QCAD
A Framework for Total Quality Development
in an

Object Oriented Knowledge Based Engineering Environment

by
Yale Goldis

B.S., Mechanical Engineering
Tufts University, 1991

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

at the
Massachusetts Institute of Technology
February 1994

© 1994 Massachusetts Institute of Technology
All rights reserved

Signature of Author...........cc.ccceenennen, SOheessars et ie bt eesasan bt b st s tesr et aas ks SR b e e bR e bR e b e s san st obs
Department of Mechanical Engineering

January 14, 1994

Certified by .. Treerenann CeeeTTerndeneressnsanns (IR IRNNT A & % L S 2 RV, Y OO
Don P. Clééi(ng

Bernard M. Gordon Adjunct Professor of

..«+75nginegering Innovation and Practice

Thesis Advisor

ACCEPLEA DY ..ot e s
Ain Sonin

Chairman Departmental Graduate Committee
Department of Mechanical Engineering

MASSACHUSETTS INSTITUTE
OF TECUME OGY

MAR 68 1994

LIBRARIES

QCAD
A Framework for Total Quality Development
inan
Object Oriented Knowledge Based Engineering Environment

by
Yale Goldis

Submitted to the Department of Mechanical Engineering
on January 14, 1994 in partial fulfillment of the
requirements for the Degreee of

Master of Science in Mechanical Engineering

Abstract

Conventional knowledge based engineering (KBE) systems connect engineers to
engineers. These design systems integrate corporate engineering practices into a
computerized framework. The intention is to quickly and efficiently create a product
specification, leaving engineers time for other design tasks. KBE applications address
conceptual design, geometric design, and part manufacturability, but do so in a segmented
fashion.

This segmentation is reminiscent of the throw it over the wall approach to design.
Each program optimizes its own task at the expense of the overall system. Many
companies today use multifunctional product development teams and total quality
development methods to break down barriers among departments. KBE design systems
should follow suit.

To expand the horizons of computerized knowledge based engineering, this thesis
develops the Quality Computer Aided Design (QCAD) system and tests it with both an
easy to understand clamp model and a more complex copier model. The QCAD
mzthodology consists of two parts: (1) a design process framework and (2) a computer
program for use with the design framework. It is intended that a multifunctional product
development team use QCAD to assist in developing both new and variational products
from function designation to hardware definition to process specification.

The QCAD system was implemented in the ICAD design language (IDL). ICAD
is the leading supplier of commercial knowledge based engineering software worldwide.
IDL is a super set of common lisp, an object oriented programming language, and is
geared toward modeling products in the ICAD user interface.

Comments are expressed about the benefits and drawbacks of combining the two
design methods in a product development environment. Future improvements and
research work are also suggested.

Thesis Advisor: Don P. Clausing
Title: Bernard M. Gordon Adjunct Professor of Engineering Innovation and Practice

Acknowledgments

First, I would like to thank my advisor, Professor Don Clausing, for his support,
guidance, and assistance on this thesis. I appreciate the direction and freedom he gave me
to explore this topic. I am most grateful to him for teaching me about total quality
development and for giving me the opportunity to study cultural change with him. I am
truly fortunate to have him as an advisor.

Second, I would like to thank Professor Ron Andrade, who is here on sabbatical,
but gave his assistance with my thesis anyway. Moreover, I appreciate our countless
philosophical discussions about life, the universe, and everything.

Third I would like to thank Diane de Alderete for her indispensable administrative
support.

Fourth, I would like to thank all of the people at ICAD for their assistance with
this project, including: Larry Rosenfeld for his support; Tom Smith, June Powers, and
Phil Stockton for the training sessions; Mark Ouelette, Bill Brand, and Ralph Verrilli for
their interviews; Mark Ouelette and Bob Phillips for the innumerable conversations and
programming support.

Furthermore, I would like to thank the people at MIT for their assistance with this
project, including: Professor George Chryssolorus and the students in his lab for the use
of their workstation; Kevin Spratt for his assistance in configuring that workstation; and
Aiita Flynn in the artificial intelligence lab for her assistance with the initial installation of
ICAD.

Lastly, I would like to thank my parents and friends for their patience and
understanding.

I would also like to thank the Leaders for Manufacturing Program for its support

of this work.

Table of Contents

I INEPOAUCHION. ...t ittt et s e et et e e e e s e st e aaeeaes 7
2. Review of Total Quality Development ..o 12
2.1 OVEIVIEW ..oiiiininiieieeeete et e e et ee et e e et e e e e e s e aeee e e s ate s st e aeeeeneeannens 12

2.2. Design Process StIUCLUTE.........ccccvvierereterinerieteeereerersererseeesesseasaeesseeesnnne 13

2.3. Basic Quality Function Deployment............c.ccocceiiiioiinininniicnncceninnecnnee 15

2.4. Pugh Concept SEIECHONcoreumiiiiriiiieiniteeee et eece et e e rreeee e ee e 20

2.5. Enhanced Quality Function Deployment.............ccccocoervviinniciinnineenncennne. 22

2.6. Taguchi System of Quality Engineeringccccceveviireivirniceevernererecneenne 24

3. Review of Computers in Design........cccoovveiiiiiiiiiiiiiiieiieeeece e 31
3.1, OVEIVIEW ...eeiiiiniiieiiteeit ettt et sre et e e et e sebta e e et e e e casnesaesesnaesnes 31

3.2. Introduction to Knowledge Based Engineering.........ccccccceeevrieviiccrnnicnnnne 32

3.3. Conventional Design ASSISEANEScccceererierneerierenienieeeneieeereeeeeesaeeenane 34

3.3.1. Technically Focused ASSIiStantscccceeeeveereeriresiiesecesieeeneeeesennes 35

3.3.2. Quality Focused ASSISLaNLSc.ccceoveerreereienreereneeriereeneeenseeeeseenes 36

3.4. Design HiStory SYSIEIMS.cccverrriirrieririieieeicreeeeeseeeeresteesesnessseeeseneenes 37

3.4.1. Design Representation Formats...........ccccoeevoviiiiiniiiennieciieiieeiee e, 37

3.5. Knowledge Based Design SYStemSc.coevvieereviumrerireceiieeernnreeeeseesesnneneeens 38

3.5.1. CAD SYSIEIMS ...couviiiiiiiiiieieiieteteeereteeeceaee s e e esreeeseseeeesesaeeaesane 39

3.5.20 TCAD ..ot e 40

3.5.2.1. Representative ICAD Projects.........c.ccceevvveienvenrenneenncnn. 41

3.5.3. Quality Design SYStemSscoccemvuieimreriuierienieieenenenree e 42

3.6, SUMIMAIY ..c..uviiiiiirieiieteniteeeiteeereesetteesseeessteeeeseseesssneeassseesasssessesnsssassses 44

4. QCAD DEfIMItION....ccueiiiuieiieiieiteeitiene et eeiterreeesteeresrecesra e st e s e saessaeessseessnsesasenns 47
4.1, OVEIVIBW ..ottt et e sttt e s s saae s sae s ss et e s saba e na e e snenes 47

4.2. Initial DevelopmEntcccciiiiirieiiiiieeceiecee ettt 48

4.3. Basic QCAD Framework..........cccocvuurieuimiinirieeireeieeireeeneeeseeeeessreeesennsneens 55

4.4. Design Process in QCADcccoevieriiiiriiiniieieesctressieeseresee s s ssaee s saessaneens 59

4.4.1. Function Hierarchyccooceeeiiiininninniiicneneenececeeeeeeieeae 62

4.4.2. Hardware Hierarchy..........cccccoevveirviennennsenniinserenieneeeseveeeseenenne 66

4.4.3. Process Hierarchyccoccemeeiicivnniiiiinniensieniesseee e sieeessaesenen 69

4.5. Computerized Elements of QCAD........ccccoceveiiiinecnninieeneee e 71

4.5.1. Description of Clamp Product Model...........ccccecoerrvenieicenrneennennnee. 72

4.5.2. Function Hierarchycccoccevvriiiinciniciiec e 74

4.5.2.1. Function Identification...........cceccceevveerseervneneeneneennienenns 74

4.5.2.2. CONSITANLSorueerirneireieerieereeerteeeresrereeteesseessreesneenas 75

4.5.2.3. QFD House of Quality MatriXc..cccceevvvreevveienrcneennns 76

4.5.2.4. Function Diagram...........coevieiiiinniinninnicncnnecnnnenicneeenn 79

4.5.2.5. Concept Generation...........cecceeeeeerreeercrreesieresssreesessreesenns 81

4.5.2.6. Concept SElectionccocceveereeerriernierieneecreeneeeeieeneane 82

4.5.2.77. Concept ReVIEWcccoviimiiiiiiiiiiiccc 84

4.5.2.8. Additional COMMENLS......ccceevmereriirirmirerneeeeeeeenceeeaenaee 85
4.5.3. Hardware Hierarchy..........cccocoooviiiiiiniiiiiiiiiiiciiccce, 85
4.5.3.1. Product Structure Diagram.......c..coccocveemreierrcenniiceenennnnes 86
4.5.3.2. QFD Design MatriX.......cccceeeeirinimiiinencinnienieneeeneecenennes 87
4.5.3.3. Hardware Parameters........cc..cccccceeeiirinnieininenieeinneeceeneenne 88
4.5.3.4. Product Parameter Design........ccceoeeveeieiriiieeiieneneneeennnnne 89
4.5.3.5. Material and Process Selectioncceeceeiiiininiiannnaaes 90
4.5.3.6. Concept REVIEWc.coueiiuiiriiiiiiniiiicicicreeerece e 91
4.5.3.7. Additional COmMmMENtS.......ccceevurrereerreeeceriricnererieeeeraasaeanns 92
4.5.4. Process Hierarchyc.oooccceeiiiiiiciiiniiiniiiniiceeneeeeeeneceee e 93
4.5.4.1. Bill of Materials..........cccccerriviiiniiniiniciciieeeie e, 93
4.5.4.2. Process Parameters...........coccoocieeennraniiiiiiieceeneenee s 94
4.5.4.3. Process Parameter Designcccoeceveiiniiiciiiciecnnncnen. 94
4.5.4.4. QFD Process and Production Matricesc.ccccceeeeeennnne 94
4.5.4.5. Additional COMMENLS......ccceeereeierrnioiuiieennireierenrreereeenns 96
4.5.4.5.1. Part Formation.........cccceeeviieeiniiniiececeneneas 99
4.5.4.5.2. Part Finalization........cc.cccceeecvevreeererreeennnnnen. 100

4.5.4.5.3. Instruction for Quality Assurance Check
POINES ..coniiiiiiiiii e 100
4.5.4.5.4. Process Feedback........ccccooevrirenvneenrnnnnenn. 100
4.5.5. MiSCEHANCOUScoerrumiiiiiiicieeieie ettt e e eeee e e srte e e e e e e 101
4.5.5.1. Fault TrEeS....cceveveeiirreriiieeieriieceeetreeseie e e 101
4.5.5.2. MIiSCellaneous.........ccceevueeerienmiernireerniceeeeneeecee e e 102
5. Discussion of QCAD Implementationccceccereeiirniircieecieiinenneneee e 104
5.1 OVEIVIBW ..cooneiniiiiiiieieenreiee ettt teeesreessnsaaeseess et seasesnanaeesassensasesssnseseeas 104
5.2, QCAD Case StUI€S.....ccceereiieeieinirrierireeetteeeeeeeeeseeeeseerareseeeeeesassnnses 104
5.2.1. Generic QCAD StruCtUre........ccuveeirerieiierereeriiereeecrreeeeeerreeeeeenns 105
5.2.2. Clamp Product Model.........ccccceevuiiiiinnieriniieneiererveecene e 111
5.2.3. Copier Product Modelcccccceriiiiiiiiniiiceneeie e 123
5.2.4. Larger Product Models.........cccceeveerriieiniinneniieenieen e 132
5.3. Observations from QCAD Case Studi€s..........ccovcurreereererreererevveerererennenees 133
5.3.1. QCAD and TQD.....ccccotiiriiiiieenieerteeereiteeeerer e eree e e se e e saeaeeens 133
5.3.1.1. QCAD Improvements over TQD..........cccccoccervrrrennne. 133
5.3.1.2. QCAD Difficulties with TQDcccceervcverirererenrnnnen. 137
5.3.2. QCADand KBE...........cooiiiiiiiiiieiieeceeeeeeeseieeecireeessvnesiasee e 140
5.3.2.1. QCAD Improvements over KBEccccceernnnnne. 140
5.3.2.2. QCAD Difficulties with KBE.............ccccccvinniiinnnne. 142
5.3.3. SUMMATY .ottt s e s enee e 143
5.4. QCAD in Product Developmentccoccueeinieriiuiiniienninnincnnecnnen. weeeen 145
5.4.1. QCAD Uses in Product Developmentcccccceveenueerinenneennen. 146

5.4.2. Additional QCAD Uses for Incremental Product Improvements... 150

6. Conclusions and FULUIE WOTK......oociou oo eeeee e e e eeaeeaveaesesennsasesasaasasaes 152

6.1. Summary and COoncClUSIONS........c.ccccereeetrioiierreiieeereeereeetree e e e eeaeeaneans 152
6.2. Future WOTKc..ooiiiiiiiiiieee ettt e seaas 154
REFEIENCES ...ttt et ae e e st aeereeeaeas 157
APPENAIX A (oo ettt s se s e et eneenans 162
ADPPENAIX B ...t e e et 167
APPENAIX € ..ottt et e e e e ae e e nn e e areeaeeeatas 180

Chapter 1

Introduction

Computers are deeply embedded in our society. They are used in many
applications, including magnetic resonance imaging, information processing, routine
calculations, and human thought process modeling. It is hard to imagine life without
computers. They have inundated all divisions of corporations, with applications in
communication, data storage and retrieval, and analysis work. More specifically, in
corporate product development, computers are mainly used for analysis, including design
assistant functions and routine redesign tasks.

Design assistant programs perform specific tasks to help designers with
calculations and sensitivity analyses. Some examples include finite ciement packages,
math packages, and spreadsheets. A more general class of systems, which are used as
design assistants, but are also used for routine redesign, include CAD! systems, expert
systems, and knowledge based engineering systems. These systems use corporate design
knowledge, engineering principles, and rules of thumb to explore designs and to make
quick changes to designs. Some knowledge based and expert systems are even used to
coordinate information, combining daca from other design analysis programs and releasing
processed information to those same programs. In general, computers have made
available a means for quickly performing a pre-designated set of calculations and design
tasks to speed up product development work and to make fewer mistakes.

Along these same lines, Xerox has identified three goals where computers can be

used for improving product development (Heatley and Spear 1992).

“1. Reduce the time required to develop and deliver electromechanical

systems to the market.

I' This definition of CAD, Computer Aided Design, includes the geometry modeling capabilities and the
analysis features, including circuit analysis, computer aided manufacturing, parametric design, etc.

2. Improve quality of our products - copsistency, accuracy, and
manufacturability. This increases customer satisfaction with our
products.

3. Reuse and incrementally improve existing designs, sub-systems,

components.”

The Xerox quote not only identifies possible uses of computers in product
development, but also exemplifies a commitment to satisfying customer wants and needs
with robust products. The latter is a rare find in literature on computers in design. This
perhaps stems from artificial intelligence research longing to model human thought
processes (Edwards 1991) and companies wishing to develop products faster.

In general, using computers doesn't change the design process used in
companies—computers reinforce it, standardize it, irstitutionalize it, and accelerate it.
Expert system programmers are trained to extract design rules from engineers and code
them into a program (Edwards 1991), whether or not they are relevant to satisfying the
company's customers. Unless a company is already looking at customer wants and needs
in designs, computers will not help satisfy those needs.

Computers may even make it harder for people to communicate and to improve
products through collaborative effort. Computers tend to reinforce individualism (Moses
1990) and a narrow focus on a small area of the problem thus making them lose sight of
the overall design and how their part interacts with other parts (Reddy 1991). The
traditional product development process is characterized by intense rivalries among
departments, with one department throwing a design over the wall to the next department
(Clausing 1991). In such a situation, the computer system bought by one department may
not even be compatible with the computer system purchased by another, further increasing

the barriers in product development.

Instead of, or in addition to, using computers to accelerate the design process,
some companies are using concurrent engineering techniques to overcome the barriers in
traditional product development. Synonyms for concurrent engineering include
simultaneous engineering, life-cycle engineering, and company wide quality control. The
essence of these practices is to get people to interact, to see things from a different
perspective and to design more cost-efficient, manufacturable, and serviceable products.
Takeuchi and Nonaka (1986) compare this new approach to a rugby team moving a scrum
down the field. The old approach is likened to that of a relay race.

For comparison, Figure 1.1 shows three typical product development processes.
The Type A process is the traditional, sequential approach, with distinct barriers between
phases. The Type B process, used by NASA, has some overlap, but is still dysfunctional.

The Type C process is the concurrent process, with extensive overlap. Note that a

concurrent process shortens the product development cycle time.

e ety s

Figure 1.1 - Product Development Phases (Takeuchi and Nonaka 1986, Exhibit I)

In addition to concurrent engineering methodologies, Clausing (1994) has

developed a Total Quality Development (TQD) approach to design, which promotes a

focus on quality, cost and delivery, an emphasis on customer satisfaction and an emphasis
on competitive benchmarking. TQD uses visual connective methods and team experience
to build understanding, consensus and a strong commitment to decisions.

Given that new paradigms are emerging in product development that are replacing
the traditional, outdated processes, a new look should be taken at how computers are used
in the design process. More specifically, how should computers be used with TQD and
how should TQD be used with computers?

This thesis is an initial study of these questions. It assumes that computers should
be used in product development and thus specifies and tests a framework for a Quality
Computer Aided Design workspace called QCAD. QCAD facilitates the design and
analysis of a product as it moves from total system concept definition to detailed part
feature design and from function definition to process specification. Written in the ICAD
Design Language (ICAD 1993), QCAD incorporates all of the features of the leading
knowledge based engineering software in world with the quality design methods proven to
facilitate enhanced product development. Traditional knowledge based engineering
connects engineers to engineers—QCAD connects customers to the factory floor.

The remaining chapters follow the organization and description below:

Chapter 2: Review of Total Quality Development. This chapter presents the
concepts and techniques of Total Quality Development. It starts out with a discussion of
several common views of the design process and describes a generally accepted structure
for the design process. The chapter then goes on to explain concepts and methods specific
to Total Quality Development, including Enhanced Quality Function Deployment, Pugh
Concept Selection, and the Taguchi system of quality engineering.

Chapter 3: Review of Computers in Design. As mentioned above, computers
are used in many ways in the design process. This chapter describes several treads in the
use of computers for product development to show some of the ideas that went into the

development of QCAD. The chapter begins with a general introduction to knowledge

10

based engineering and then describes conventional design assistant programs and design
history systems. The latter two types of systems are then used to help explain knowledge
based engineering systems, with emphasis on ICAD KBE applications. The chapter also
emphasizes programs that facilitate using the quality methods described in Chapter 2. The
last part of the chapter brings together all of the presented information and shows how it
relates to QCAD.

Chapter 4: QCAD Definition. Based on the discussion in the last two chapters,
this chapter sets out to define the requirements for using computers in a total quality
development environment. This chapter defines both a design process framework for a
PDT to follow, and a specification for a computerized quality development system. The
specification uses several examples to show where and how information is organized in
QCAD. To facilitate explanation, the concepts in this chapter are explained using a simple
clamp model.

Chapter 5: Discussion of QCAD Implementation. Given the definition for
QCAD developed in Chapter 4, this chapter describes the implementation of the
methodology with a simple clamp and a complex copier. The copier has both a broad and
a deep range of sub-systems that challenge the computer's ability to decompose and
recombine product information. The second part of the chapter extrapolates some
learnings about the use of computers in design, as learned from the two case studies. The
third part of the chapter describes how a product development team could use QCAD for
design.

Chapter 6: Conclusions and Future Work. This chapter summarizes the thesis
work and presents some of the notable results identified in the QCAD system specification
and case studies. Also discussed are suggestions for future research on QCAD and in the

use of computers in total quality development.

11

Chapter 2

Review of Total Quality Development

2.1. Overview

Products have been created to help man harness nature since prehistoric times.
Many of these early designs were created from common sense, experience, and empirical
data. Designs were then improved throughout the ages. Only recently, within the last two
hundred years, has engineering design become more scientifically oriented, with designers
searching vast collections of data on the understanding of nature (Krick 1965). A design
process is needed to help understand how to select an appropriate solution to a problem.

