpart.

In order to satisfy this request, the table defpart asks the user for inputs.

This defpart defines a table.

:inputs
(:height
:number-of-people
)

:attributes
(:table-top-height (inch 3)

:width (* 12 (the :number-of-people))
:length (* 12 (the :number-of-people))
)

:parts
((table-top

:type cylinder
:height (twice (the :width))
:length (the :table-top-height)
:radius (the :width)
:position (:top 0)
:orientation (:rotate :right)
)

(legs
:type box
:quantify (:matrix :lateral 2

:longitudinal 2)
:height (- (the :height) (the :table-top-height))

:width (the :table-top-height)
:length (the :table-top-height)
:position (:bottom 0)
)

)

This is the inputs section.
The program will prompt the user for
the height and number-of-people
when this part is called.

This is the attributes section.
Set the table-top-height to 3 inches.
Set the width and length to be 12 times
the number of people.

This is the parts section.
This section defines the table-top.
The table-top is round.
Set these values to previously defined
values from the inputs and attributes
sections.
These two lines position and orient the
table-top to the rest of the table.

This section defines the table legs.
The table legs will be square.
This expression creates four legs to
hold up the table.
This is an equation to subtract the table
thickness from the leg height.
The leg thicknesses (width and length)
are set equal to the table thickness.
The legs are positioned below the
table-top.

Figure B.7 - ICAD Defpart for a Table

174

(defpart table (box)

)

_ __ __

For reference, Figure B.7 shows the IDL code for the table defpart. In the IDL

code, all of the words that start with a ":", but are not keywords are attributes, that

contain information. All of the parenthetical expressions to the right of the attributes are

procedures to calculate attribute values.

In ICAD, the composite object tree structure, as shown in Figure B.6 is called a

product structure tree. Figure B.8 is a generic representation of a product structure tree,

since no specific product is shown. The arrows in the figure show the direction of

information flow in the system. The attributes in the :inputs section of the lower level

defparts ask for information from the higher level defparts(ICAD 1993).

Another type of information flow is represented, in Figure B.8, by the dashed

arrow between defparts D and F. In IDL, this type of information request is called a

referencing chain. Defpart F needs information from defpart D, but needs to specifically

send a message to defpart D requesting information. In order for the information to go

from defpart D to defpart F, the information must travel up and then back down the tree,

along the path D-B-A-E-F. ICAD does not recommend this cross-branch information

sharing, because the product model becomes confusing to implement and hard to decipher.

The referencing chain also makes the product structure tree non-generic, because defpart

F can only be used in its current position in the tree. A generic defpart can stand alone, or

can be called from anywhere in the tree (ICAD 1993).

Up until now, only the structure of a product model has been described. The

collection of defparts in a product structure tree only organizes information for use in a

product model. An actual design is created when the product model is instantiated with

specific values. One instance of a table is a tall, wide table, five feet high, with twenty

people seated around it. A different instance of a table is a small, squatty table, one foot

high, with four people seated around it. The process of creating one specific product in a

product model is called instantiation (ICAD 1993).

175

Figure B.8 - Generic ICAD Product Structure Tree

As shown in this example, the ICAD defparts and product structure tree enable the

ICAD parametric capability (the ability to create several instances from one product

model). In the table example, the table defpart uses equations to relate table size to input

values, such that different table instances are created just by changing the input values.

The ICAD system also allows changes in part geometry with different inputs. For

example, an equation could be written in the table defpart to make a round or square table

top, depending on the number of people sitting at the table.

There are many more concepts about object oriented programming and IDL which

are not explained here. For more information, see a general reference book on object

oriented programming (Taylor 1990), the ICAD user's manual (ICAD 1993), or a

common lisp reference book (Steele 1990).

176

B.2. Browser

The browser is a user interface environment that reads the product models defined

in the ICAD Design Language. The browser interface is used to help develop and debug

product models and to provide an environment for the production user to view a product

model.

Figure B.9 shows the browser, with an instantiated table defpart, as described in

Section B. 1.2 on the ICAD Design Language. There are five parts to the screen,

numbered 1 through 5 in the figure. Across the top and right side of the screen are menu

options (1 and 2). The bottom line is a status bar (3). The two parts in the middle of

picture comprise the workspace area (4 and 5).

The workspace has two parts: the product structure tree on the right (4) and the

graphics viewport on the left (5). Both the product structure tree and the graphics are

specific instances of the product model. The product structure tree was defined in IDL,

using defparts. Sometimes, when modeling large products in ICAD, it is hard to keep

track of all of the relationships among all the defparts. The product structure tree

facilitates the creation and interpretation of the product model. Since each name on the

tree corresponds to a user defined defpart, it is possible to open an inspector window to

look into a defpart on the tree to examine its attribute values.

The geometry displayed in the graphics window matches the same instance

represented by the product structure tree. However, the defpart name does not have to be

visible in the product structure tree for the geometry to be displayed in the graphics

viewport. The graphics window displays the three dimensional part geometry. Depending

on the settings, the view can be changed to show orthogonal graphic views, such as top

and front, or a custom user view. It is also possible to zoom in on the graphics image.

The geometry of a specific part is viewed by drawing the appropriate defpart in the

product structure tree.

177

r-C
3E

ci

0

Figure B.9 - ICAD Browser

178

I

Along the right side of the screen is a set of menu tabs (2). The menu tabs pull to

the left to display a menu of commands. The commands are grouped according to those

that change the graphics, manipulate the product structure tree, alter the workspace,

debug the product model, and configure the browser.