Cross proposed two ways of looking at the design process, including descriptive
and prescriptive methods (Cross 1989). Descriptive methods analyze how designers
design and attempt to specify heuristics that model the design process. This is the model
that knowledge engineers use to solicit information to put into an expert system. The
information entered into the computer model attempts to imitate the process that a
designer uses to develop a product.

Alternatively, prescriptive methods attempt to create a design process to be
followed when designing a product. “Many of these prescriptive models have emphasized
the need for more analytical work to precede the generation of solution concepts. The
intention is to try to ensure that the design problem is fully understood, that no important
elements of it are overlooked and that the ‘real’ problem is identified. There are plenty of
examples of excellent solutions to the wrong problem! (Cross 1989)”

A generally accepted framework for a prescriptive design model includes function
analysis, concept synthesis, and evaluation. The goal of function analysis is to define the
design criteria and set the performance specifications in a way that represents the correct
problem to be solved. Concept synthesis is used to generate solutions that match the

requirements set by the function analysis. Lastly, an evaluation mechanism is provided to

12

help select among the design alternatives, before the design is fully specified, such that the
final design has a high fidelity with the function specifications.

There are many prescriptive models for the design process (Asimow 1962; Krick
1965; Pahl and Beitz 1984; Cross 1989; Pugh 1991; etc.). Total Quality Development
(TQD) is also a prescriptive method. It has a quality focused approach to design. TQD
uses a concurrent process that emphasizes customer satisfaction, competitive
benchmarking, robustness, and a focus on quality, cost, and delivery.

The following sections describe the fundamental parts of the TQD process. Other
TQD tools and concepts that are used in the QCAD system are described as necessary in
subsequent chapters. The reader is referred to Don Clausing's book on Total Quality

Development (1994) for a more elaborate description of the methodology.

2.2. Design Process Structure

A design can be thought of at several levels of abstraction. The total system level
describes the overall product, including its high level functions, hardware, and processes.
The total system is broken into sub-systems, which are more detailed sections of the
product. A design can also have sub-sub-systems and sub-sub-sub-systems, and so on,
until the design is broken down to the piece part level. The piece part level describes the
individual components that comprise a design. At the final level of detail are part features
that describe critical? areas of a part.

Figure 2.1 is a partial hardware tree for a Xerox copier, which shows the basic
hierarchical structure of a design. The dotted lines show places where other hardware
pieces could go. Breaking apart a design is subjective and can be different for different
designers. A graphic representation of the hardware is shown in Figure 2.2 to further

explain the concept of abstraction levels.

2 Critical parts are those parts that are crucial in satisfying a product's functional or safety requirements;
those parts that define most of the product's costs and manufacturing lead time; and those parts that are
expected to cause the most difficulties in manufacturing or design (Florusse and Clausing, 1992).

13

copier

document handling image transfer paper handling support system
system unit system '
paper tray paper feeder paper drive output tray
' system :
lower support plate
support ribs retard roll screw bosses
support

Figure 2.1 - Hardware Tree for Copier

The total system level is a copier. The copier can be broken into several sub-
systems: original documents handler, image transfer unit, blank paper handling system and
a copier support system. Each of these sub-systems have other sub-systems, for example,
the paper feeder. A piece part would be the lower plate that supports some of the parts on
the paper feeder. Part features include the flanges, bosses, and ribs on the support plate.

The natural flow of a design starts with a total system definition, then goes to sub-
systems to piece parts and then to part features. The total system starts with a detailed list
of customer wants and needs, also known as the voice of the customer, and deploys those
characteristics to product expectations. The total system definition ends with selecting a
concept for further refinement. The rest of the levels start with higher level expectations,
translate them to expectations for the current level, and then select a concept for that

level. These tasks are facilitated with quality function deployment and concept selection.

14

C———1 TAKE-AWAY
P ROLLS
m PAPER
T STACK
ooll l\
O | RETARD ROLL
0
(a) Copier Total System Architecture (b) Paper Feeder Sub-system
(Clausing and Pugh 1991, fig. 4) (Clausing 1994, fig. 5.7)

Figure 2.2 - Copier Hardware

Deploying product expectations and selecting hardware and process concepts,
does not mean that the design has the best product or process parameters, or the most
economical tolerancing and on-line quality control procedures. Taguchi's system of
quality engineering is used to optimize the product and process with respect to

environmental conditions and customer satisfaction.

2.3. Basic Quality Function Deployment
Quality Function Deployment was formalized in 1972 by Akao, Mizuno, and
Furukawa at the Mitsubishi Heavy Industries's Kobe shipyards in Japan (Akao 1990, xv).
QFD is a method for translating customer needs to product expectations to hardware
characteristics to process planning and to production planning. It does this through a
series of matrices, shown in Figure 2.3. The matrices are called houses, with the first
house being called the House of Quality. The QFD process is performed by a

multifunctional product development team (PDT) and is used to immerse them in the

15

design to help them understand the design problem and to help identify possible hardware

solutions.
Product Planning Design Process Planning Producg;:;nngggraﬁons
Total System " Pioce Part Pradacion” rer—
Expectations Expectations Requirements Check Points
.l | 1 ,
R r’ = == ear
|
|
ITTT1T1] ITT1 1] (ITTT]
(I (TTTT] (ITTT]
T 117
(I 117
Voice
of the
Customer Factory
Floor

Figure 2.3 - Basic Quality Function Deployment
(Clausing and Pugh 1991, fig. 1 modified)

Room 1 O Room 4

Room 5

[| Room7] |

[| Room8]| |

Figure 2.4 - The House of Quality (Hauser and Clausing 1988, Exhibit IX modified)

16

The House of Quality improves on current product development practices by
relating development efforts to the voice of the customer, comparing the company's
product with the best products on the market, and by creating a clear, commonly
understood specification for the rest of product development. The House of Quality is
shown in Figure 2.4 and its rooms are explained below.

Room 1 - Voice of the Customer. This room is the input to the house of quality.
It contains the customer wants and needs. These requirements are found through
qualitative interviews with customers and are left in qualitative terms. Also in room 1 is
an importance rating for each customer input. This is usually a qualitative assessment by
the product development team, however, a customer ranking of the requirements is
preferable (Clausing 1994). More information on identifying customer needs can be found
in a working paper by Griffin and Hauser (1991), titled The Voice of the Customer.

Room 2 - Product Expectations. The product expectations are the company's
metrics for measuring product performance. These metrics are preferably continuous,
quantitative, technical attributes that can be measured on a continuous scale. Since these
attributes are in engineering language, they are easier to design for than the qualitative
voice of the customer (Clausing 1994).

Room 3 - Relationship Matrix. This room is the translation part of quality
function deployment. In this room, the PDT matches the voice of the customer in room 1
to the product expectations in room 2. Usually, the voice of the customer does not
translate directly to the expectations in a one to one relationship. One voice of the
customer can be measured by several expectations; or one expectation can measure
several voices of the customer. The degree of correlation is indicated in room 3, with the
following symbols: ® strong; O moderate; and A weak. Boxes with no symbols indicate
a really weak or no correlation between the rows and columns.

After the matrix is completed, it is checked for fidelity. Every row and column

should have at least one strong interaction. If a row does not have a strong interaction,

17

then the product expectations do not strongly measure that customer voice, leaving the
potential for a dissatisfied customer. If a column does not have a strong interaction, then
the company may be inefficiently allocating resources to improve metrics that do not
strongly affect customer satisfaction (Clausing 1994).

Rooms 4 and 5 - Competitive Benchmarking. These rooms show how the
product is positioned with respect to other products on the market. Room 4 shows the
competitive evaluation from the customer's perspective. Room 5 is a quantitative
evaluation from the corporation's perspective, is identified from engineering tests. Both
evaluations are compared to verify that the corporation and its customers have the same
understanding of how the product is positioned in the market. These evaluations are also
used in part to develop target values for the product expectations (Clausing 1994).

Room 6 - Correlation Matrix. This room, also known as the attic, shows the
relationships among the product expectations. In many situations, improving one
expectation may enhance or degrade another expectation. Room 6 shows both positive
and negative interactions: ® strong positive; O weak positive; 3 strong negative; and X
weak negative. These interactions show the PDT where most of the technical effort will
be focused. A strong negative interaction shows where providing more satisfaction for the
customer on one dimension will decrease satisfaction on the other dimension. Resolving
these interactions requires streamlining the current technology or creating a new
technology. This room is also used in part to develop target values for the product
expectations (Clausing 1994).

Room 7 - Technical Importance. The overall technical importance summarizes
the relative importance ratings of the product expectations with respect to the customer
requirements. The importance rating is calculated by multiplying the customer importance

ratings by the relationships in the relationship matrix (room 3).

18

wheie [; is the overall importance rating for column j, n is the rumber of rows, W; is the
importance rating for row i, and R;; is the relationship between row i and column j. The
relationship symbols have the following weightings: @ =9; O =3, and A= 1. Other
weighting systems can be used. The large difference in weights is to explicitly distinguish
between the those product characteristics that really satisfy a customer voice and those
that only partially satisfy a customer voice.

Sometimes a high score is obtained because that column was completed in more
detail than the other columns. This effect can be countered by making sure that the
relationship matrix is completed at a consistent level of detail or by normalizing the scores
with respect to the number of relationships in the column.

.o
IJ=Z_]§I_X‘VJ'XRJ'

i=1 IV

where 7 ; is the normalized importance rating for column j and N; is the number of

indicated relationships in each column.
The columns with higher importance ratings show a greater relationship to

customer satisfaction. These columns are the metrics that the PDT should pay the most

attention to when developing this product.

Another section of this room indicates the technical difficulty of moving closer to
the ideal value for this characteristic. The evaluations are done on a 5 point scale, with 5

being the most difficult.
The importance ratings, difficulty assessment, and the correlations (in room 6) are

used as aids in planning the subsequent work (Clausing 1994).

19

Room 8 - Targets, Quantified Expectations. Target values and tolerances for
each product expectation are recorded in room 8. These target values come from a PDT
assessment of competitive products in rooms 4 and 5, importance ratings calculated in
room 7, and correlations indicated in room 6. The basic idea for this room is to set target

values to create a best in its class product (Clausing 1994).

2.4. Pugh Concept Selection

The Pugh Concept Selection method is a qualtitative tool that immerses the
product development team into the criteria and the concepts to facilitate the creation of

new concept ideas. The Pugh Concept Selection matrix is shown in Figure 2.5.

i
0
|+ [+ |+ |
O
]

ZlciH{»| o0 O

'T’S?'fmcow>§g
N|[=|N w|+ A
NN =2+ |0

=1 O|hN

N|=>IN W

WIN Ol W

Figure 2.5 - Pugh Concept Selection Process (Pugh 1981)

The concepts are displayed across the top, in the columns of the matrix. The
criteria are listed in the rows. The criteria usually come from the columns of the House of
Quality. However, other criteria can be used. The criteria are subjectively ranked in order

of importance, from top to bottom. The rankings are not given weightings. The goal of

20

the method is to think about the design in qualitative terms, not to engage in mind
numbing numerology.

After constructing the matrix, the next step is to choose a datum. The datum
should be the design that is considered by the PDT to be the best. The rest of the
concepts are then individually compared against the datum using a 3 point scale. The
concept is either better than (+), worse than (-), or the same as (s) the datum in satisfying
a criterion.

Once the matrix is completed, two activities of attacking the negatives and
enhancing the positives are used to generate better designs. Concepts that perform worse
than the datum on certain criteria can be combined with concepts that perform better than
the datum to create new concepts. Likewise, concepts that perform better than the datum
can benefit from other concepts that perform better than the datum.

To aid in selecting the best concept, the number of pluses, minuses, and sames are
totaled at the bottom of the matrix. This step is just a formality because after completing
the matrix, the PDT generally knows which is the best concept.

The team started the matrix with several concepts. After completing the matrix,
some of the concepts were dropped, but a few more were added. Another matrix is
completed, with perhaps even different criteria. The next round also eliminates some
concepts, but adds a few more. This iteration cycle continues until the PDT converges on

one dominant concept (Figure 2.6) (Clausing 1994).

21

Number

of Concepts

v

/

Concept Selected

Figure 2.6 - Concept Iteration Cycle (Clausing 1994, fig. 3.9)

2.5. Enhanced Quality Function Deployment

Basic QFD is a serial process that deploys engineering characteristics from the
total system to production. It is a relatively straight forward process, yet only works for
simple, conceptually static designs. Enhanced Quality Function Deployment improves on
these shortcomings of Basic QFD in two ways: (1) deployment through the levels and (2)
the addition of Pugh Concept Selection.

The second phase of basic QFD translates total system expectations to piece part
expectations. This is fine for small products, but not for products as large and complex as
a car or a copier. Thus, as shown in Figure 2.7, EQFD translates expectations from the
total system to sub-systems to piece parts. Each QFD matrix is essentially the same as
described in Section 2.3, only the inputs and outputs have changed in abstraction level.

EQFD also integrates Pugh Concept Selection into the deployment from total
system to piece parts to production. At every deployment, there is the opportunity to
modify a product design. The concept selection matrix helps pick both hardware concepts

and materials and processes to manufacture the hardware.

22

A product that uses the same concept for every product generation is conceptually
static. Conversely, a product that changes every part and concept is 10U% dynamic. In
reality, a product generation that lies somewhere between the two extremes is best. The
combination of the concept selection matrices and the explicit translation of requirements

by QFD facilitates the development of appropriately dynamic products.

Production Production
Process Operations

Specifications Design Engineering Planning
House . Selectin
aulty) (feemby)
\%
(o)
é Tsss Final Aol
E m Matrix 7] Opelmations
0]
F
T (—_S‘SL_\ Concept
H » House Concept Selgglon
E Quality : Selection Assembly F
C C
U T
? o]
SSIPP ss Astt R
0 (by Mo [s Y
E
R]
(0]
L{c:nfj o
Selection R
PP
Processes
P PP ProdF:s:bon
Key. TS- Total System WM‘;":;“ Operations
PP Pewaban’ Mo __/

Figure 2.7 - Enhanced Quality Function Deployment
(Sontow and Clausing 1993, modified from Clausing and Pugh 1991)

23

2.6. Taguchi System of Quality Engineering

Quality is measured in terms of how well a product satisfies the voice of the
customer. In most situations, the customer's measure of quality is continuous. It does not
stay zero until the product reaches the manufacturing specification limits and then
skyrocket to infinity outside of those limits. Taguchi defines the customer's quality loss

with a quadratic function, based on the deviation from the ideal value:

L(y)=k(y—m)*, where k=‘—2§
0

This equation is also shown graphically in Figure 2.8. The customer quality loss increases
as the product deviates from the ideal performance. It is not enough to mandate that the
quality loss be reduced, because the tighter the manufacturing tolerance, the more costly
the product is to produce. The sum of the quality loss cost and the manufacturing cost

must be reduced to a minimal level.

ey
L(y) - quality loss

y - quality characteristic
A, - quality loss at A,

m - ideal performance
A, - deviation from m

Figure 2.8 - Quality Loss Function (Phadke 1989, fig. 2.3)

There are three different types of quality characteristics: smaller is better, larger is

better, and nominal is best. Figure 2.8 shows a nominal is best type of characteristic. The

24

other two characteristics are self-explanatory, where smaller is better strives for zero as a
goal and larger is better moves toward infinity. There is another type of characteristic that
is dynamic with respect to the input. For more information on characteristics, see
Clausing (1994) and Phadke (1989).

The quality loss is a measure of the cost to society of a product that does not
satisfy customer needs. The cost data is built into the constant k which is defined to
incorporate all of the costs that are incurred after the product is sold to a customer. These
costs can be a result of problems caused by an out of tolerance part, by enviromental
conditions, or by part deterioration.

There are four places where the company can affect the quality loss of a product.

These places are shown in Figure 2.9.

Product
Parameter
Design
Tolerance
Design
Process
Parameter
Design
. On-Line
Noises Quality
Control

v

Product Performance Quality
System "'__"" Degradations _—"_" Loss

I

Figure 2.9 - Dr. Taguchi's System of Quality Engineering
(Clausing 1994, fig. 3.11)

Only one of these interaction points can help minimize product quality loss from all

sources—the other three can only help minimize quality loss due to variations in

25

manufacturing processes. Once the product is shipped, the company cannot do anything
to reduce the inherent quality loss (Taguchi 1986). Service operations will still affect the
quality loss.

The quality loss should be measured against the actual use conditions of the
product, not just the ideal laboratory conditions. Throughout its life, the product is
subjected to a wide variety of noises, all of which try to degrade product performance and
increase quality loss. A product that functions well in a wide variety of noises is said to be
robust.

The first interaction point is in product parameter design. This event happens
while the product is being designed, before it goes to the manufacturing floor. At this
time, values for product parameters are selected that most enhance the successful
fulfillment of the product's function. This can be done using design of experiments.

Clausing (1994) discusses seven steps for parameter design (see also Taguchi

1987):

1. Define objective; best functional metric. A customer will evaluate a product on
several different criteria. The most important criteria should be defined in a
measurable way, on a continuous scale. These criteria, also known as quality

characteristics, will be the metrics on which the design is evaluated.

2. Define feasible alternative design values. In this step, the PDT selects several
control factors that are believed to affect the objective. Control factors are design
parameters, such as dimensions or material properties, that the PDT can change.
Three feasible values for each control factor, which are neither too broad nor too
narrow in range, are selected. The idea is to vary the control factors enough to get
a feel for the design space in order to improve the design along the dimension of

the quality characteristic.

26

3. Select some options for evaluation. Once the control factors and levels are
defined, an experimentation plan for testing the product at the different factor
levels needs to be selected. When optimizing a design, it has been common
practice to change one control factor at a time and select the best value for each
parameter. However, this technique does not model the interactions among
control factors and can become time consuming if there are a large number of
variables to change. Taguchi recommends changing multiple control factors at a

time, following a design of experiments methodology.

Noise
Factors
1122 | 1
Control 1212 | 2
Factors 1221 | 3
1234
17 1111
2 1222
w3 1333
=] Result
54 2123 fom. || 8
E5| 2231 || Designed || 8
26 2 31 o | |Experiments | -
M|)]
7] 3132
8/ 3213
9|1 3321

Figure 2.10 - Example of a Designed Experiment

Figure 2.10 shows a designed experiment, composed of fully crossed inner and
outer arrays. The inner array, on the left side, is composed of four control factors,
each with three different factor levels. The factors and levels are organized into

nine different experiments. The ‘2’ in the fourth row of column one means use the

27

second level of factor one in experiment number four. This inner array is called an

Ly(3%) array because it has nine experiments, using four factors at three different

levels.

4. Impose noises. Noises are changes in inputs to a product, or changes in
environmental conditions in which the product is used, that are not controllable by
the design engineers. A robust product is one that performs well despite the
noises. To evaluate robust performance, the design team performs all of the inner
array experiments against all of the noise combinations. In Figure 2.10, the outer,
noise array is an L,(23) orthogonal array, with three factors at two levels. If
experimental evaluation will be difficult, the noise array is usually replaced by two

levels of a compound noise factor.

5. Evaluate performance of selected options. Every experimental design is
measured with respect to the quality characteristic selected in step 1. To facilitate
in'terpretation of the measurements, the data is transformed using signal to noise
ratios. The signal to noise ratios are in the far right column of Figure 2.10. These
ratios are specific to the type of quality characteristic used, that is, whether it is

smaller is better, larger is better, or nominal is best:

Smaller is better: SN =-10log 12 y:
n

1 1
Larger is better: SN =—10log—) —
2 gnzyz

2

y7;

Nominal is best: SN = IOlog—2
o

These are static SN ratios. In most cases a dynamic SN ratio will provide

the greatest benefit (see Phadke 1989, 114).

28

Once the overall signal to noise ratios have been calculated, it is easy to
calculate the signal to noise ratio for each design parameter. In Figure 2.10, each
of the three levels of each the control factor was tested three times in the design.
The SN ratio for each factor level is the average of the overall signal to noise ratios
at that level. For example, the SN ratio for factor 2, level 2 is the average of the

overall SN ratios for experiments 2, 5, and 8.

. Select best design values. The signal to noise ratios are defined in such a way
that the largest SN ratio represents the best value for the control factor. Thus, the
best design is the design where all of control factors are set to the values with the

maximum signal to noise ratios.

. Confirm robust performance. In Figure 2.10, only 9 of the 81 possible design
configurations were tested. This means that it is unlikely that the best design of
the 9 already tested is actually the best overall design. This step is to confirm that
the experimentally determined best design is actually the best design for the
product. If everything goes well, the predicted signal to noise ratio for the best
product should be close to the actual ratio determined in this confirmatory

experiment.

The ideas presented in the rest of this section are not essential to understanding the

QCAD methodology, but are briefly explained here for completeness. More information is

available in Clausing (1994).

After product parameter design, the next place where the corporation can

intervene to prevent quality loss is in tolerance design (Figure 2.9). The goal of tolerance

design is to select the most economical precision level for the dimensions on critical parts.

29

The idea here is not to select the tolerance levels for the product, but to select a
manufacturing process that is precise enough to minimize the total cost.

Usually, there is a higher manufacturing cost associated with tighter tolerances and
in an effort to reduce costs, the company will want to loosen tolerances. The quality loss
function, pictured in Figure 2.8, provides a way to quantitatively measure the costs
associated with tighter and looser tolerances. Tighter manufacturing tolerances will cost
$x based on quantifiable manufacturing costs, while looser design tolerances will cost $y
based on the quality loss function. The production process is selected that minimizes both
the manufacturing cost and the quality loss cost.

With the manufacturing process selected, the operating conditions for the process
should be optimized to reduce manufacturing variation as much as possible. The process
parameter design methodology, used in this interaction point is much the same as the
product parameter design described above. A quality characteristic is selected; several
control factors and their levels are determined; a designed experiment is performed,; signal
to noise ratios are calculated; and the optimal parameters are tested in a trial run. One
main difference in the two methods is that product parameter design imposes noises on the
experiments, while no noises are intentionally imposed in process design. It is assumed
that the process is being tested under normal operating conditions and that any noises that
would exist in the manufacturing environment are automatically present during
experimentation.

The last interaction point for the company to reduce manus.- turing cost and
quality loss is in on-line quality control. Even if a process has been optimized using
process parameter design, there will still be some variation in the output dimensions. The
company makes a trade off between the cost of intervention and the quality loss of
deviating from the target. Too much intervention has costs in terms of time and
intervention. Too little intervention has costs in terms of customer quality loss. Trading

off these two costs helps a company determine the least costly intervention plan.

30

Chapter 3

Review of Computers in Design

3.1. Overview

“There are a number of strands evident in current design
automation research. These include attempts at understanding the design
process itself, attempts at automating routine redesign, attempts at
integrating knowledge of past designs and approaches towards the
development of design assistants to work with the human design expert.
We believe that attempts at automating the whole of the design process are
futile, given the current leve! of technology. In fact, the benefit of ever
doing this, we believe, is dubious (Hunt and Lee 1992) ”

Current trends in the design process were discussed in Chapter 2, with primary
emphasis on describing the total quality development process (Clausing 1994). TQD is a
prescriptive design method to help designers: (1) create products that satisfy customer
wants and needs, (2) benchmark with the best products in the industry, and (3) improve
product robustness, quality, cost, and delivery.

The hypothesis is that computers are very efficient at performing quantitative
tasks. They can be used to assist in and perform the detailed design work, to free time for
engineers to concentrate on the up front conceptual work.

This chapter describes trends in the use of computers for product development. Of
particular interest is computer software that helps designers use quality methods. The
sections below are not meant to be mutually exclusive or collectively exhaustive. They are
meant to show some of the ideas that went into developing QCAD.

The first section presents an introduction of knowledge based engineering, defining
what it is and how it is used in design. This section is meant to put the rest of the chapter
into perspective with respect to computer based design programs. Following that brief
introduction, the next two sections take a step back to look at two types of systems used

in design: (1) Conventional design assistants which have been around for years and are

31

still prominent in design, and (2) Design history systems which are somewhat in use, but
are primarily still being developed. Section four combines these two ideas to describe
several KBE systems, including the ICAD brand of KBE. The last section summarizes
how the computer design concepts described in this chapter impact the understanding of

what a computerized quality design system should do.

3.2. Introduction to Knowledge Based Engineering
Before discussing knowledge based engineering, some background in artificial
intelligence is necessary. Artificial intelligence (Al) is concerned with modeling human
thought processes (Edwards 1991, 2). Al has been divided into several areas: knowledge
based systems, natural language understanding, pattern recognition, intelligent computer-

assisted learning, speech recognition, and models of human cognition (see Figure 3.1).

Knowledge
Based
Engineering

Models of
Human
Cognition

Natural
Language
Understanding

Pattern
Recognition

Speech
Recognition

Intelligent

Computer
Aided
Learning

Figure 3.1 - Six Areas of AI (Edwards 1991, 6)

32

Knowledge based engineering (KBE) involves using computer systems to support
or to automate tasks usually performed by human experts. These human experts use
interpersonal skills, expertise and judgment, that has been acquired over several years in
carrying out these tasks (Edwards 1991, 6).

Knowledge based engineering (KBE) in general is the use of knowledge, be it
stored in a computer, a handbook, or someone's brain, to solve a problem. Problems can
range in scope from adding two numbers to determining the piece part design from higher
level design inputs to learning how to perform a task. John Edwards (1991) has defined

six roles of KBE systems:

assistant - help perform part of a larger task

critic - reviews previously performed work

second opinion - compares task results with the user

expert consultant - offers advice based on input information
tutor - trains the user to perform a task

automaton - completes tasks independently and reports results

In product development, KBE systems have most commonly been used as design
assistants. Design assistants can be used to perform a small set of tasks for a designer,
such as helping to select material from a database, or can be used to perform a large task
as in configuring an entire vending machine (Edwards 1991).

Expert consultant type systems are also common in product development work.
An expert consultant, also known as an expert system, provides guidmce in solving a
problem. One example is a system that selects a machine tool after asking the designer a
series of questions (Traughber 1986).

Critic systems can also be used in product development, however their use is not
wide spread. One system currently being developed critiques designs from various points
of view. The central idea of the model is to create a roundtable design review, where
various experts discuss the proposed design and suggest improvements (Ishii and Krizan

1991).

33

The other three KBE roles are less common in product development tasks. The
second opinion type systems examine a situation using different techniques or by using
more information, thereby providing a second reference for decisions. An example of a
second opinion system is used in stock market analysis. An analyst can look at a few
leading indicators to make decisions, but computers can look at hundreds of indicators to
make a decision.

The tutor role uses the computer to teach about an idea, and as such, can help train
new designers, but is not meant to help develop products.

Lastly, the automaton system completely automates tasks, such that the task is
automatically completed, with only a report left for the user to see. This is analogous to a
coordinate measuring machine on a manufacturing line that just measures dimensions and
outputs a report of the dimensions, perhaps emitting a signal when a part is out of

tolerance (Edwards 1991).

3.3. Conventional Design Assistants

Design assistants are computer programs that perform a specific task as part of a
larger task. The size of a design assistant's task can vary from performing a short set of
calculations to developing a finite element mesh and recording a stress profile. In the
conventional assistant programs, the designer knows the type of analysis to be performed
and uses the program to run the calculations.

The design assistants discussed in this section do rely on some type of knowledge.
However, the difference between the design assistants discussed in this section and the
design assistants discussed in Section 3.5 pertains to the degree which the user can modify
the design reasoning in the program. In this section, the user is limited to performing the
analysis specified by the program. The user is free to choose a different program that
better suits the analysis, or the user can change the inputs to the program, but the user

cannot change the nature of the analysis.

34

This section is split into two parts: one describing technical, or engineering related,

design assistants and the other describing quality related design assistants.

3.3.1. Technically Focused Assistants

Finite eclement analysis (FEA) is a design assistant type program. It performs, for
example, stress or heat transfer analysis on a specified geometry. A user inputs a
geometry, material properties, and boundary conditions. The program outputs stress
contour lines, which the user analyzes to identify a new geometry design to minimize
stresses (Swanson Analysis Systems 1993, Algor 1993). In this case, the FEA program
performs a specific task, which is part of the larger task of specifying a component
geometry.

There is an abundance of design assistant software available. For example,
Mechanical Engineering magazine has an electronic bulletin board with over 4000
programs to assist mechanical engineering designers. These programs cover many facets
of mechanical engineering work, from material selection to dynamics analysis to pressure
vessel design (Jackson 1992).

Computer aided design (CAD) systems can also be thought of as design assistants.
They store and manipulate geometric data. Designers can use the systems to specify parts
and to check tolerances, without the expense of creating a costly prototype. In recent
years, CAD systems have expanded their capabilities to include, electrical circuit analysis,
and computer aided manufacturing modules (Cadence 1993; Head, Pietra, and Segal 1989;
Parametric Technology 1993). There is more discussion of CAD design systems in
Section 3.5.

Design assistants don't have to be programs that calculate complex engineering
formulas. They can also be spreadsheets programmed to create charts to calculate the
weight of an assembly, given different material properties. A designer can then use the

information in the chart to identify an appropriate material.

35

3.3.2. Quality Focused Assistants

This section describes a set of design assistants that are not as technically oriented
as those discussed in the previous section. These systems are less concerned with number
crunching and creating a design, but are more concerned with manipulating numeric or
text data to facilitate the use of quality design methods, such as those discussed in Chapter
2.

One commercially available design assistant helps with design of experiments. The
Taguchi Expert software, by Quality Engineering Services (1992) helps designers select
design arrays and compute signal to noise ratios. This software asks for user inputs and
then leaves it up to the designer to evaluate the outputs.

Several systems are available to help a product development team use QFD
matrices. For example, ITI markets a system called QFD/Capture, that helps designers
store QFD matrices, calculate the importances, and generate reports (ITI 1992).

At Lamar University in Texas, Sriraman, Tosirisuk, and Chu (1990) programmed a
series of QFD matrices from the voice of the customer through to process variables, using
object oriented programming techniques. The idea behind the system is to create a
compact database that relates customer needs to production quality control, to support
manufacturing control activities.

Ford Motor Company has developed the Technical Information Engineering
System (TIES), a computer program that propagates information by linking several layers
of QFD charts together to facilitate total vehicle design (Vora, Jackson, and Veres 1989).
This system helps maintain the integrity of the data base, while the designers use the

program output to help conceptually design a product.

36

3.4. Design History Systems

The design assistant systems discussed in the last section, perform specialized
design tasks to free the engineer's time for other duties. A design history system is meant
to record the intent behind a design. Many decisions are made in the design process
without engineering equations or decision matrices. The design history systems store the
designs and the rationale behind them at the moment decisions are made. “A record of the
design process may be used for: 1) verifying the design, 2) explaining the design, 3)
determining the erfect of modifications to the design, and 4) reusing all or part of a design
in a different context (Ganeshan, Finger, and Garrett 1991).”

Several researchers are investigating design history systems (Bafiares-Alcdntara
1991; Chen et. al. 1990; Garcia and Howard 1991). Kuffner and Ullman (1990) are
researching what information mechanical designers want when evaluating a design. In
their study, three professional, mechanical design engineers were given the initial design
specifications and a complete set of engineering drawings. The designers were then asked
to modify the designs. The result from the exploratory study showed that 47% of the
questions asked were concerned with how to fabricate a part, 22% with how one part is
positioned with respect to another part, 20% with how a part works, and 11% with the
purpose of a part. Kuffner and Ullman believe that an intelligent CAD tool would provide

the best platform to store this additional design information (Kuffner and Ullman 1990).

3.4.1. Design Representation Formats

Design history systems are not only concerned with capturing and retrieving design
information, but also with storing the information. Designs can be represented in terms of
form or function (Finger and Dixon 1989).

Conventional CAD systems model geometric data. They use wire frame models to
represent the shape, dimensioning, and positioning of a part. This information on its own,

does not say much about a design, since a cylinder can represent either a hole or a knob.

37

Solid modelers provide more clarity of information, as the computer represents the graphic
objects as solid pieces. If a cylinder is a hole, then it is an empty space in the model.
However, representing geometry doesn't capture all of the design information (Finger and
Dixon 1989).

The other approach, based on part behavior, describes the representation of design
functions (Finger and Dixon 1989). Several techniques are available to represent
functional behaviors: Pahl and Beitz (1984) have a function structure method, the U.S. Air
Force has an IDEF methodology (United States Congress 1981), and Paynter (1960) has a
bond graph representation.

Feature representations are an attempt to combine the two types of
representations. Dixon (1988) defines a feature as an entity with both form and function.
Most of the research on feature systems has been in the area of design and manufacturing
(Finger and Dixon 1989). One system has been developed by Drake and Sela (1989) to
use features to evaluate the manufacturability of a design.

Features represent some information about a design. Product models, incorporate
even more information. Eastman (1981) said that computers should represent the
semantic, geometric, and hierarchical features of a design. The term semantic refers to the
consistency of information in a design. One example of semantic integrity, asks if the
moment of inertia of a simply supported beam is large enough to carry the desired load?
The reference to geometry is self explanatory, in that it refers to the physical
characteristics of the product. Lastly, the term hierarchical, refers to a multi-layered
representation of the relationships in a product. Eastman's grouping of information has

now become known as a product model (Finger and Dixon 1989).

3.5. Knowledge Based Design Systems
Section 3.3 described technical and quality focused design assistants that help the

designer with specific tasks. Section 3.4 described design representation systems which

38

model product information as it is being designed. This section takes more of a systems
perspective on the design process by describing several knowledge based applications in
terms of design representation methods and design assistant applications. The systems
described in this section also have the common theme that they perform activities which
normally require human expertise (Edwards 1991). Expertise, or knowledge, is different
from data, in that data refers to information and knowledge refers to an understanding of
that information (Ramamoorthy and Wah 1989).

The systems discussed in this section add knowledge, not just data, in the form of
human expertise, or design intent, to the computerized design task. CAD systems model
geometry. However, new programming capabilities enable designers to automate design
tasks and incorporate some design knowledge. The ICAD system provides a
programming language that allows designers to incorporate even more automation and
design knowledge into a product model. Quality design systems provide yet another

method to model design knowledge.

3.5.1. CAD Systems

CAD systems play a prominent role in product design and development. As
described in Section 3.3.1, they are intrinsically design assistants, but they also serve as a
central hub to interact with various design assistant programs. Several CAD systems are
now equipped with programming languages to further increase CAD's role in the
development process. Increasingly, CAD systems are being programmed to build product
models that incorporate both geometric and non-geometric data into a design. It is this
programming capability that creates the possibility for the user to code knowledge and
thusly design intent into the model. Currently, there are two types of CAD design systems
that are predominately available: parametric and variational (CIME 1989).

Parametric design systems link geometric features to design rules. These rules act

like constraints on the design, such that when a part or dimension is changed, the

39

associated parts or dimensions are also changed. For example, if the length of a screw
depends on the thickness of a plate, then as the plate thickness increases, the screw length
increases. All of the design rules must be defined before using the system and there is little
flexibility to use different rule sets while the system is running. As such, parametric
systems are best suited for well understood designs (Chung and Schussel 1990).
Variational design systems also link geometric features to design rules. However,
the product model dozs not have to be fully dimensioned before using the system. A
designer can investigate the product model while it is not fully constrained. The
advantage of this system is that the designer can change the nature of the problem in the
middle of exploring a design. For example, a designer can look at the range of motion of
arobot arm in one instant. While in the next instant, the designer can see the motion the

robot arm makes to move along a specified trajectory (Chung and Schussel 1990).

3.5.2. ICAD

The previous section described CAD tools with a parametric or variational
programming language. ICAD is a parametric programming language with a CAD
interface. However, since ICAD has a programming language, the language can be used
to write a constraint based design approach similar to variational geometry.

This section describes the ICAD system and its applications. Since this thesis uses
the ICAD knowledge system to implement QCAD, an understanding of ICAD's
applications and program structure will facilitate comprehension of the QCAD concept
and implementation.

ICAD is the leading supplier of knowledge based engineering systems worldwide.
The ICAD System™ is best used for design tasks that are similar, but different, which
includes both products that require several iterations to optimize a design, and product

platforms that are designed using the same set of rules.

In most companies, a design is specified based on years of experience with creating
a particular product or process. In ICAD, this knowledge is stored in a product model,
which contains a hierarchical set of rules to describe the product's geometry and design
intent. The hierarchy is organized as a product structure tree, and generally breaks the
product down into components. Rules, which are composed of attributes and equations,
are embedded at every level of the tree. The attributes are variables that hold information,
like part cost, yield stress, and material type. The equations can be engineering formulas
or design heuristics (rules of thumb), which relate the attributes to the final part
specification.

The rules in the product model can also link external programs, such as CAD
systems, FEA programs, and design assistants, to the product model. The product model
can supply inputs to or analyze outputs from those other programs to optimize a design.
By linking corporate design practices, including both design rules and design programs, to
the part geometry, ICAD provides an environment to capture the design intent of a

product.

3.5.2.1. Representative ICAD Projects

The ICAD system has been used effectively in the following design situations:
semi-custom, one-of-a-kind, generative tooling, generative process planning, and product
configuration. A few representative projects as described in an ICAD brochure (ICAD
1992) are as follows:

Semi-Custom Products. There is a specific design process for boilers that rarely
changes. However, a new boiler design to meet specific needs can take between 500 and
2,000 hours. ICAD is used to automate the boiler design process, including the design of
several boiler components, the selection of several components from a catalog, and the
generation of production intent drawings and a cost estimate; all of which are based on

engineering rules.

41

One-of-a-Kind Products. Satellite antenna design is a highly iterative process
with tradeoffs being made among weight, reliability, and volume. Engineers use an ICAD
product model to prototype the antenna design such that design specifications can be
changed to see how the overall design is affected.

Generative Tooling. A new injection molded part requires a customized mold
base. The ICAD model is used to select and customize a standardized mold base using
design rules, when given part geometries and production volumes.

Generative Process Planning. ICAD is used by the U.S. Navy in the RAMP
(Rapid Acquisition of Manufactured Parts) project to create a manufacturing rrocess plan,
including operation sheets, from a standardized part description.

Product Configuration. In this situation, ICAD is used by salespeople to design
products given customer requirements. The system prompts for specific inputs and

outputs a fully specified product.

3.5.3. Quality Design Systems

Quality design systems are distinct from the set of quality design assistants,
because they store information through the use of quality design methods for use in
subsequent designs.

Several researchers have created, or are currently researching, quality focused
design systems. Two quality design systems have already been completed at MIT. John
Berg and Tom Knight, in two separate projects, programmed the total quality
development process, including quality function deployment, Pugh concept selection, and
robust design on a computer. John Berg programmed the system using the C language,
while Tom Knight programmed the system on a Macintosh, using Hypercard. Both
systems guide the designer through the use of the design process. The designer is able to

record design information in the system. If the user gets stuck with how to perform a

42

certain part of the design process, the computer displays a help screen with relevant
information (Berg 1988; Knight 1990).

Two other quality systems that are still in the design stage, both use QFD as a
backbone. One is called Design Function Deployment (DFD) and is being pursued at City
University in London. The DFD system is a shell system that stores design information
and coordinates sets of design assistant modules. The design model in DFD has five
milestones: (1) establish customer requirements, (2) generate different conceptual
solutions, (3) develop detailed design of a few sub-systems, (4) define material and
manufacturing processes for the design, and (5) establish production plans for each viable
product. To progress through the milestones, the user can fill out a QFD matrix, look at a
moerphological chart, experiment with a solid geometric model, access a set of databases,
or use a variety of design assistant tools, including finite element software and design for
manufacturability analyzers (Jebb, et. al. 1992; Jebb, Sivaloganathan, and Evbuomwan
1993).

Another design system that is still under development does not have a name, but is
referred to as a recursive model for the design process and is being pursued at the
University of Michigan. The model contends that design is actually recursive and not
iterative and that designers reason with sets of design options, not just one option at a
time. The design model has designers perform three basic operations on a design to help
explore and generate a solution for the design problem. The first type of operation
involves setting up the problem. The second type of operation involves breaking the
problem into parts. The third operation involves recombining the pieces after the problem
has been broken apart. The recursive model proposes to use QFD, Taguchi methods, and
design for methodologies to help with these operations. The system is intended to help
designers and design teams document and organize the design process. It may also be

possible to use the system to coordinate islands of automation (Ward 1990).

43

3.6. Summary

This chapter described three different ways computers are used in design in order
to show some of the ideas that went into developing QCAD. The chapter started by
describing design assistants that help with small, well defined portions of a design task. A
designer, using one of the many thousands of available programs, enters specific
information about the problem and asks the computer to calculate an answer. It is up to
the user to understand and apply the results to enhance the design.