Quick menu commands are provided along the top of the screen (1). The hot keys

across the top are a customizable set of buttons that facilitate exploration of the product

model. Scrolling through levels of menus is time consuming and cumbersome. Some of

the most frequently used commands are initially assigned to the hot keys. However, if a

different set of commands is desired, new commands can be pasted into place. The user

can even define commands that are connected to the product model.

The bottom status bar (3), indicates whether the system is working or waiting and

gives helpful messages on how to use selected commands.

For more information on the browser, see volume 3 of the ICAD User's Manual.

References

ICAD, Inc. The ICAD System User's Manual. Version 4.0. vols. 1, 2, 3, and 6.
Cambridge, Mass.: ICAD, Inc., 1993.

Harmon, Paul and Brian Sawyer. Object Craft: A Graphical Programming Toolfor
Object-Oriented Applications. Reading, Mass.: Addison-Wesley, 1991.

Steele, Guy. Common Lisp: the language. 2nd ed. Bedford, Mass.: Digital Press, 1990.

Taylor, David A. Object-Oriented Technology: A Manager's Guide. Alameda, Calif.:
Servio, 1990.

179

Appendix C

User Interface

C.1. Introduction

This appendix describes a conceptual user interface for QCAD at a high level of

abstraction. The goal is to convey an idea of what the user interface should be able to do,

without discussing any concrete details about what the screens should look like, or how

they should be implemented. This appendix is meant to be a starting point for the

development of an user interface.

The user interface should provide easy access to QCAD's capabilities for both the

initial programmer and the end user. There should be two modes: input mode and design

mode. The input mode is used to store permanent information in the system, such as part

geometries, parametric relationships, concept review matrices, and process definitions.

The design mode is used to explore designs and to change information stored in variables.

It should be possible to save the state of the system when in design mode.

In input mode, the user adds to the knowledge base of the system. However, in

design mode, the user plays around with the knowledge already in the system, making

non-permanent changes to the stored information. In design mode, the user should also be

able to select a product model to explore.

As discussed in Section 4.3, there are multiple views of a product. The user

interface should be able to display all of the possible views, from functions to hardware to

processes and from total system to part features.

Since QCAD is specified with three hierarchies, the user interface should support

three primary screen sections: function, hardware, and process. Other screen sections,

such as menu bars and status bars, should also be available. In each of the primary

screen sections, the user should be able to move up and down in the abstraction levels.

The discussion here refers to sections of one display screen, but the user interface can be

180

different (i.e., composed of separate screen windows). Each section must be linked, such

that changes in one section are reflected in the other sections. The user should also be

able to look at any screen section at will.

The rest of this appendix discusses elements of the user interface.

C.2. Function Interface

The initial screen for the function interface is the total system function net. At the

total system level, there is only one function. Thus, the function net is just a circle, with

the function written inside. The user should be able to change the level of abstraction to

see function nets at different levels in the hierarchy. It should be possible to view all of the

functions on that level at the same time, even though some functions may be part of a

different function net.

The user should be able to modify the function net, by adding and removing

functions, and by changing the links between the functions. A different function net

arrangement may result in a different hardware configuration.

Furthermore, the user should be able to look at two different sets of information:

(1) information related to the layer, and (2) information related to an individual function.

Some of the information at the layer level includes the house of quality, concept selection

matrix, and concept review matrix. Each function also has related information, including

constraints and related sub-functions. Additionally, each function should be able to look

at its associated hardware.

C.3. Hardware Interface

The hardware screen has two parts. One is a graphics viewport. The other is a

hierarchical representation of the product structure. The viewport is used to display and

anal'ze the product geometry. The user should be able to look at the geometry for

interferences and should be able to send a part geometry to an analysis program.

181

In the viewport, the whole product can be displayed, or just pieces of the product,

depending on what the user selects. The hierarchical representation helps the user to

select hardware to be displayed.

The hardware is represented by a product structure net. Just like the function net,

the user can change the level of abstraction to see different product structure nets. The

user can select different hardware nodes for viewing, or can select the whole structure to

draw the entire product.

Additionally, the user should be able to look into each hardware node. For

information about sub-hardware, hardware parameters, the QFD design matrix, and the

manufacturing process. The hardware node should also be able to display all of the

functional requirements that it satisfies.

C.4. Process Interface

Just like the other interfaces, the process interface shows the process flow at

several levels of abstraction. The higher abstraction levels show diagrams of how the

parts fit into an assembly. The lower levels show the process steps to manufacture a piece

part. Each element on the flow diagram should be set up such that a user can look at the

parameters, QFD matrix, and design of experiments for that process. The user should also

be able to display the hardware made by that process.

In addition to displaying a process flow chart, the user should also be able to look

at a specific process type, which should give information about the process, the company's

capabilities with the process, and the parts made with the process. It would be useful to

display all of the hardware made by one process simultaneously in order to both refine the

hardware design and to plan the manufacturing process.

182

C.5. Miscellaneous

The user interface should also have features that affect the whole product model.

One such feature is to display the fault tree. Fault information is dispersed

throughout the model. There should be a command that collects all of the faults and

displays them in a fault tree. This command should also be selective such that a user can

define keywords that only find faults related to a specific area. This fault command could

also keep track of fault information, i.e., the number of times a fault occurs.

Furthermore, there should be a command that finds inconsistencies in the product

model. The user should be able to define places where problems might occur. If these

problems develop, the command should display a list of the inconsistencies, from which

the user can select one to explore. Upon selection, the display changes to show the area in

question, with the inconsistency highlighted.

Another important capability for the user interface is the display of generic

information about the product, such as the total cost and bill of materials. The user should

also be able to define other information to be displayed.

183