Next, the chapter discussed a general theory of design history systems and
explored design representation formats. Neither design history systems nor design
representation formats calculate anything about a design. They store information about
the characteristics of the design. A design history system would store information about
the steps a designer took to develop a product and why certain decisions were made along
the way. A design representation format stores information about the design, such as the
product function and geometry.

In the final section, the chapter described knowledge based engineering design
systems, which both store a representation of the product and perform calculations to
create or enhance a design. Since the product is represented in the computer, the
procedures can be linked to different areas of the product model. When information is
changed in one part of the model, the appropriate procedures process the information and
change the design accordingly.

Mixed throughout the discussions in this chapter were descriptions of computer
design systems that use the quality methods from Chapter 2. The quality design systems
use the computer to not only crunch numbers, but also to store, retrieve, and organize
information. Even though quality design systems were only discussed in the design
assistant and knowledge based engineering sections, quality systems could also be
classified as design history systems, because some of the quality methods provide a format

for representing design intent.

This thesis is a cooperative project with ICAD. As such, the ICAD system was
taken as a starting point for research. ICAD is a knowledge based design system that
contains both a representation of the product and procedures to effect the design of the
product. The discussion in Section 3.5.2 shows that the ICAD system currently has many
applications in product development, ranging from one-of-a-kind designs to routine
product configuration designs. Although one manufacturing related design task was
mentioned, most of the ICAD applications concentrate on product geometry.

The quality design systems described in Section 3.5.3 are knowledge based
engineering systems, in that they both store and manipulate product information.
However, the quality design systems use quality structures to model product data, instead
of geometry as used in ICAD. In general, the quality design systems use QFD to deploy
and manipulate product information.

QFD takes a horizontal approach to product development, uniting customer needs
with the factory floor. ICAD takes a vertical approach to product development, mainly
concentrating on the hardware specification. One evidence of this is seen in the rigid
product structure tree that ICAD uses to model a product (ICAD 1993). All of the design
information feeds down from top to bottom. The tree structure facilitates the detailed
hardware design, but limits the horizontal sharing of information.

QCAD combines a design methodology, like those used in the quality design
systems with the processing capabilities of a knowledge based design system. The QCAD
system also has a design representation that models a product from the total system voice
of the customer to the part feature process specification. The QCAD methodology is
flexible such that it is compatible with whatever quality methods or design assistant
programs (see Section 3.3) the company already uses for design.

To get a better feel for QCAD, imagine a box with several holes in its sides. The
product being modeled is inside the box. Holes are punched in the sides of the box to

allow someone outside the box to see in. Each hole shows a different perspective on the

45

object inside. One hole shows a piece part manufacturing process, while another hole
shows a total system functional requirement. A third hole shows a solid model of the
product geometry. QCAD has several more views (see Section 4.3), each with a unique
perspective on the product.

In addition to just looking at the product, the user can manipulate the product
model. By providing different information at each hole in the box, the user can alter the
design. The product representation in the box can combine knowledge based design rules
with design assistant programs, to respond to the user's inputs. The information is stored
in the system according to a structured design methodology (Section 4.5). The user,
follows a similar methodology (Section 4.4) when supplying inputs to the system. Two

examples of the QCAD system in action are discussed in Section 5.2.

46

Chapter 4

QCAD Definition

4.1. Overview

QCAD, Quality Computer Aided Design, is a method for linking quality focused
design methods with computerized design software. It provides the capability to translate
the voice of the customer to the factory floor. To facilitate this deployment, QCAD has
two parts: (1) the design process used by a multi-functional product development team,
and (2) the computer program used with that design process. The QCAD structure is
specifically amorphous, such that it can be tailored to each application. It is up to the
PDT to determine how to use the system to its best advantage.

The first section below describes the development of the QCAD concept. The
next section explains the basic organizational framework that QCAD uses to model a
product. The third section briefly explains the sequence of design activities used with
QCAD. The design activity is a modified version of total quality development (Chapter
2), using additional design iools. The design process is the set of activities that the PDT
performs without the assistance of the computer; although the computer may be used to
retrieve information to aid the PDT in using the design tools. The last section explains the
design process modules used in the computer portion of QCAD and describes how the
modules are interrelated to create a computerized product model.

This chapter describes the QCAD theory, without mentioning specific details of
the computer implementation. Chapter 5 explains the computer implementation of QCAD
in the ICAD Design Language, using two case examples. The ICAD software and the

product model are inseperable in QCAD and thus are explained together.

47

4.2. Initial Development

The literature search gave some information on what types of computer design
systems are being used or are being researched today. However, only a few articles were
found that discussed a designer's reactions to computer design systems (Ishii and
Hornberger 1992). Since this thesis is a cooperative project with ICAD, interviews with
some ICAD customers and employees supplied information about how ICAD's knowledge
based system is used for product development.

Figure 4.1 shows the KIJ, affinity diagram (Shiba, Graham, and Walden 1993)
describing ICAD's use in design, based on the interviews. The KJ shows connections
between different parts of a topic (See the question in the top right corner of Figure 4.1).
The bottom level sentences are direct quotes from the interviews. Some of the more
interesting quotes describe using ICAD to tie engineering groups together, mention that
the first design out the door doesn't save much time, but the benefit is in later designs, and
remark that it is difficult to write ICAD code to handle product variations.

Looking from left to right on the KJ diagram in Figure 4.1 shows the basic flow of
how an ICAD program, or product model, is constructed. First, the product or sub-
system to be modeled is selected and some of the details are sketched out. If the IDL
programmer is not familiar with the product, this first stage includes a series of interviews
to understand what knowledge is required for the product model. The second step
involves programming and debugging the product model, including the specification of
part geometries and coding the knowledge base. Lastly, there are two different ways to
use the ICAD system, one is in programmer mode, the other is in end-user mode. The
programmer mode provides a great deal of flexibility for the designer, as the designer can
change the underlying product model while experimenting in the browser. The end-user
mode is a little more constrained in that the user is expected to answer questions about the
product model using a pre-programmed set of questions. The user does not change the

programming in the product model.

48

"ainjonys abpajmoun ‘a)q)xaly ‘Uowwos & aney sjepow jonpoid Qg

"Jonpoud e uo suoneiiea asojdxs o}
Aem e sepinoad gy9) ‘Buiuueld sadosd WM

SIPIOD) BjeA JudWUOIAUY 3S() AVII JO [- I'p dan3ig
1IN
€661 ‘02 Aep
(Janmonns) A
. 819idwoo Ajpejo) 2011 & U Ul é »BunwwesBbosd
s1 Juswdojenep o1 Bujuses usyMm jo Jjo seap)
{ebenbue ubiseg s1 910BISQO. 8aunoq o} ejdosd
Qvai) 101 e1eym aney 0} sdjeH,
swe)sAs 10§ pajeasd J‘uopvoydde jo BuiAue noA 166
St _momtmE__ lasn . welsks oB6psimouy uo Lussop Bunum,
uoponpoid] Ind. oumawesed poseq A|quesse -
w10 386 0} jeum ® se pasn uede yeaig, seugpeep Ay m“ﬁ Mmkvczom
pue ui Jajue q UBd QY0 _ oun) 9104
0} SpoaU Jeym UNOIP Aljentui L. BuiwwesBboiy
."S198u1bUB Jo} d : &
83s 0} sjuem Ajuo souspEaIds \ 1 jonpoy \ _
JBSN UURANPOI, ¥ huwxxxw.,. € Uo aInonss "y61y sy eanssaid awny
*jepouws Jonpoid ‘seap| 8a.) e Buisodwy
‘ean-bnq 1onpoud
\] ‘oidwis ueejp (“(oueuab ©
€ Sjuem aI0jdxe nok Aysee apew g
Jesn pu3 Si8| avol o} pajielep 00})
Bulwnsuoo
— swy pue
(a ANISINNN) Snojnolpy s
Jewy) pes) - -~ sejn Buyesp
sesseidwoo pue || /7,) \. Apmis xoinb ﬁ ~weiboides \
sy ubjsep »'S1onpoud jo bt wu Sw._% ! pue
. \ SaHE QVOla Aiojuenuy NOILYZ u o» "ep 8po jeuiBjio :
il | SAESSNNEN 1es€i0} 1l .guyanvis. arfsea. preosp 1epiey sy
PUE 1} suBisep etk § S498Ud Qv . uey} sauElSUl swesboid
8uop uesq P ulyeusqing | J1epow « 01 GAEY ooeds eI, oeusb ¢
Sey ubised. | eun yonw ones | Jiueseyip slaiduioo luop | 0s
. J,useop Joop ey inq ‘swes sy} 8UO B)eW Sontuiid ."dn pjinq pue «'Suoneuea
~UuMOLI 8G 1 B 400 Buo 114, a1e jey) sbuy) 0} sdnoib 1A8) Mo} jo weuoduios ojpuey 0}
Lsaw | - \ 10} SY10M QVO, Bupseuibue uonesejosp 19A8] MO| 8p0o e)Mm
seind, | N sl N seyiebio} 811 Ol Jo BIEd eje g ol yinoq
- ¥ N ubisep [Y[|]]Aem swes sy u e SOYEl QY. . X inouia.
\JoHeisere LN epuyuo P paziuebio ere "suopoun) o} |['puedxe usy S ‘Wbnoy
mwow_.: poseq ose ' sjueuodwoo ssosoe Buiping | weyqoud |) BuruweiBosd ounb's) (:]es0w seimbay F
udiseg subisep onpoid uuopun s) 40 dn epew pooisiepun " es el0jpq weexsdn Jg; Jopow jonpoid .\
aimng |) weseyig| |iepow yonpoig y ase spnpoig| [ue umumg weloid jno senioy [oWoeds-uoue
_ NS \ - 2/ uedisnyy, Guwubiseg, |BulwweiBoig &
‘aseq abpajmou) uowwiod ‘ainjonJjs jeuopeziuebio “Je|npoW 318 S|oAa) _
_ B 9ARY S}onpold uowwod B dABY S)ONpoIy 1onpoud qvoi) ‘Bujuueld weansdn yonw sasnbai

I9pow Jonpoud ajqixa)} e Gupon

éiuawdojanap 1onpoud 1o} pasn
Buteq @vol Jo sabewi ay) ase Jeym

49

The final answer to the KJ was, “With proper planning, ICAD provides a way to
explore variations on a product.” This raises the question about what constitutes proper
planning. Proper planning includes finding and organizing the information that goes into
the model. Thus, QCAD provides a framework, based on total quality development, for
planning and programming the product model for use in the browser.

A little more intuition about how this could be achieved was discovered by using
the House of Quality and Pugh Concept Selection. The rows of the House of Quality,
shown in Figure 4.2a, come from a combination of the philosophy of TQD and from the
more important interview voices about using ICAD. The rows were then translated to
metrics for the columns, which are shown in Figure 4.2b. The completed House of
Quality is shown in Figure 4.2c. Completing the House of Quality matrices gave some
insight as to how the design process and computers could be used synergistically. ICAD
is good at storing information, but TQD is good at organizing how the information should
be stored. Additionally, the ICAD software is demand driven, which can be used to bring
the relevant information into consideration when a decision is to be made.

The columns from the House of Quality were then used in a Pugh Concept
Selection matrix, as shown in Figure 4.3. The rows in this matrix are the columns from
the House of Quality. The matrix started with 8 different concepts, but the eighth concept
changed dramatically over the course of completing the matrix. The eighth concept came
to encompass all of the good features of the other ideas, while minimizing the bad
features. The end result is that QCAD provides design tools and a way to organize those

tools such that a variety of products can be modeled in the system.

Figure 4.2a - Rows for the House of Quality for QCAD?3

Process Focuses or Meeting Expectations
focus on robust performance
Looks at Current Environment
emphasis on competitive benchmarking
emphasis on customer satisfaction
Resources are Pooled to Design a Product
Information is Coordinated to Focus on the Decision to be Made
bring relevant information to bear at an opportune time
consider related decisions together
production user should only see relevant information
Embodied Knowledge Works to Achieve One Goal
strong commitment to decisions
teamwork
Method to Attack Problem is Structured
start with specific rules
start with a small sub-system
design process is structured
Products are Described Flexibly
defparts are generic
rules are easily generalizable
designs are broken into building blocks
Tools Match the Product
provide a collection of tools
the program should allow the PUI to be easily added
Products are Amenable to the ICAD Environment
Product Has a Simple Structure
nodes have 2 - 10 leaves
design can be broken into a tree structure
Products Are Variations on a Design
different designs should have similar geometries
design rules must be known
produci model must be demand driven

3 In Figures 4.2a-c, the row and column formatting represents a tree hierarchy.

Every indention on a line represents a change in abstraction level. The
lines that start farthest to the left are at the highest level of abstraction.

The lines that start with upper case letters represent categories.

The lines that start with lower case letters are the lowest level entries under
each category.

S1

Figure 4.2b - Columns (metrics) for the House of Quality for QCAD?

Degree Fidelity with the VoC
Taguchi methods included
External Input is Gathered
degree of competitive benchmarking
degree VoC is translated through system
Resources are Combined
Information is Coordinated for Decisions
relevant information is gathered for decisions
related decisions are brought together
production user only sees relevant information
Embodied Knowledge Works to Achieve One Goal
strong commitment to decisions
teamwork
Structured Method
start with specific rules
start with a small sub-system
stuctured process
Flexible Product Descriptions
generic defparts
generalizable rules
number of building blocks in design
Tools Match the Product
number of tools
ease which PUI can be added
Products Fit with ICAD
Products Have a Simple Structure
average number of branches/node
design fits a tree structure
Different Products have the Same Design Intent
designs have similar geometries
design of uncertainty in design rules
product model is demand driven

52

Correlation Volrxr Legend|
Stmng Postws @ 9
Posrive

e

Relcioneniy Melrx Lagass
S'ong ® ¢
Modsrots O3
et A Y

dogree Wl @ lmnoild Ulmqhmlm o
Resources are Combired

producion sser only sess relevant information

Embodied Knowledge W iia to Acheve One Goot

wievont information s gethared for decisions
slrong commiment to decisiony

nlormalion 18 Coonfinoted for Cocsions
riicled decwons ore brought togather

stort with o smoi sub-eysiem
rumber of bukiing biocks n desgn
Tool Natch the Produch

Exterrol iaput ' Cathered
degres of compalilve benchmarking

Taquehs mwihods nciuded
toomwork

Structursd Wathod
ston wih specdic s
stectured pmcess

Flacble Product Deeenptons
genanc detporta
qeercizode nles
number of fools

tmpordonce
Dogree Fidafty with the VoC

Procees Focuses on Mestrg Expacttons

focus 0» robust performance

o
[
d

Looks at Current Envronment

smphase on competive benchmorkng

smphces on customer sotefocton

Resources arw Pooisd to Dmiga 0 Podact

lnformaton & Coordinaled to Focus o the Decieion to be Mode

bring reievant Wformotion to dear of cn opportune time

consider ated decenes together

producton user should ony see relevant mformation

Embodied Xnovisdge Works to Acheve Ome Gool

strong commiment to decsions

sPSIOKAA e ole

DO

fsomwork

5 ‘A Ole

Hathod 1o Altock Problem s Structumd

slort wih specic rules

stort wih o avell sub-system

dasgn process W structured

P’N’I;Cfllfl Doscrbed Fisxdy

defparts ars geserc.
rulss arw sosiy Qenerizobe

desgrs ars broten mtp buiding bocke

Tool Hatch the Product

Drovds o colaction ot tocls

the pogram ahould olbw the PUIlo be ook odded

Products are Amgntbis to the CAQ Frwwonment

Product Hos o Sirple Structure

fodec have 2 ~ 10 leaves

desgn can be droien ito 0 tree structure

Products A» Voratons ox o Desgn

different deegne should hove seniar geometries

desge ryise wwst be known

product model must de demand driveh

Technico! importonce (Row Scom)

Technica! Importance (Percent)

TP
1
1
4 13
6] 1w

Noximum Vo = 100
— Tachaco! nportoncs {Parcent)
Visimum Voke = 00

Figure 4.2¢ - House of Quality for QCAD3

53

s which PUl con be odded

Products F2 with ICAD

Products Heve o Simple Stracturs

avernge number of branches/rode
daaign Fits a tree structvy

0

£
I |1
z. 8=
kN gg
M
EislziE
R
BE N
IBHHE
[¥)
Ao
[5)
A
ol
A
e |
[)
®
)
[]

uondIas 1daduo) ysng - ¢'p aansig

o

uswdojers@ Alend BloL. QDL
8delalu| 18SN UOKINPOIY INd

<
-

el IR

Clm

18N einnag pnpold NSd
xuje enpnig ubiseg Wsa

| »
rlo
Nl
A 8w

R

8pou/sayaurIqg Jo Jequinu abeseae

NN

eimonus eaq e sy ubisap

peppe aq ued |Nd YoIYm asee

D] tjRjnl

+l | D] DDy ™
+tlnjRjnjojw

$J00} JO Joquinu

(]

wa)qosd ey} jo Led jeuiblo jo azis

+1 DO +|N]|N] OO

Bupprewyouaq aannedwoc jo asibep

DAl +joj]lnjlanln

sajni ubisap u Aurepaoun jo eaibap

(23]

1apouw Jonpoid usAup puewap

ubisap ui sx00)q Buipjing jo Jequinu

[sionpoud uenbesgns uj jusjuy ubisep jo Junowe

se|nu a|qezijjesaush

suedjep oususb

ssa%0.d painoniis

DD|DO] +] D] +

ylomwes}

DOl O) +1 DO O] +

Ny O|D|ND| |} +] O] +

njunjlnjlun] +|n

N)| OO +| B} +
ninjnjal +tlnjn]nln

O << + DO 2

SUOISIOBP 10} PaJayied si UoleWOjU JueASa)

Nnjnjonjujr] o] t|onjonjo]loun] +)n]njunle

pajejsuen S| JAWOISND By} JO YOI0A 99160p

S

+ - -

papn(oul spoytew yonbe |

‘avOl uf bed
pedojensp

aci

‘weasisdn
Jeyuey
obpejmouy
ubjsep
WEealSuMop

asn

‘avol 4o}
ejep
sezjueblio

aoL

‘ao.l 1oy
ejep
S010)S
avoi

‘Sjuswiiedxe | “UoyeIoUaD | sjopotu
ssaujsnqol eap| 1npoud

10 QvOl
joasn

‘avol u
ssao0.d

avol uijau [NSd pue
uonound INSa esn

weiboig

Jonpoud oy | gyD) Joy uswdojeasp

54

4.3. Basic QCAD Framework

QCAD has a basic backbone structure that coordinates information among
different parts of the design process. The structure is generic such that a variety of design
tools can be used with QCAD. However, the model is geared toward use with TQD.

Figure 4.4 shows the QCAD backbone structure. The structure is a network of
interacting layers that represents a design. As described in Chapter 2, a design can be seen
from several different levels of abstraction. These are listed from top to bottom on the left
side of the diagram.

The top part of the diagram shows how a design would be specified, from initial
problem definition through production. Both axiomatic design and quality function
deployment propose ways to traverse a design from definition to production. Axiomatic
design concentrates on the specific domains of a design in terms of the consumer domain,
the functional domain, the physical domain, and the process domain (Suh 1990). QFD, on
the other hand, concentrates on a set of planning matrices to translate customer voices to
engineering expectations to hardware expectations to process requirements and to
production requirements. The QCAD structure combines both methods of looking at a
design with current methods of product model programming in ICAD. Combining the
three methods together results in the three distinctions of functional requirements,
hardware parameters and process parameters.

A functional requirement is the purpose of the product. It is the reason the
product exists. For example, the purpose of one type of theater clamp is to position
theater lights. A more detailed example would be the purpose of a screw is to hold two
objects together.

The hardware is the physical description of the product being defined. It can be

the whole product or a dimension of the product, depending on what level of abstraction is

55

anpPNIS VIO - p'p sandyy

=D — D — & alnjea{ ued
1 1 1
D — S — & Hegooey
1 1 1 %
T & &5 ¢ &= waisAg-qng
t t t
@ — @ Gm—— LS wa)sAg |ejop

Siglaweled Siojaweled sjuswalinbay
SS8001d alemplieH |leuolnoun4

desired. For example, the hardware to embody the function position theater lights is a c-
clamp. At alower level of abstraction, a hardware parameter is the length of the c-clamp.

Process refers to how the hardware is to be manufactured. At a high level of
abstraction, the clamp is assembled. At a low level of abstraction, the clamp frame is sand
cast.

Each small circle in Figure 4.4 is an object* . Each object can represent a function,
a hardware piece, or a process, depending on which designation it is under. The larger
circles represent layers of objects, such that each object in that layer can share information
with the other objects on that layer. The total system layer contains only one object,
because by definition, there is only one highest level function, hardware, or process
definition.

Each of these three categories form hierarchies, with more abstract total system
requirements at the top and more detailed, piece-part requirements at the bottom. Higher
levels of abstraction represent conceptual design; lower levels represent detailed design.
In Figure 4.4, this is represented by the arrows pointing down. Lower levels are
organized by higher levels such that specific design information can flow through the
hierarchy to where it is needed. The ideal is that objects on each layer can share
information without going up and down the hierarchy. This feature is indicative of a
layered structure.

The function, hardware, and process hierarchies are organized into different trees
because of the varying nature of the information they represent. The function tree, being
organized by functions is different from the hardware tree, which is organized by physical
sub-systems. The process tree may, or may not, be different from the hardware tree. If
the process tree is set up with assembly processes at the top and fabrication processes at

the bottom, then the process tree will closely match the hardware tree. However, there

4 An object is the basic building block of a program, that contains specialized information and executable
procedures. See Appendix B for more information on objects.

57

are other ways to think about processes, and as such, the process hierarchy is separate
from the hardware hierarchy.

The three hierarchies are separate, but highly interdependent, such that one
hierarchy constrains the choice of possible designs in the other hierarchies. The function
definition guides the hardware development and the hardware choice guides the
production process. This is represented in Figure 4.4 by the arrows pointing to the right.

All of the information flows from left to right and from top to bottom. A quick
glance at the QCAD structure shows what other objects will be affected by a change in a
single object.

The orderly flow of information in QCAD makes the design process look linear.
In reality, design is amorphous, with designers working on several levels of abstraction
and looking at several different criteria simultaneously. However, a well defined structure
is necessary for the computer.

Sometimes a designer likes to experiment with different hardware configurations
before selecting the exact nature of the function to be performed. The same is true with
the hardware-process relationship. This capability is modeled into the QCAD structure by
storing some hardware information in the function hierarchy and some process information
in the hardware hierarchy.

Furthermore, implicit in Figure 4.4, are diagonal information flows from the top
right objects to the bottom left objects. Going from right to left generally involves going
down one level of abstraction. Staying on the same level would be an iteration or a
feedback loop. For example, the type of hardware selected guides the functional
requirements at the next level down (Clausing 1994). There are no explicit diagonai
arrows in Figure 4.4 because the information that would normally flow in that direction is
already stored in the function and hardware trees, respectively.

This explanation oversimplifies the design process into a sequential set of

activities. In actuality, the design process is much more complicated. A designer may

58

start off in the function space and ther move on to the hardware space, but will spend
some time in the middle exploring the boundary between the two regions. The process
can get even more complicated when considering that designers may also design on
several levels of abstraction at a time (Moses 1990). However, the computer dislikes
uncertainty, everything needs to be defined a priori. For this reason, in QCAD, (1) new
designs are developed by the PDT with minimal computer use and then programed into
the computer as certain details of the design are frozen, and (2) some of the design
information in the hierarchies are intermingled. Some elements of the hardware definition
are stored in the function tree; some elements of the process definition are stored in the

hardware tree (more on this in Section 4.5).

4.4. Design Process in QCAD

The previous section explained the organizational structure of a product in QCAD.
This section describes the sequence of design activities that a multi-functional product
development team would follow under the QCAD framework.

Before explaining the parts of the design process a few points should be expressed.
First, for new product development, the PDT goes through the design process on paper
first and then codes the information into the computer. Many of the quality design tools
use visual connective methods to use the synergy of the PDT to develop bold new
concepts. At the current state of computer technology, it is difficult to be entirely creative
if constrained by the computer user interface (Hunt and Lee 1992). In subsequent designs,
the computer may be used to help the PDT answer questions.

Second, the information recorded during the design process can be entered into the
computer part of QCAD. However it is up to the design team to decide what information
should be computerized and where in the structure it should be coded. For example, if the
product being modeled is a copier, and the PDT is only interested in the paper feeder, the

PDT can focus its efforts on the paper feeder sub-system and not worry about coding all

59

of the information for the rest of the copier. In this example, if the paper feeder is defined
at the third level of abstraction, then the PDT does not have to worry about filling in the
first two levels of abstraction. However, if the information is available, there is no
problem incorporating information for other sub-systems, or for the toial system, into the
product model.

Third, the basic QCAD structure is generic. Many companies have their own
versions of quality programs that they use to develop products. The QCAD structure
provides a mechanism to use design information with the computer. If the PDT has other
techniques that help them define a product, those techniques can be incorporated into
QCAD.

Figure 4.5 shows the TQD tools superimposed over the QCAD structure. The rest
of this section will briefly describe the role of each part of the design process. Section 4.5
will elaborate on how the design process will be used with the computer.

Each object in Figure 4.4, the QCAD structure, holds the information generated by
the corresponding parts of the design process. The lines surrounding the design process
tools are wavy, to show that the boundaries are not absolute. The PDT goes through the
indicated design process steps in that general area of the product development cycle. The
next three sections describe a general ordering of the indicated design process steps.

Other variations on the design process steps are possible, and the team should taylor the

process as desired.

AVIO0 Ul SpoYIaJy usisa(- 'y aan3y

XUIBI uoloNpold Q40 sisjaweled $58001d dd Ayenpjoesnoy DOH xujew ainjonyg ubiseg WsQ
XUIB SS80014 £04D ubiseq Jejoweley ad sisAjeuy eai] ¥neq vid4 uonoales ideouoy g9

xuie ublseq 240 UONIOB(eS SSJ0.d pue [eudleN SdVIN JeN uoglounyd N4 2 meiney 1daouon zyo

18N anjonig onpoid NSd 3089 [9Aen N Xuiey uonound 4 I malAeY 1dBouo) LHD
ubiseq Jeleweied ss820id ddd siajaweled aiempieH dH Isnuogoung 9 1Isdesuon 9
A3y

dd SdvIN 4H
v3d
° €040 9 zaip Nsd
vid
dd
¥ad0
€040 ¢ado Nsd
vid WSO yiq

sigjoweled Ssiojoweley
$S920id alempieH

ainjead Led

Hed ad3ld

waysAs-qng

wajsAg jejol

sjuawalinbay
jeuonoun4

61

4.4.1. Function Hierarchy
This section describes the flow of information for the design process steps in the
function hierarchy. Even though the flow is depicted as linear, some events may feedback

information and other events may occur simuitaneously.

fra [
> [

I EN concepts
.___.__..ﬁ
_ >l
F(N) ——> —> —>I8| cs
F —_—— S
| >
LC
E2(N) H;
B
VoC >1Z| HoQ > | CR1
E2(N-1) >
E2(N) Fi H
Key:
CR;y Concept Review Matrix 1 FN Function Net
CS Concept Selection FTA Fault Tree Analysis
Eq Customer Expectations H; Sub-hardware
Es Corporate Expectations HoQ House of Quality
F Function Definition (one of the previous Fs) N Abstraction Level
F;i Sub-functions VoC Voice of the Customer

Figure 4.6 - Design Process in Function Hierarchy at Level N
(Clausing 1994 modified)

62

Notes for Figures 4.6, 4.7, and 4.8

Each figure represents one domain in Figure 4.5. As such, each figure
represents one level of abstraction in one of the horizontal hierarchies.

Abstraction Level

To read the figures, replace N with the desired abstraction level. If N is
at the sub-system level, then N-1 is the total system level and N+1 is the piece
part ievel. If N is at the total system level, then N-1 does not exist. If N is at the
part feature level, then N+1 does not exist.

Horizontal Domain

Each figure starts with a ‘F,” ‘H,” or ‘P’ definition, representing function,
hardware, or process, respectively. The definition guides the application of the
subsequent actiyvities in that domain. F, H, and P are either initially specified, or
are derived from previous design activities. The function definition flows from
higher level function to lower level function. The hardware definition flows from
same level function to same level hardware. The process definition flows from
same level hardware to same level process. Implicit in the figures is a flow of the
hardware definition down the hardware hierarchy and a flow of the process
definition down the process hierarchy.

In Figures 4.7 and 4.8, the HP; and the PP; are different from H and P, in
that HP,; and PP, are parameters of the hardware and process, whereas H and P
are the overall hardware and process definitions. Both HPi and PPi are domain
dependent, i.e., they only flow down the corresponding hardware and process
hierarchies.

Abstraction Level and Horizontal Domain

In addition to the function, hardware, and process criteria moving
between domains, QFD expectations (E) move between domains. The different
subscripts on the Es represent different expectations. In general, the
expectations are defined in the columns of one QFD matrix and become rows of
the next horizontal and vertical QFD matrices. There are two exceptions: (1) E,
only goes into the first QFD matrix, and (2) E4 only goes into the next verical
QFD matrix.

Keeping these caveats in mind, the design process follows the general pattern
outlined in Figure 4.6, at all levels of abstraction. Each of the acronyms mentioned in
Figure 4.6 are represented in this figure by a small icon. The icons approximate the visual
format of the design tool, with the arrows representing primary information flows from
and to the precise location on the design methods. Many other information transfer
arrows could be drawn into the figure, but were removed to reduce clutter and to
maximize drawing clarity. A case could be made for an arrow to be drawn from one
design method to every other design method and even from and to different sections of the
same design method.

The design process starts with an identified need, indicated by the boxed F on the
left side of Figure 4.6. This need is the functional requirement that a product or part of a
product is to satisfy. In the case of a theatrical lighting clamp, a high level need is to
position theater lights. A low level need is to attach the theater light to the clamp.

The initial function definition, feeds into the first three design methods, which may
be performed simultaneously or one at a time. At the top of the figure is the fault tree
analysis (FTA), which is used to explore the function space to identify possible sub-
functions and criteria for concept selection (Clausing 1994). The fault tree will also
provide a base for the fault trees in the hardware and process hierarchies and in the lower
level function hierarchy.

At the bottom of the figure is the first QFD matrix, also known as the house of
quality (HoQ). It is used to translate qualitative customer needs into quantitative
engineering expectations and to stimulate product concepts. ‘The HoQ uses the function
definition as a focus for the activity. For example, in the rows, customer needs »r= sought
for a product that satisfies that functional need, and higher level engineering expectations,
are used that further define the performance level for the function. The new set of product
expectations are used as criteria in the concept selection matrix (CS) (Clausing 1994).

See Sections 2.3 and 2.5 for a more detailed description of QFD. The ‘E’ variables, in the

64

rows and columns, represent expectations. Every deployment from a row to a column
increases the subscript on the ‘E.” The ‘N’ represents the abstraction level. ‘N-1’is a
higher abstraction level than ‘N.’

In the middle of Figure 4.6 are a series of steps that refine and correlate the sub-
functions. First, a set of possible sub-functions is generated. Then, the set is checked for
abstraction using the level check (LC) procedure, described below. Last, the functions are
arranged into a function net (FN), displaying the interrelationship of the functions (See
Section 4.5.2.4.). The subscripts on the ‘F’s in the figure indicate that the function is a
sub-function of the initial function. The ‘i’ subscripts on the ‘F’ and the ‘H’ indicate
multiple sub-function and sub-hardware definitions.

The level check (LC) is used when defining functions, to make sure that all of the
functions are at the same level of abstraction. In Figure 4.6, the level check is represented
by a filter, allowing functions at the appropriate level of abstraction pass, rejecting the
other sub-functions. This is done by asking two questions about the relationship between
two functional requirements. The first question asks, “Does function B contribute to the
performance of function A?” If yes, function B is a sub-function of function A. If no, ask
the second question, “Does function A contribute to the performance of function B?” If
yes, function A is a sub-function of function B. If the answer to both questions is no, then
functions A and B are at the same level of abstraction (Sontow and Clausing 1993). A
level check is only needed at higher levels of abstraction, where there are a large number
of functions at differing abstraction levels. At lower levels, the level of abstraction of the
functional requirements is clearer.

Starting with the set of functions, a function matrix (FM) and function net (FN)
analysis is completed to organize the functions into a relationship diagram. The function
matrix (not shown in Figure 4.6) is derived from the design structure matrix (Eppinger et
al. 1990). The function net is a graphical representation of the function matrix. This step

gives new insight into the functions to help generate hardware ideas and selection criteria.

65

This technique can be used at any level in the design process, but is especially insightful at
higher levels of abstraction, where the function relationships may not be as clear.

While working with the design methods thus far, members of the PDT have
probably developed some hardware concepts. These concepts are documented in a
concept list (CL) (not shown in Figure 4.6). If more concepts are desired, some authors
(Pahl and Beitz 1984; Cross 1989) recommend brainstorming or a morphological analyses
to generate concepts. However, Pugh (1981) recommends deriving new concepts using
concept selection. Pugh concept selection (CS) is described in Section 2.4.

The output from concept selection is an agreed upon hardware concept and an
idea of how the concept will be designed in the hardware. As a final check before moving
on to another phase of the design, the PDT evaluates the design with a concept review
matrix. The concept review matrix matches the sub-functions with the hardware parts for
the selected concept and helps reveal the most important sub-functions (F;) and sub-
hardware (H;). Further sub-functions or sub-hardware may also be revealed by

completing the matrix (Sontow and Clausing 1993).

4.4.2. Hardware Hierarchy

This section describes the flow of information for the design process steps in the
hardware hierarchy. The same comments about reading the design process flow chart
mentioned in Section 4.4.1, for the function hierarchy, also apply to the hardware design
process, shown in Figure 4.7.

The hardware process also starts with a definition of the governing hardware,
indicated by the boxed H at the top center of the figure. The H is one of the H;s defined in

the function hierarchy. Like the function definition, the hardware definition influences

66

H(N) HP, (N-1)

E3(N)
—>> 3
Ea (N) > K| QFD2
Eg(N-1) > \/
FTA
concepts
&
2| MAPS \ \l,
i mz
) Je—| N
P; m /\
l‘ \j
Pi Eg(N) HP; (N)
Key:
CR, Concept Review Matrix 2 MAPS Material and Process Selection
Eo Corporate Expectations N Abstraction Level
Ej Product Expectations PD Product Parameter Design
FTA Fault Tree Analysis PSN Product Structure Net
H Hardware Definition (one of the H;s) QFD2 QFD Design Matrix
HP; Hardware Parameters

Figure 4.7 - Design Process in Hardware Hierarchy at Level N

three different design methods. At the top, left side of the figure is the second QFD
matrix (QFD2). Its purpose is to translate engineering expectations into product
expectations. While completing the matrix, some process concepts may develop that can

be used in the material and process selection matrix (MAPS) (Clausing 1994).

67

The product expectations, from the columns of the QFD matrix are used as criteria
for material and process selection. Some additional criteria may also be used in the
evaluation. The MAPS matrix may follow the same format as the Pugh selection matrix,
described in Section 2.4, or may follow a more analytical approach. Whichever the case,
the output from the selection matrix is a process for manufacturing the hardware.

The manufacturing process is then compared with the hardware in a concept
review matrix (CR2). The CR2 matrix is exactly like the CR1 matrix, in that it helps
reveal the most important sub-hardware (H;) and sub-processes (P;). The concept review
matrix is also used as a final check before moving on to the process phase of the design.
Further sub-hardware or sub-processes may also be revealed by the matrix (Sontow and
Clausing 1993).

The hardware hierarchy not only defines the production process, but also assigns
values to the hardware parameters (HP;), which are variables that store dimensions and
material type for the hardware piece or sub-system. Note that higher level hardware
parameters may constrain values for parameters at the current level. Current level
parameters will then constrain parameters at the next lower level. Several design methods
provide insight for setting the correct values for the hardware parameters.

The QFD2 matrix brings the customer perspective as deployed from the HoQ
matrix. The product expectations in the columns have target values which the PDT
defines to be the ideal value for several hardware parameters. In reality, the hardware
parameters may not be able to achieve the target value, i.e. zero resistance for a wire
(Clausing 1994). See Sections 2.3 and 2.5 for a more detailed description of QFD.

The design structure matrix (DSM) (Eppinger et al. 1990) and product structure
net (PSN) are used in the same manner as the function matrix and function net, defined in
Section 4.4.1, except that the DSM and PSN give new insight into the hardware
parameters and provoke concepts for possible production processes (The DSM is not

shown in Figure 4.7).

68

The fault tree analysis (FTA) is used to identify critical functional parameters,
control factors, and noise factors for use in product parameter design (PD). Completing a
fault tree may also identify critical hardware parameters and equations for caiculating
those parameter values (Clausing 1994).

Product parameter design is part of the Taguchi system of quality engineering
(Taguchi 1986). It is used to create hardware systems that are robust against noises that
degrade product performance. See Section 2.6 for more information on product

parameter design.

4.4.3. Process Hierarchy

This section describes the flow of information for the design process steps in the
process hierarchy. The same comments about reading the design process flow chart
mentioned in Section 4.4.1., for the function hierarchy, also apply to the design process in
the process hierarchy, shown in Figure 4.8.

The process hierarchy design flow is similar to the design flow in the hardware
hierarchy. The main difference is that the process hierarchy is the last category in the
horizontal series of categories and thus only defines its own parameters.

Similar to the design process flows for the function and hardware hierarchies, the
process hierarchy starts its design process with an overall process definition, indicated by
the boxed P at the top left of Figure 4.8. At a high level of abstraction, the process
definition can be assembly. At a low level, the process definition can be surface grinding.
The P is one of the P;s defined in the hardware hierarchy.

The process definition feeds into the third and fourth QFD matrices (QFD3 and

QFD4) and the fault tree analysis (FTA). No process structure net is needed for the

69

P(N) PP; (N-1)

E4(N) l
E3(N) QFD3

E4 (N-1) FTA
| | .E_E—EE

Es (N) 7

vy
E3(N)

E4 (N)

o QFD4 L J(
Es5(N-1)————> - ;\\

PPD
\j
Es(N) E4(N) PPi(N)
Key:
Ej Product Expectations PP; Process Parameters
E4 Process Requirements PPD Process Parameter Design
Es Production Requirements QFD3 QFD Process Matrix
FTA Fault Tree Analysis QFD4 QFD Production Matrix
P Process Definition (one of the P;s)

Figure 4.8 - Design Process in Process Hierarchy at Level N

process hierarchy, as processes are usually arranged according to a time sequence of
events (i.e. hole A is drilled before hole B; gizmo D fits into hole Q before gizmo F locks
item Z into place).

QFD3 is the process planning matrix, which translates product expectations into
process requirements. QFD4 is the production planning matrix, which translates process

requirements into production requirements. Both matrices give insight into process and

70

production design and influence the values of process parameters (Clausing 1994). See
Sections 2.3 and 2.5 for a more detailed description of QFD.

Process parameters (PP;) contain detailed values that define how a production
processes operates. For example, a high level parameter would be the assembly sequence.
A low level parameter would be the mold temperature of a sand casting. Just like the
hardware, higher level process parameters constrain lower level process parameters.

In addition to the QFD matrices, the fault tree and process parameter design (PPD)
methods guide the definition of the process parameters. The fault tree is used to identify
control factors and noise factors for use in product parameter design (PPD). Completing
a fault tree may also identify critical process parameters and equations for calculating
those parameter values (Clausing 1994).

Process parameter design is part of the Taguchi system of quality engineering
(Taguchi 1986). It is used to optimize processes to manufacture robust products. See
Section 2.6 for more information on product parameter design.

The Taguchi system also has procedures to find an economical tolerance design
and an optimal intervention strategy for on-line quality control. Both methods are

discussed in Section 2.6, but are not used in the current QCAD methodology.

4.5. Computerized Elements of QCAD

The previous section briefly described the elements of the design process used with
the QCAD methodology and positioned those elements in the QCAD structure. This
section elaborates on those design tools as they are used with the computer. Many
examples are given using a theatrical lighting clamp. Some concepts from Chapter 2 are
repeated in the examples. Section 5.2.2 shows the computer implementation of the clamp
in QCAD.

This section is split into five parts. In the first part, the theater clamp model is

described, since it will be used to explain QCAD concepts. Tne next three parts examine

71

the function, hardware, and process hierarchies, respectively. The last part examines

concepts that apply to all three hierarchies.

4.5.1. Description of Clamp Product Model

This section describes a theatrical lighting clamp, which is a simple product that
will be used to describe QCAD. QCAD can be used with more complex products, as will
be shown in Chapter 5.

A theatrical lighting clamp is used to hang theater lights that weigh between 5 and
20 pounds on pipes in various places around a theater (for reference, the traditional cast
iron clamp weighs about 1.5 pounds, which is negligible compared to the weight of the
light). The pipes can be located up to 30 feet in the air, in any orientation, (i.e.,
horizontally, vertically, or diagonally) above both audience and cast members. Usually, a
lighting technician will attach the clamp to the light on the ground, carry the light up to the
catwalk, secure the light to a specific spot on a specific pipe, and then rotate the light to
the desired position.

Figure 4.9 is an annotated picture of the clamp. The light secures to the clamp at
the bottom of the barrel with a screw and a washer. To mount the clamp on a pipe, the
frame screw is unscrewed as far as necessary to allow the pipe to snugly fit through the
frame mouth. If the pipe is hung horizontally, the clamp and light can rest freely from the
top of the frame, which is also known as the hook. The frame screw tightens down with a
wrench against the pipe to stabilize both the clamp and the light and lock them in place.
Once locked down, the light can be rotated by loosening the barrel set screw. The barrel

is a cylindrical piece of aluminum, with a captivating lip, that is free to spin in the frame.

72

Frame Hook
Frame

Frame Mouth

Frame
Flange

Frame Screw

" Barrel Set Screw
" % | Barrel

Light Yoke

[

E] : Washer

Barrel Screw

Figure 4.9 - Theatrical Lighting Clamp

73

4.5.2. Function Hierarchy

Each function is its own entity—each has its own name, a list of constrairis, a
QFD matrix, and a set of associated concepts. The first three are used by the designer to
put the design problem into perspective, in order to create a set of hardware concepts that
will satisfy the function. In this way, the function is the basic mechanism used to organize
the storage and retrieval of several different hardware concepts.

QCAD enhances this feature of functions by dynamically linking them to hardware.
Two advantages include: 1) if the design needs to change, the function can call up all of
the hardware that satisfies that function, providing a holistic view of how a product can be
modified, what parts\leed to be changed, and what the interactions are among those parts.
2) when redesigning a product, a designer can explore the design from the perspective of
different functions to get a different understanding of the product which will help generate
new ideas.

For reference, Figure 4.10 is the function hierarchy for the clamp. For clarity, part

feature functions are not listed here.

Position Theater Lights
|
| I I | 1
Hook Over Pipe Secure to Pipe Lock Light Swivel Light Hold Light
Frame Rests Pipe Fits Frame Locks Barrel Locks Barrel Barrel Holds Frame Holds
onPipe in Frame in Place in Place Pans Light Barrel

Figure 4.10 - Clamp Function Hicrarchy

4.5.2.1. Function Identification

All products exist to fill a need. That need at the highest level of abstraction is
called a total system functional requirement—it will be the focus of subsequent product
development work. As such, the total system functional requirement (FR) is the node

name at the top of the funciion hierarchy. The total system function is identified by a

74

company based on market research. For the clamp, it is defined as a device to position
theater lights.

Lower level functions are defined by higher level hardware pieces. For example,
when the PDT decided that the clamp would have a one piece frame, they created the
functional requirement that the frame must fit over the pipe. If the frame was two pieces,
there would be a different requirement that the pipe must fit in the frame. These FRs

become the names for the lower level function nodes.

4.5.2.2. Constraints

Just defining the function name is not enough. Each function has some constraints
on it due to the nature of the use environment or from customer needs identification.
Probably the best way to think about constraints, as used in QCAD, is that they represent
items that could be checklisted. They are either satisfied or not satisfied. Included in this
category are must-be Kano (Shiba, Graham, and Walden 1993) customer requirements,

government regulations, and safety requirements. The following constraints were found

for the clamp:

reversibly lockable (can be opened and closed many times),

use only human power,

support any orientation of a light,

interface with existing standard theater equipment (pipes, lights,
etc.), and

5. support human weight with a factor of safety.

b S

In QCAD, two things can be done with these requirements. They can be left in an
attribute list (an attribute is another name for a variable) that can be called at any point in
the design process for guidance in decisions, or they can be converted into individual
attributes that specify constraints on parts further down in the design process. Generally,

a combination of both methods will be used.

75

For example, constraints 1, 2, and 3 would best be used in a textual list and
contemplated when concept selection decisions are made. Constraints 1 and 2 constrain
the concepts for selection. That is, welding cannot be used as a clamping concept because
it is not reversible, nor can it be done solely under manual power. These constraints are
textual constraints because they cannot be assigned a distinct numerical value, but do
guide the design process.

Constraint 3 is also a textual constraint, but it actually refers to the types of
engineering calculations that must be performed to validate a design. Likewise, constraint
1 could show that a fatigue calculation needs to be performed. (See Section 4.5.3.2 on
hardware product parameters for more information).

A different type of constraint is a numerical constraint. Constraints 4 and 5 can be
assigned to variables, with attributes such as :pipe-diameter = 2" and
:design-weight = :human-weight * :safety-factor.

If QCAD is used to unite several PDTs, each team can use the system to identify
constraints that must be satisfied. Changes made to constraints are propagated through
the model, ensuring that all affected components are changed, or all design teams are

informed of a change.

4.5.2.3. QFD House of Quality Matrix

Even though a function name and a set of constraints has been identified, there is
more information to decipher about functions. Many designers are comfortable working
with engineering metrics, but not with abstract requirements. The two can be correlated
on paper, by a PDT using a QFD matrix (Figure 4.11). There are many reasons to use
QFD, one of which is to submerse the designers in the design problem to help generate
novel ideas.

Computers are good tools at making calculations and at making reports (ITI

1992), but do tend to stifle human creativity. The computer requires structured input of

76

-l +|+]o]o
&lEl=| |2
s|slz|el2] ,
S|>1g|[8|g] &
o|lL|8lo|a =
alc|ofo|E]o
- 215 2|0 %
glelals5| 8|2 Q
clz|2lL18|5 o
)] - @
2lelslE|m| 8
ElC|&|2|8]|&|aBC
Hooks over pipe easily | 4 @ /|
Solidly secures to pipe 5 A @)
Stops light from panning | 5 @ O /
Light pans 360° 4 @
Light held firmly 5 ©
Competitors A
P sl X
cl 4+
-
Targets ol =
el N
alol2|&]*
— 10| O © w
(s> B BN Vo BN oY (3] -
Technical Importance 411 45| 45| 51| 45
Technical Importance (%) 18120 20 22| 20

Technical Importance Graph

Figure 4.11 - House of Quality for the Clamp

71

information, which at the current state of technology is limiting for creativity (Hunt and
Lee 1992).

The computer is good at crunching numbers and thus is good for use in sensitivity
analysis. After a QFD matrix has been created off-line by a PDT and is input to a
computer, both interactions and importance ratings can be changed to show their influence
on the total design. Note that changing these parameters can help a person look at the
design problem differently—not to mention that attaching a dynamically changing product
to the QFD matrix takes the activity beyond the abstraction of conceptual design. This
feature is more useful in subsequent designs, after some hardware has been defined.

The system of EQFD matrices in the product model are linked together using the
technical importance ratings. Once a technical importance rating is calculated, it is linked
to the corresponding metric. Whatever sub-systems use that metric, inherit that metric's
importance rating. The importance ratings, however, are raw importances calculated by
multiplying the row importances by the number of relations in the relationship matrix.

This is fine if only one set of matrices is used. However, some engineering metrics may be
m’srepresented if multiple matrices are used and importance ratings from several different
matrices are combined into one matrix. For example, the relationship matrix of one QFD
matrix may be densely packed, while the relationship matrix of another may be sparsely
packed. Thus, the technical importance ratings should be normalized to a scale from one
to five, where five is the highest. The following formula may be used:

N, = I x5
I+

where N; is the normalized importance rating for metric i, ; is the raw importance rating
for metric i, and I'* is the largest of the importance ratings.

The QFD matrix also has design targets for the engineering metrics, which can be
propagated to other design nodes. As described in Clausing (1994), target values can be

allocated to sub-systems in two ways: 1) The values are additive and are distributed to

78

each sub-system; or 2) The values are uniform across all sub-systems. For example, cost
is additive across sub-systems: A total system cost of $50 can be split into $25, $15, and
$10 sub-systems. However, minimum fatigue life is uniform across the clamp parts.

QFD matrices at levels of abstraction below the total system are used as described
above, except that the rows take information from the previous QFD matrix in addition to

the voice of the customer.

4.5.24. Function Diagram

In addition to listing constraints and completing a QFD matrix for a function, a
diagram of the function space should be used to show relationships among functions.
There are many methods that give a structure to functional requirements. One of the more
frequently mentioned techniques is a function structure developed by Pahl and Beitz
(1984).

For this initial definition of QCAD, a function diagram will be used. If desired,
future versions of QCAD can be upgraded to use a more complex function structure. A
function diagram is a graphical representation of the interactions among sub-system
functions, as shown in the Figure 4.12. Creating a function structure is a two step
process: 1) Determine the information flows among parts by creating a function matrix
(FM). 2) Translate the matrix into a diagram. Step one is performed by the PDT off line.
Step two is done by the computer.

A function matrix, much like a design structure matrix (Eppinger et al. 1990),
shows the direction of information flows among functions. Figure 4.12a is the FM for the
high level clamp functions. The sub-system functions are listed in both the rows and
columns of the matrix. An X in the matrix shows that the definition of a hardware cor~ept

for the function in the column will affect the hardware concept for the function in the row.

79

4 Lock
S8 | Light
g L
2125355
YEERE
ol o528
2/85)5/2

Hook Over Pipe | X -’

Secure to Pipe (X |X

Lock Light X X

Swivel Light X

Hold Light X | X

a. Function Matrix b. Function Diagram

Figure 4.12 - Function Diagram for the Clamp

For example, changing the concept of how the light swivels, affects the concept for
how the light locks in place. Right now, the swivel mechanism concept is a barrel that
goes through the clamp frame. The barrel is locked in place with a side screw. If the
swivel mechanism concept was changed to a ball in socket, the light locking mechanism
would have to change.

The function diagram is a graphical representation of the function matrix. As
shown in Figure 4.12b, it is easier to understand than the matrix. The circles are the sub-
system functions and the arrows show the direction of influence.

An alternate way of looking at the matrix, or diagram, is that the functions in the
columns affect the corresponding functions in the rows. Thus, if a change is made to one
sub-system function concept, the designer can find other sub-systems that will be affected.
Alternatively, the matrix can be used to find what function concepts should be considered
when making changes. This method of storing information, when recorded in the
computer for easy access, helps the designer minimize design mistakes.

Even though the benefit of this module is more apparent when redesigning a

product, it can still be effective for original designs. A product structure diagram at the

80

high level shows interactions between lower level sub-systems that design teams should

investigate to fully understand the product.

4.5.2.5. Concept Generation

While submerged in the function space via customer interviews and QFD matrices,
many concepts are generated by the PDT. A few of the more feasible ones are carried
through into development. A list of generated concepts is maintained in QCAD to store
ideas. These ideas form part of a design history showing what the original designers were
thinking as part of the design. The concept list contains information like a concept name,
a description of its intended functionality, and other comments about the design. In
subsequent designs, the list can point to ideas for evaluation and to reasons why certain
designs are not feasible and should not be pursued. All considered designs should be put
in this list, including both those being used and those that aren't. A sample concept list is

shown below.

ID Letter Concept Description Comments
A solid frame a solid frame connects both current solution

locking mechanisms

B hinged frame a hinged frame with locking hinge not robust
clasp
C solid frame with double solid frame with further evaluation
lock mechanism interconnected locking required
mechanism

The concept list is not intended to help first round designers create novel products.
It is intended to record a design history and to trigger ideas for subsequent round
designers. This capability can be augmented by continually adding concepts to the list.

Remember that each function is its own object and can be called no matter where the

81

function is in the hierarchy. Thus, wherever the function goes, the associated generated

concepts go with it.

4.5.2.6. Concept Selection

In TQD, the next step is to select a design based on a set of criteria. Usually, the
criteria used are the metrics, (columns) from the QFD matrix. The design team starts off
with about 30 concepts at the beginning and after several iterations narrows the choices
down to two or three for further work. These two or three alternatives are coded into a
concept selection matrix on the computer. The ideas that don't make it can be annotated
in the concept generation list.

Two methods can be used in the computer to model concept selection. The first
method would be to create a concept selection matrix in the computer as shown in Figure
4.13. In this figure, the criteria importance ratings are dynamically linked to the columns
of the QFD matrix. The relationships in the matrix come directly from the PCS matrix,
where +'s mean that the product is superior in that category, S's mean that the product is
the same in that category, and -'s mean that the product is inferior in that category. The
datum concept has a column filled with S's.

The best concept is then the one with the highest overall importance. This mind
numbing numerology is a deviation from PCS and is only being used for computer
programming purposes—a PDT using QCAD should not forget this distinction. With that
said, the overall importance ratings are computed from the weighted sum of the
relationships in the column:

iVViiji=Ij

i=]
where n is the number of evaluation criteria, W; is the criteria importance rating for

criterion i, R;; is the relationship (+, S, -) for concept j on criterion i, and J; is the overall

82

8

51 Concept

=

=]

Q

ElA|lB]C
Force to hang on pipe 41S|-1]|S8
Pounds heldbyclamp |45] S| -| s Legen1d
Rotational force held 45] S| S| S S ; 0
Degrees light pans 5]1S|S| - *=1
Force to release light 451 S| S| S
Overall Importance . 0 [-9.5] -5

Figure 4.13 - Concept Selection in QCAD for the Clamp

importance rating for concept j. The concept with the highest score is selected for further
refinement. Notice that if the voice of the customer importance ratings or the
relationships are changed in the QFD matrix, the column importances will change, and the
selected concept may change. Moreover, the importance ratings are linked throughout the
model, which could result in a wholesale change in the product. Additionally, as more
concepts are added to the model, the more powerful the product model becomes. There is
also a brief discussion of this kind of sensitivity analysis in the QFD matrix section above.

If the designer wants to work on a specific design regardless of the importance
ratings, QCAD allows the user to choose a concept for refinement.

The second method is to use a heuristic to select a concept. Sometimes a concept
selection matrix is not required to select a concept. Instead, a rule of thumb is used to
decide between ideas. For example, if the clamp is to hold more than 500 pounds, use
concept A; if the clamp is to hold between 50 and 100 pounds use concept B.

In general, the concept selection feature of QCAD is more useful for modifying

existing designs, rather than creating new designs.

83

4.5.2.7. Concept Review

As akind of concept review, the PDT, without the help of the computer, should
mark relationships between the required functions and the parts in the selected concept.
The matrix pictorially represents the allocation of functions, making it easier for a PDT to
decide if the interactions are too complex to be dealt with efficiently. Once the PDT is
satisfied with the level of interactions, the matrix is programmed into the computer (Figure
4.14). For subsequent product designs, the matrix may already exist in the computer and
may be reused. A new matrix will be required for each different product architecture.

This matrix also guides what information is sent to which sub-systems or piece-
parts. Constraints and QFD columns are allocated to certain functional requirements,
which are passed to the next system via the concept review matrix. Not all functions are
critical and require a QFD matrix. In such a case, constraint information and target vaiues

can be ear marked for specific hardware concepts.

£
]
£ c
) 3
5158
5|6|8|E
HiE
o 2IE]S
E13|2|z
Q £ L
S|8lE[2
hook over pipe] X
secure topipe | X | X
lock light
swivel light
hold light X

Figure 4.14 - Concept Review Matrix for the Clamp

84

The computer uses the matrix to link functions to hardware. In the product model, when
a function is selected, it will be possible to list and view all of the hardware pieces that satisfy that
function, facilitating engineering changes. This feature is also the mechanism for seeing the
product from different points of view, in terms of which parts perform what functions.

The concept review matrix can also be used to help decide where improvements to a
design should be made. It shows which functions have few interactions and would be easy to

change and those that have more complex hardware interactions.

4.5.2.8. Additional Comments

The use of the function hierarchy goes beyond just the use of modules. Listing out the
functions at each node name can be helpful in understanding the product. For example, it is
possible to look up and down the function tree for side-effect functions, as in those functions that
are necessary because of the chosen hardware architecture, but are not used directly in satisfying

the overall product function. Finding ways to reduce these side effect functions should improve

the product design.

4.5.3. Hardware Hierarchy

As discussed above, the function hierarchy is the starting point for each level of design
planning; the function space is defined and then searched for different hardware concepts. After
selecting hardware for the product, design decisions are made in the hardware tree. Higher level
design decisions in the hardware include general allocation of space to sub-systems and recording
issues involved when using those sub-systems. The product structure diagram helps organize
thoughts about the hardware design, which reflect the underlying product parameters.

At lower levels in the hardware hierarchy, the parameters become more concrete, referring
to specific dimensions, material and process selection, and parameter optimization through design
of experiments. For reference, Figure 4.15 is the hardware hierarchy for the clamp. For clarity,

hardware part features are not listed here.

85

Clamp

Clamp Support Securing Mechanism Swivel Mechanism Light Holding Mechanism
Frame Frame Screw Barrel Barrel Set Barrel Washer Barrel Screw
Screw
Figure 4.15 - Clamp Hardware Hierarchy
4.5.3.1. Product Structure Diagram

Creating a product structure diagram is a two step process. 1) Determine the information

flows among parts by creating a design structure matrix (DSM). 2) Translate the matrix into a

diagram. Step one is performed by the PDT off line. Step two is done by the computer.

A design structure matrix (Eppinger et. al. 1990) shows the direction of information flows

in a set of design activities. Figure 4.16a. is the DSM for the high level clamp hardware. Note

that the hardware sub-systems are listed in both the rows and columns of the matrix. An X in the

matrix shows that the hardware in the row requires design information fror: the corresponding

hardware piece in the column.

&
:| |8
] e
5|8 |3
S8 |E
EIg|E
1582 i Securing
3l Hold ;
5 § z|5 » Meghalnnigm Mechanism
frame XXX
securing mechanism x| X
swivel mechanism XX Swivel
light holding mechanism X Mech'avr?ism
a. Design Structure Matrix b. Product Structure Diagram

Figure 4.16 - Product Structure Diagram for the Clamp

86

The product structure diagram is a graphical representation of the design structure matrix.
As shown in Figure 4.16b. it is easier to understand than the matrix. The circles are the sub-
systems as identified in the function hierarchy and the arrows show the direction of information
transfer.

An alternate way of looking at the matrix, or diagram, is that the hardware in the columns
affect the corresponding hardware in the rows. Thus if a change is made to one sub-system, the
designer can find what other sub-systems will be affected. Alternatively, the matrix can be used to
find what hardware should be considered when making changes. These two benefits, when
recorded in a computer for easy access, help the designer minimize design mistakes.

Even though the benefit of this module is more apparent when redesigning a product, it
can still be effective for original designs. A product structure diagram at the high level shows
interactions between lower level sub-systems that design teams should investigate to fully

understand the product.

4.5.3.2. QFD Design Matrix

The goal of the second QFD matrix is to relate hardware design parameters to the
engineering metrics defined in the first QFD matrix (see Figure 4.17 Both the rows and
importance ratings in this matrix come from the columns of the first matrix. However, the
function and hardware hierarchies are organized differently, meaning that there may not be a one
to one correlation between the function object where the first QFD matrix is and the hardware
object where the second matrix is. What happens instead is that the engineering metrics for the
rows come from the QFD matrices in all of this hardware's associated function nodes. The QFD

matrix then picks off the engineering metrics that relate to this hardware object.

87

0N

o\

Q

£

L

@ =

A

ol |3|5|2|8

O g e ()] S

SlolFISIT|ad

SIS|E|JE|E]E

o|l8|S|S|a

ElS|C |||

Weight 3 |©|AA[AIA
Bending Moment Held 5 @ @

Torsion Held 5 @ @

Force Held by Frame 4 @

Force Held by Barrel 4 @

Importances 27193148 48| 75

Targets S c c e

Sla| 2|2

Figure 4.17 - QFD Design Matrix

The operation for the rest of the matrix is the same as described in Section 4.5.2.3. for the
House of Quality. The importances are calculated and normalized; the target values can be
assigned to attributes; and the design parameters in the columns are propagated, with their

importance rating to the next QFD matrix.

4.5.3.3. Hardware Parameters

Hardware parameters are the core of the product model. They are variables that store
information like dimensions, material used, and geometric architectures. At high le vels of
abstraction, the hardware parameters store sub-system target values as designated from the

previous QFD matrix. This information can include costs, reliability targets, and relative

88

geometric proportions. For example, the high level geometric proportions for the clamp frame
would be a bounding box with dimensions 1.5" X 4" X 6".

At a lower level of abstraction, the hardware parameters store the actual dimensions and
materials used. For example, the length of the frame screw is 3 inches and is made from carbon
steel.

Hardware parameters generally come from engineering equations. The constraints
specified in the function tree are considered in this module. The textual constraints that weren't
used in selecting configuration designs will specify engineering analyses to be considered for
piece-part design. The numerical constraints give limit values for use in equations that solve for
product parameters. The textual constraints are more of an information management tool that
will have greater impact in initial product development, but can be used to a lesser extent in
subsequent product designs. Numerical constraints can be useful for either type of design. Just
changing the value of a constraint can automatically change the entire design.

Some designers, however, like to use rules of thumb for certain dimensions, especially
those that can't easily be modeled with engineering equations. QCAD, like many other knowledge
based systems, can help collect and standardize these rules of thumb to make design practices

uniform throughout the product.

4.5.3.4. Product Parameter Design

Another way to standardize a design and to reduce the number of thumbs, is to use design
of experiments. Product parameter design uses statistics and common sense about the underlying
physics to optimize a design with respect to a quality characteristic. The quality characteristic
measures the quality of a product or process with respect to customer expectations (Phadke,
1989).

Computers have been used with Taguchi experimentation in two ways: 1) they can be

used to model the product, with the simulation being used for experimentation; and 2) they can be

89

used to guide a designer through the process and to perform the analysis of variance calculations
(Quality Engineering Services 1992).

QCAD can be used for both. In the first scenario, the QCAD product model can be
created with modifiable control factors and can be used to output experimental results. For the
clamp, the frame height, frame width, frame thickness, and hook arc length can be specified as
inputs (the frame lip is the short extension where the frame screw goes through the frame). The
clamp strength, weight, and ease of use can be output to a report. The design simulation could be
linked to the analysis described below, but it would make using QCAD more involved than
necessary. It is easy enough to perform the experiments, write that data to a file, and read it back
in later. QCAD is flexible, if it is desired to link the robust experimentation and report functions,
it can be done.

In the second scenario, QCAD can accept experimental results from a design team,

calculate the analysis of variance, and set hardware parameters equal to tie optimized results.

4.5.3.5. Material and Process Selection

As the name states, the material and process selection module is used to help a PDT select
materials and processes for piece-parts. The use of this module is the same as that for concept
selection described in the section on QCAD functions. Material and process selection tends to be
more numerically oriented than conceptual design selection. Thus, the use of heuristics to
designate manufacturing processes may be more appropriate than a selection matrix.

Figure 4.18 is an example of a material and process selection matrix. The criteria in the
rows come from the second QFD matrix. Some additional criteria is also used in the matrix to
further distinguish among concepts in ierms of cost and production feasibility. The numbers in
this matrix are added for use with the computer. When completing this matrix originally, the PDT

subjectively evaluates the concepts without the numbers.

90

()]
£
17
|8
Elv]|lo|lo
219 |e |85
ie]
1HEE <
SElo|E|D]|Z
2lcs|Elc|®
HEHEE
Volume 151 S| - | S| S
Frame Thickness 5|s|S|s|s Legen1d
Frame Width 25l s| S| s|s S=0
Frame Height 25| s| s|s|s +=1
Barrel Support Thickness| 4 | s| S| S| S
Production Volume 4|1s|S}| -] -
Tolerances 25| s| S| +] -
Production Cost 51s!| S| -] -
Weight 118]+]| 8|S
Overall importance lo -5| -6|-11

Figure 4.18 - Material and Process Selection Matrix

The output of this module is a production process that will become a node name in the
process hierarchy. In general, there will be a one to one correlation between the hardware nodes

and the production process nodes.

4.5.3.6. Concept Review
This concept review matrix works the same way as the concept review matrix in the

function hierarchy. The only difference is that this matrix compares hardware to processes,

91

whereas the other matrix compared functions to hardware. Figure 4.19 is an example of this

concept review matrix.

£
0
E [
Bl 5|8
vl g 5|8
ol £ | E
al o]
Q 1§ @ o))
JIE|l €] E
it o]
al 29|53
E|lS| 2] £
813l 3| =
(&) 7]
c| 8| o 2
Zl >l 5| >
g3/ 5
E|lal|l E] a
clamp support X
securing mechanism X
swivel mechanism X
light holding mechanism X

Figure 4.19 - Concept Review Matrix

4.5.3.7. Additional Comments

Unlike the function hierarchy that stored a list of all viable, generated hardware concepts,
there is no such list production processes. In general, a generated list of processes that can be
used to manufacture a product can become rather extensive very quickly. Thus only those
choices considered, or explicitly not considered, should be stored in a documented list.

In addition to designating manufacturing processes in the hardware hierarchy, the PDT
creates a list of functions that the hardware sub-system is required to perform. These sub-systems
are sent back to the next level down in the function hierarchy along with the design parameters

and constraints list.

92

Lastly, parts can be called by any functional requirement or higher level sub-system
hardware node. As more and more parts are created, the product structure becomes more and

more flexible, which will be more useful in redesigns of the same product.

4.5.4. Process Hierarchy

The process parameter node looks to the hardware node for the defining manufacturing
process. The higher level nodes, that reference hardware assemblies will further define an

assembly process. The lower level nodes will further define manufacturing operations.

Assemble Clamp
I
I I I |
Assemble Clamp Assemble Securing Assemble Swivel Assemble Light
Support Mechanism Mechanism Holding Mechanism

T

| - Buy Screw Make Barrel Buy Barrel
Cast Frame Machine Frame l Set Screw

I L
Cast Barrel Machine Barrel Buy Washer Buy Screw

Figure 4.20 - Process Hierarchy for the Clamp

The process hierarchy for the clamp is shown in Figure 4.20. The parts are broken down
like an MRP (Materials Requirement Planning) system with the overall process steps occurring
from left to right and from bottom to top (The manufacturing floor does not have to use an MRP
system to use this product model). Each node will have parameters that further define the
process. Some nodes may have QFD process planning and production planning matrices and/or a

list of optimal process parameters determined from a design of experiments.

4.54.1. Bill of Materials

For all of the assembly process nodes, a bill of materials is generated that itemizes the

parts in that assembly. For example, the bill of materials for the tota! system includes the clamp

93

support, securing mechanism, swivel mechanism, and the light holding mechanism; each of
quantity one. The swivel mechanism would include one barrel and one barrel set screw.
QCAD is also able to generate an itemized bill of materials for all of the piece-part

hardware components.

4.54.2. Process Parameters

A process parameter contains detailed values about the production process. For a high
level production process, one parameter would be the assembly sequence. At lower levels, the
parameter could include the speeds and feeds of a milling operation. Other more generic

parameters include lead time and tolerances.

4.5.4.3. Process Parameter Design
Taguchi design of experiments is generally not simulated on computer for production
processes. It is usually performed on the production floor on the actual machine under normal

operating conditions. The parameter design module lists the optimal operating parameters for the

production process.

4.54.4. QFD Process and Production Matrices

The third QFD matrix on process planning, translates hardware characteristics to process
requirements and is used the same way as the QFD matrix described in the hardware section (see
Figure 4.21). This matrix is used to understand hov different process requirements relate to the
functionality of the product with respect to the voice of the customer. The target values are
recorded as process parameters. A sensitivity analysis of the importance ratings and the

relationships will dynamically effect the importances of certain process parameters.

94

Frame Hole Drilling Speed

Frame Hole Tapping Speed
Barrel Screw Hole Drilling Speed
Barrel Screw Hole Tapping Speed

Importances

(©)] Cast Cooling Time

iy
[$,]

Volume

Frame Thickness

Frame Width

g
(4]

N
[3)

(8]
©|©|©|©)|©)|Cast Metal Temperature
30 in3/s § O|O|0|0O|©)] cast Metal Pour Velocity
©
©

Frame Height

Barrel Support Thickness] 4 ©|©
Importances 369 13.5 45| 45| 36| 36
Targets L 5ol B ol 2

S 2lel ol Elw

Figure 4.21 - QFD Process Planning Matrix

The fourth QFD matrix on production planning translates process requirements to
production requirements for use in determining production operation sheets and control charts
(see Figure 4.22) (Krinninger and Clausing 1991). The rows and importance ratings are from the
columns of the third QFD matrix.

Both of these matrices concentrate on process and production operations. QCAD doesn't
specifically use either of these matrices in assisting a designer to develop a product. However,

they store additional information in the system, for completeness.

95

Environmental Temperature|
Spindle1 Feed Rate

Ladle Pour Rate
Tap1 Feed Rate
Spindle2 Feed Rate
Tap2 Feed Rate

Importances
@ Furnace Temperature

Cast Metal Temperature

©
©

Cast Metal Pour Velocity

Cast Cooling Time

—t

Frame Ho!e Drilling Speed

-—t
.

Frame Hole Tapping Speed

©

Barrel Screw Hole Drilling Speed

Barrel Screw Hole Tapping Speed} 1 @

Importances 45| 18|4.5(13.913.58 9| 9

i’ - N n

Targets elz| 3| el | ol €
=

RN

Figure 4.22 - QFD Production Planning Matrix

4.5.4.5. Additional Comments

The process and production planning phases of EQFD have been further developed by
Florusse and Clausing (1992) as part of the Rapid Acquisition of Manufactured Parts (RAMP)
project at the South Carolina Research Authority (SCRA). The revised procedure was developed

through a cooperative project with MIT, ICAD, and the SCRA.

96

One goal of the new procedure was to address several concerns that United States
manufacturing companies expressed about the third QFD matrix. The most predominant concerns

are listed below (Krinninger and Clausing 1991):

“ e unclear implementation of QFD in the product development process,

undefined integration of other methods, e.g. quality planning methods, in the QFD
procedure,

vaguely described role of blue collar workers in phases III and IV,

weak management support,

inadequate documentation of former production processes,

insufficient QFD training, and

inappropriate documentation of planning resuits.”

The revised methodology consists of four main steps, which provide a detailed framework
for process planning in EQFD. The procedure emphasizes concurrent development among the

design of sub-systems, piece parts, and process planning (Florusse and Clausing 1992):

1. Select the appropriate material and process in terms of cost, function, safety, precision,
and possible engineering bottlenecks;

2. Translate part characteristics from the second QFD matrix to process parameters for
critical part values;

3. Transfer critical process parameter checks to producticn; and

4. Assess production difficulties and suggest possible resolutions for the future.

Figure 4.23 shows how these steps integrate with the design process. The next four

sections elaborate on how the revised process could be integrated into the QCAD system.

97

Total System

,--

é@

Assembly Process Planning

Level Check
Function Param

Design
: TSA/SS Design :E 1. Part Formation
1 Matrix 1
: St 'gjfgj:ftj Assignment Process Sets '
W Subsystem?/] Expectations Matrix Pa{: rgt‘;;ac' Concept Selection
' —>>
: §§2§?§t . SS Corporate =] Competitive
H 25 Expectations to Process Sets
' Goncept Review ' Part Per Process
i Level Check
[]

by Competitive

.///%%/ i oo, Procss
[} []
E SS/I;APa lDrif;z(sugn :
o] Function Param{s N Assi nt
E E Concept Selection Pfg;’;‘:"g‘;fs ?\;l%rt‘:ir)](e
E 5 Manutacturing Critical Part
' 1 Route Critical Pat | Characteristics
: . Characteristics | 15 Process Steps
1jConcept Review:
8 1]
4 ;

1
Manufacturing
Route

Piece Part
Design Matrix

//

esn n/

)

[]
[]
. - Critical
: Assignment Manufacturing
' Matrix Features
: Critical Part SE—

Features to

Manufacturing
Features

Process Planning
Chart

per
Process Step

Doivcrizziziizzimizzii o,

3. Instruction for Quality Assurance Check Points

QA Control Chart

4. Feed-Back of Processing Difficulties/Changes for Parts

2. Part Finalizatio&

v

¢

Assembly

Operation

Planning
Chart

Operation
Planning
Chart
per Machine

' Process Control
Sheet

per Machine],

7/;;////9/7/;//

‘Operation’

ZPlanningZ
4//////////////////

Figure 4.23 - A Detailed Framework for EQFD Process Planning
(Sontow and Clausing 1993, according to Florusse and Clausing 1992)

98

4.5.4.5.1. Part Formation

Part formation is concerned with the appropriate selection of sub-system materials and
manufacturing processes. As such, this step explores sub-system hardware configurations for
different materials and manufacturing processes. This part formation step performs the same
function as the material and process selection step described in Section 4.5.3.5. of the hardware
hierarchy. QCAD users wishing to follow this revised methodology should substitute the four
matrices in this part formation step for the material and process selection matrix in the hardware
hierarchy. The rest of this section gives a brief description of the four matrices in this step. For
more information, see Florusse and Clausing (1992) and Sontow and Clausing (1994).

The fii -t matrix, the assignment matrix, in the top, left corner of Figure 4.23, is used to
explore the feasible material and process options to fabricate a sub-system. For each feasible
option, the PDT formulates different piece part configurations and determines critical sub-system
characteristics related to the piece parts.

The second matrix, the concept selection matrix, in the top right corner, is used to make a
rough selection among the manufacturing processes, against a set of technical criteria including
technical feasibility, material cost, and production cost.

The third matrix, another assignment matrix, correlates critical part characteristics against
the remaining manufacturing processes. In this matrix, the remaining processes are further
defined by designating the types of machines used in the manufacturing process.

The fourth matrix, another concept selection matrix, is used to select the manufacturing
process for the piece parts. A new set of criteria is used in this matrix to help the PDT think
about critical part characteristics, manufacturing characteristics, engineering bottlenecks, and the

interdependence of part characteristics.

99

4.5.4.5.2. Part Finalization

The goal of this step is to translate critical piece part hardware parameters to
manufacturing features and then to process steps. The assignment matrix facilitates the first
translation, while the process planning chart facilitates the second translation. Both of these steps

occur after a manufacturing process has been selected and as such would be stored in the process

hierarchy in QCAD.

4.5.4.5.3. Instruction for Quality Assurance Check Points

This step is concerned with setting appropriate quality control check point positions and
measurements. Several tools can be used in this step. Among them are quality assurance charts,
SPC charts, and Taguchi optimization methods. These tools are used after the manufacturing
process is selected and would be stored in the process hierarchy in QCAD. However, one must
be careful of putting too much information into the QCAD system, such that the user would get
confused by all of the available data. It may be more appropriate to keep some of the quality

assurance information in another database that can be referenced by QCAD.

4.5.4.5.4. Process Feedback

This final step is concerned with providing feedback on the production operations
specified in the previous three steps. There arc many ways to monitor manufacturing processes to
see if they are performing as expected. These include using SPC charts to monitor the flow of
material through a production line, and using reports to document machine failures. Both types of
information would be stored in the process hierarchy in QCAD. However, it may be more
appropriate to document the feedback information in another database that can be referenced by
QCAD to keep excess information from confusing the user. QCAD does provide a way to store
failure information, in a fault tree, which is relatively easy for a designer to use. The fault tree is

described in Section 4.5.5.1.

100

4.5.5. Miscellaneous

4.5.5.1. Fault Trees

The fault tree is separate from the other three hierarchies because faults, or reasons why
the design doesn't work, can occur anywhere in the set of hierarchies. A production process
operation may cause a hardware dimension to go out of tolerance, which will then interface
incorrectly with other hardware pieces, which then won't fulfill a desired product function. A
detailed list of faults can be very useful when trying to determine why the product doesn't work.

Fault trees can become complex very quickly, making paper fault trees long and hard to

decipher. An abbreviated fault tree for the clamp is in Figure 4.24. The dotted lines show where

more faults are listed.

clamp doesn't work

doesn't hook doesn't disengage light won't spin
over pipe pipe '
l N] 0
l 7
clamp cavity clamp mouth
is too small is too small
: I
l I
frame screw frame casting
is too long is too small
l
I I
casting shrank too much flash material
too much on inside of casting

Figure 4.24 - Fault Tree for the Clamp

In QCAD, each node has a fault list that describes causes for why that part would fail.
QCAD then has a command that will search the entire product model for fault data, correlate

them into a tree structure, and generate a report. The search process could also be limited by key

101

search parameters, narrowing the size of the generated tree, making it easier for people to
decipher.

The computerized fault tree can also help with subsequent preduct designs, especially if a
remark is stored every time a failure occurs in a sub-system. When the product design comes up
for review, a designer can call up the faults with the most remarks and study them to create a

more robust product.

4.5.5.2. Miscellaneous

In addition to finding fault attributes anywhere in the product model, other parameters
such as costs can be compiled, in the same manner, from anywhere in the tree.

In large product models, it can be difficult to keep track of all of the possible places where
an error might occur and what triggered those errors to occur. In QCAD, it is possible to specify
attributes anywhere in the product model that look for discrepancies and report errors. One type
of error could be that a screw doesn't fit into its corresponding hole. Another could be that a
manufacturing process was selected that the company does not own. The error locations work in
the same way as the fault trees in that they are distributed throughout the product model.
However, the error locations are linked directly to attribute values. Once a product model is
instantiated, the user can search for the locations with an error. Through the list of errors, the
user can locate the object that caused the error and look through the attribute values to discover
the cause.

The above discussions talked about the design process proceeding in a straight line from
start to finish. Even though this may be the ideal design case, in practice, there are feedback
loops. When backtracking in QCAD, the designer just has to move the cursor to the previous
node and resume working. If the designer is new or doesn't know what the previous node is, each
node has a list of both of its calling nodes to facilitate moving around in the design. For example,
the clamp barrel piece-part has two parents, one from the function hierarchy (swivel light) and one

from the hardware hierarchy (swivel mechanism).

102

After going up the hierarchy, the designer can get a broad view of the sub-system by
looking back down. The function node, swivel light, would show the user the frame, the barrel,
and the barrel set screw. The hardware node, swivel mechanism, wouid show the user the barrel
and the barrel set scrcw. These different views of the system also help a designer make changes
to interfacing parts, to help minimize mistakes.

Furthermore, QCAD is intended to be a flexible way to represent and design a product on
a computer. The product representation includes functional features, hardware features, and
process features. The flexible structure is expandable and customizable. The basic QCAD
framework was presented with several TQD modules. However, users should not feel restrained
to using only these modules, other modules that the PDT finds beneficial in design can also be
hung onto the QCAD structure.

Likewise, not all functions, hardware pieccs, and processes are critical and neced to he
designed using every available TQD tool. The modules described above can bhe selectively used.

as necessary.

103

Chapter 5

Discussion of QCAD Implementation

5.1. Overview

Chapter four defined a structure to enable the integration of total quality
development design methods with a computerized knowledge based engineering system.
The methodology includes a design process that the design team follows without the
assistance of the computer and a computer framework that supplements the design
process.

The first section of this chapter describes the implementation of QCAD in the
ICAD Design Language (IDL) and explains how both the clamp and copier products can
be used with QCAD. The second section describes insights gained from creating the
system and from modeling both products. The third section describes how a product

development team could use QCAD for design.

5.2. QCAD Case Studies

The QCAD system was developed on a Sun SparcStation 1+, with 64 MB RAM
and a 1.05 GB hard drive running SunOS 4.1.3. All programming was done under ICAD,
Version 4.0 running the Unigraphics II solid modeler, parasolids, Version 4.2.81. No
changes to the basic IDL program were necessary to implement QCAD, however, some
modifications would be necessary for a commercialized version of the system.

The IDL product models for the case studies presented in this section are stored
on the disk in the pocket on the back cover. Instructions for using the product models are
in Appendix A.

A brief overview of the most important ICAD concepts is given in Appendix B.

Both object oriented programming and IDL specific concepts are discussed.

104

As described in Appendix B, there are two methods of interacting with the ICAD
system: one through the programming language interface and the other through the
browser. As such, the QCAD implementation had two objectives: (1) make product
models easy to implement in the programming language, yet (2) make it easy to explore
product variations in the browser. In the initial stages of the research, the product models
were programmed in a specific manner, with limited parametric capability. As the QCAD
concepts proved viable for a specific case, the product model was reprogrammed to be
more generic, enabling more flexibile use of the product model. The generic structure is

described in Section 5.2.1.

5.2.1. Generic QCAD Structure

An ICAD product model organizes defparts into a tree structure, with a root node,
branches, and leaves. For the QCAD implementation, the root node 1s the QCAD defpart.
It organizes the highest level information in the product model. As such, the QCAD
defpart contains the selected function to be examined, the hardware embodiment of that
function, and the production process used to create that hardware. The QCAD defpart is
the foundation for the function, hardware, and process branches of the tree. These
branches are large and could be considered as trees in their own right. Chapter 4
described these three branches as hierarchies.

A fourth branch, stemming from the QCAD defpart is a miscellaneous defpart that
takes care of administrative functions for the product model. The miscellaneous defpart is
also the starting node for the fault tree, or fault branch in this case.

Figure 5.1 shows a QCAD defpart, with its four children, in the QCAD browser.
This figure displays the underlying QCAD structure without a product, hence no graphical
image is displayed in the graphics viewport, on the left side of the picture. In the figure,

the four branches are referred to as children, because only one defpart in each branch of

105

lDUD:O".—BNN":OBXML<UN "u.oxzm"uozunu'

\.\\

snowd| 235 T
oy

s 1250204
2 ...:.q..d.%
“ z;—:s«.y MOTA OTIYPNTY)
v PO
uf _ =
= o vo.0- 50 o0 o] vt][erve][svemiona][ovai wa] vewei] E{ﬂﬁ
H | e e e e e | e | = |
[/
d

(1222 235 orim] 49smoig avI0

Figure 5.1 - QCAD Browser
106

the tree is displayed. In all, five defparts are shown: the root, QCAD defpart, the total
system function defpart, the total system hardware, the total system process defpart, and
the miscellaneous defpart. Of course, these defparts are the beginning of the four
branches, as is indicated by the dots.

Although displayed separately, the four hierarchies are interconnected, as shown in
Figure 5.2. All of the hierarchies are coordinated through the QCAD defpart, represented
by the large rectangle. Each of the QCAD defpart's four children are represented as four
large boxes that are half in and half out of the QCAD rectangle. This signifies that the
QCAD defpart defines its children and passes to them some defining attributes. After the
information is passed down, the children become parents and define new attributes and
children. In Chapter 4, there is a discussion about iterating between the function and
hardware trees to further define sub-functions; and a discussion about iterating between
the hardware and process trees to further define sub-hardware. The arrows in Figure 5.2
represent this iteration.

The arrows going from left to right show that the hardware defpart gets
information from the function defpart and that the process defpart gets information from
the hardware defpart. The two arrows in the QCAD outline are directly managed by the
QCAD defpart. These arrows are at the total system level of the product model.

The arrows outside the larger rectangle of the QCAD defpart are not actively
managed by the QCAD defpart. The definition of the total system defpart guides which
sub-system defparts will be created. The smaller boxes represent the sub-system level of
the product model. Each sub-system is a child of the larger total system defpart. In object
oriented programming, each child inherits attributes from its parent, which in this case is
the total system defpart. However, in QCAD, as the curved arrows show, information

flows not only from the parent, but also from the previous design step.

107

QCAD Defpart

Function Hardware Process Miscellaneous
Defpart —P| Defpart — Defpart I’Defpart

i % Uy gy p vy |

Figure 5.2 - QCAD Defpart Interconnectedness

The function tree has information about both functions and hardware. Thus. it is
able to define its children without specifically referencing the hardware tree. The
hardware tree however looks to the function tree for its definition. The process tree looks
to the hardware tree for its definition. At the highest level, this definition is performed by
the QCAD defpart. At lower levels of abstraction, this definition is performed by the
corresponding function or hardware defpart.

The miscellaneous defpart works a little bit differently. The information stored in
the miscellaneous defpart, such as the bill of material and fault tree, can come from any
defpart in the function, hardware, or process trees. As such, all of the information from
the three hierarchies is passed up to the QCAD defpart and sent to the miscellaneous
defpart, as shown in Figure 5.3. In the figure, imagine that the function, hardware, and
process trees are several layers deep and that the information can come from the bottom-
most defpart up to the QCAD defpart and over to the miscellaneous defpart. The
miscellaneous defpart is half in and half out of the QCAD box because the information

processing is performed in the miscellaneous defpart, and not in the QCAD defpart.

108

Function
Defpart

QCAD Defpart

Hardware
Defpart

Process
Defpart

-

\ Miscellaneous
efpart

Figure 5.3 - QCAD Miscellaneous Defpart Interconnectedness

Function Defpart

¢ Function Matrix

¢ Function Net

¢ House of Quality

¢ Constraint
Attribute

o Fault Attribute

e Error Attribute

e Concept List

¢ Pugh Concept
Selection

e Concept Review
Matrix

Hardware Defpart

Process Defpart

¢ Design Structure
Matrix

¢ Product Structure
Net

¢ QFD Design
Matrix

e Hardware
Attribute

e Taguchi Attribute

e Fault Attribute

e Error Attribute

e Material and
Process List

e Materia! and
Process Selection

e Concept Review
Matrix

Table 5.1 - QCAD Defpart Contents

¢ QFD Process
Matrix

e QFD Production
Matrix

e Process Attribute

e Taguchi Attribute

¢ Cost Attribute

e Fault Attribute

e Error Attribute

109

Miscellaneou s Defpart

o Numeric Constraint
Attribute

o Textual Constraint
Attribute

¢ Bill of Materials

e Total Cost

e Error Location

e Fault Tree

Table 5.1 lists the design process components that were included with each type of
defpart in the QCAD system. This table is comparable to Figure 4.5, which shows an
overlay of the design process on the QCAD structure. The table is provided to show the
defpart type where design components and attributes are defined. An attribute is a
variable that takes on a value. A component refers to a design method that involves
several attributes. For more information on a specific component or attribute, see Chapter
4 or Sections 5.2.2. and 5.2.3.

Furthermore, Table 5.1 lists a wide variety of design components and attributes to
be used in the system. These capabilities had to be implemented in such a way that they
would not be a burden to the programmer. As such, the QCAD system uses mixins,
functions, and methods to assist in developing a product model.

A mixin is an easy way to customize a defpart. The defpart takes on all of the
nroperties of the mixin, but can modify those properties if necessary. Each defpart in the
function, hardware, and process trees uses a function, hardware, or process mixin
respectively. These mixins ask for user inputs and perform the calculations for the design
processes listed in the table above. Each defpart is customized with specific information
used by the mixin. The mixin provides a structure for adding design information to the
defparts. The design process steps in each mixin will only be used if the result from that
design process step is requested by the system or by the user.

The mixins provide a solid base on which to build each defpart. However, some
customizations cannot be created with mixins alone. Each child in the three hierarchies is
selected from a set of possible children. Each child has different parameters that it
requires for its definiticn. To facilitate the selection of children for each hierarchy, the
QCAD system uses functions that compare the child's name to a list of desired children. 1f
there is a match, the child is created and the information is passed down. [f the child is not
on the list, it is not created. For example, if there are ten possible children for a hardware

defpart, the child selection function will be used to search a list of hardware designated by

110

the function hierarchy to create only the children that are both on the list and defined for
the hardware defpart.

Lastly, methods are used to assign constraint and Taguchi attribute values to
hardware and process attributes. The method is actually defined in the hardware and
process mixins, which cuts down on the clutter in the actual hardware and process
defparts. Both the constraint and Taguchi attribute lists are specified in certain locations
of the product model, which the methods access. The constraint information is collected
from the function hierarchy and stored in the miscellaneous defpart. The Taguchi
attributes are stored in the individual defpart. Once the appropriate list of attributes is
found, the method compares the designated attribute to the list and, if found, assigns the

value to that attribute.

5.2.2. Clamp Product Model

This section describes the clamp product model developed in the QCAD system.
Chapter 4 has a description of the clamp product and presents many examples of the
design methods using the clamp model. Figure 5.4 shows the QCAD browser, with a
picture of the clamp on the left and the four inter-connected hierarchies on the right. The
top branch of the tree is the function tree; the second is the hardware tree; the third is the
process tree; and the last is the miscellaneous tree. On the actual computer screen, each
tree is a different color.

The levels of abstraction go from left to right, with the total system level on the
left and the piece parts on the right. The part feature hardware nodes are not shown.

The clamp product model in QCAD was expanded from a hardware only product
model. A QCAD model does not have to be created in this way. However, it is assumed
that many ICAD users already have working hardware product models. This was a test to
make sure that the QCAD system could be retrofit on top of existing hardware product

models.

111

CV9as YTTdxy ty-ys drpaug s YIJOH D) -s
II[AG

_ U N IAYIpY Y TEIITNRT! P00)

~—
SNOAUD | [3ISTH
134508~ | 34.00g-fing
o e SO
- 4B 1-2 [quassy,
:w.uum-ﬂmw- [a4.0g-fing
[o4-do}
B[OH-[1140,
30H-M3.125- 34108 -au Y04
-w..humtumuo:osy

131408-9.
A313G-3u0

ajoy-do)
3joH-| :&V -~
S0H-#3.135-M0.) 3-3UTUI0H Au
ajoy-doy
3IOH-11 T.ay

3 [OH-M3 115185~ [3140G-3U TYIOH
M0 4 4~} SO)-PUDS

SN0 4-)-OH

dun [J-3 [qQuassY, — L1 1
Jaysop- (3108

nau2G- Tﬁ.&ny

WS TuoYIaN-BUTP [oH- 4B T T

"3.135-335~- 31108

—
1940089
M3.13G-3U0 14
—
awMnI4-)
a-dun)

#3135~ [a108-pPICH
0s-p ozy
WOTI-pLoH
184008-P1OH~—__
WOT1-[3ATNS
Ra125-38G- [21008-PlOH~—~—__

IYOF1-%4307
M3.435-240 1 4-PIOH~__
adyd-o0]-amdiag

aun 13-} soddng
&Euzo..m:u:yr
e o
IYOT - 43303y 1. .B«maﬁ__! noTA doy

HoeIg 10100 L SIADITAPTHSITYdODRSTPON 4,JUTAd 3ZTS3H AON[DAT MATALIPI ajopdn |SnuaHumoprInd | jopay | o
jooy3asay jooddn 300413 MoUQSpUDdX] 3SUBPUOD S3ADAT UALPITYD A1A[3A [00IPPY NOAIE aAPTH MOYS | jopupn o

Ipayanys Buyyyan dosmoug Q-\UO\\&

112

Figure 5.4 - QCAD Clamp Product Model

Figure 5.5 shows an example of geometric parametric capability. This is simulated
by using only the hardware tree to create the change. In the hardware tree, there are
formulas that calculate the height of several components based on the size of the pipe that
the clamp will fit around. The graphics viewport in the figure shows what happens to the
height of the clamp when the pipe diameter is changed from 2.1 inches to 4 inches.
Compare the picture of the clamp in Figure 5.5 with the picture in Figure 5.4. On the
right side of Figure 5.5, a modifiable attributes inspector window is shown in the middle of
the hardware tree. The window displays all of the attributes, associated with the clamp
defpart, that the user can change while the product model is instantiated. Note the new
value for the :max-pipe-diameter attribute.

In the QCAD system, there are two ways to change the :max-pipe-diameter
attribute, depending on the desired effect on the rest of the product model. The maximum
pipe diameter attribute is a numeric constraint. It was initially defined in the function tree.
If the user wants to change the value of that attribute for the entire product model, then it
should be changed in the function tree. If the user wants the change to affect only the
hardware and process trees, then the change should be made in the hardware tree as
described above. In Figure 4.4, the QCAD structure, it is easy to identify what parts of
the product model will be affected by a change in another part of the product model—a
change in one object affects the definition of the objects below it and to the right.

Figure 5.6 shows the House of Quality for the clamp. The matrix is stored in the
position theater lights function defpart. It appears on the screen through a modifiable
attributes inspector window in the same way that the maximum pipe diameter attribute
was displayed in the previous example. The window in the middle of the screen shows the
contents of the QFD1-matrix attribute. The QFD matrix is a list of lists. As displayed, the
first list is the voice of the customer with importance ratings; the second list is the

engineering characteristics; the third list is the relationship matrix; the fourth list is the

113

102135 YT 1dx3 -y
huol N3TAYIPY oy

drpun- th-ys
UNOH - Tl

Y i-ys

Paagas fipoay

JTO-00T
A[0H-11T740
3 | OH-MD 175-W0 1 4-3U TYI0H
afon-doy
AOH-1[T40 C —]
3 OH-R3 135~} 35~ [3.4.408-3U TYd0H
3uD 13-} SD)-puUBs
34D .1 4-D-NOH
dun 1)-31quassY,
43Ysop-[a1a08]
naJds-[aa.ng X
WS FuoyIaK-BU TP [oH-JYB T T .
#a.35-}as-[alu0g 4
/ "
[94408
M3 IIG-0 14
W0 A4~ H 1
[0S-3044-AN IAS-3-DW) 19 [QOTS TPON-ISTT-553204d <> | %
pPmoqy] : A3}aWDTA-IN0A-UTH <db>|’
005 POCT-UTH <W> [
8°0 :42}IUDTA-WAV-IPTS-XON <u>f:
0°t :l43)auntg-adid-XxoH <M>f.
G'0 :3ZTS-POIH-MI.IIS-WNAS <H>] -
v :536p3-poay-maIIS-auwn1y bk
Pmoqyy I XTAI0H-3NIONAYS-ubYsag <w>
[m&nmnuawznwamxuwmu_w..hua Amuv
L
S93NgT433V SIPHIPH O
adun [

V72N
N

M3 1I5-[34408-P [OH

MOA-PIOH
Wor1-proy
[34408-P[OH~—___
WOT1-1aATmS
Sbm-wmml_ﬁbmuu OH~——__
T1-4207
awguwlwsh.._lﬂ—c:lf/
adyd-0]1-a.miag

aun 1 4-3} soddng
ad Td-uo-Buoi X
ad1d-43A0-300H
s3ybY1-43)03y1~UOT} ¥SOd

[—— i 113/ | aaTA doj
[453003 w000: 5310d0 1964 Tpou | [autaa][0z sn |[330n1043] [na1a1 vpa] [230pdn] | _ms.a.._!i::.._l
[100urasau][100udn] [100mr 25 | [0 sa3pund xu__om.aoﬁ.u__gd__ﬁt_ﬁﬁ_EEE..I

[1p22m5 Burasao] dosmoig Qv I0%

lu.o:uz"az<m:n—«um "nmn:u “u-zuu“xoxxmn.<uw ”u.on::m"uozu.-uc'

114

Figure 5.5 - Parametric Clamp Instance

LOoxITW OCOZ LG

*ocl, 7~ ,Sd1d uo Buey 03 @240y4,) (**° ,Butuued wouy YBTT SdOIS, .6, .9SEQ O SPUNOAS RTPTTOS.

m3a.135-aun 1 4-hng.
ajoy-doy
AIOH-T1T40
3 [OH~-M312G -0 1 - TYI0K
a ~£|g.—. —]
A[OH-T11¥4a
3[DH-13135- 335~ |31 IDG-BUTYI0H
WD 1§~} SD)-PUOS
BUD U 4-D~0H
dun 1)-a [quas sy,
J3YSDM- [a4004
M3 AIS- 344008
wsjuoydan-butp jon-ybY
M3115-}35- [a4.008
13411089
f3.135-3uW0 14 B D

] ((.S -/+ QI-uT 06. .01 ~/+ B3P 09E. .4T-3J 02. .OT 00S. .Q £. ISI1)
({00000 4SI) (00000 ISIN) (1 1-0001SIY) (DO O DO IS (00000 ISIT) ISIT)
((600001SI7) (060004SI) (DE6DOQISI) (D006 § ISI) (00 00 6 LSIT) 1SIT)
(0 .uﬁd 3503134 0} 3303,
0 .suod 61T S33.63p, | ATy 93405 [OUCTID04, | .dwod fiq pray spunod, |- ,adyd uo Buby 03 320y, 1SIT)
(.S i1y P13y w&« - «¥- .09€ suod JHTT.

«G. JBuyuod wo.y JuBTT Sdoys. .S. .850q 0} Sandas AIPTIos. .¥. LATISD3 3did J3A0 SHOOY. 1SIT) ISIT)

40185,
.0I. .ATTS¥d od7d J9A0 SHOOU,)) :XTIIOH-|PID <w>)

LOTWEHUOXCALTI~NONIIQWAOIL

“0. .AT15e9 S4Td 18A0 00U,)) KTIIOH-IPI0 <> |
Pray Spunod, .edid UD 3uey 03 90404,)) IXTIDH-SId <M> .

T-%307 3dId-01-33N23S 3dId-A3A0-00H) 3ISTT-UOTING <> Lo
313HUI0-3dId-NUHS) : ITISNNN-S U ITNDAY- JAUDJSND) <k>

v, sy KfipoN

1 14S3d <> |

PUNOQY] IXTAJOH-UOTINNG <> [

TN :53daduo)- [DUOT) IPPY amﬂv
2L

S3}NGTI33V 9[QOTIIPON _ O

SIYBTT1-121031-UOT} TSOd

po

AITA doj

_ N&Sﬂ.ssu:z&bm:uo:: EEE__uzu..&__maa._?u__..a;u%u__asu&___n......:iS:E_E

[ormms sorvm] 19smo1g Y0¥y

Figure 5.6 - Clamp House of Quality

115

correlation matrix; and the fifth list contains the target values. This window allows the
user to change any part of the matrix. The importance ratings for the voice of the
customer are stored nominally in the :qfd-matrix. A different attribute stores the actual
voice of the customer in order to facilitate programming and to simplify use by the end
user. The product model also calculates the column importance ratings by multiplying the
voice of the customer importances by the values in the relationship matrix. The final
importance ratings can be viewed by the user, but not changed.

Figure 5.7 shows the parametric capability using the QCAD routines in ICAD.
This example shows the use of QFD and concept selection matrices in QCAD. By
changing a few customer importance ratings the entire product changes. This is an
example of the type of dramatic change in hardware that is possible with the QCAD
system. Before, the hardware was a clamp, now it is a floor mount. This change
happened at the total system level as a result of a change in customer priorities. Changes
are also possible at the sub-system and piece part levels.

This past example is an example of a sensitivity analysis. The voice of the
customer importance ratings were modified and the hardware changed. There are a
number of different attributes in the QCAD system that can create a concept change,
which is different from a parametric value change, like that shown in Figure 5.5. Among
the attributes that can affect a concept change are the voice of the customer importances,
the QFD relationship matrices, the concept selection row weights, the concept selection
matrix relationships, the material and process selection matrices, and the concept review
matrices.

The miscellaneous defpart creates the opportunity for another type of sensitivity
analysis, based on total cost. The cost is determined by the material and process used to
create and assemble hardware pieces. All of the cost attributes are defined in the process
tree. The total cost attribute in the miscellaneous defpart adds up all of the costs in the

process tree.

116

© T atas o dxy cu-ys dupoug cyst YIBH DY ge
NUSY NATALTIPY . Y - YN iy - NN S| hpoay

((S .suod JBTT S8a.bap. ISTT) (§'¥ .PT3Y 83J0) TOUORYVIOJ. ISIT)
y .331A3p Aq pray spunod. 1SIT) (¥ .JOOTJ 843 wo 31Q03S. IST) (0 .adid uo 0y fsba. ISI7) iSIN)

.u015S2,
39P.) (G'P JPTOY 90404 TRUOTIRIOL,) (§'p .80TASP Aq PTY SPUNOd,) (b ,JOOT4 SY3 U 9TGRIS,) (0 .8dTd o Buey 03 Asea,)) :S3IUDYIO0MI-IOA <u>

[i1e2u00] (13233

Snyop ngpaty KfipoN

-OL.BQM«WGUIUR_
[34.108-0H
W10 30 [d-3%0H /
34oddns-apys-aou
}40ddn5-ap1S-oH
Asbg- 400 4-34OH
JUNDKH-J00 | 4-3 (IS SY,
4AYsSoy-[alang
naa15-[asog
uSTUDYI3R-bu TP ToH-u6 T
194108

s} Jaddns-apts
m«..ogmnwsmy

win43oid
asng-40014
M3.13S-[aa.08. u_o.«. Jootd
aRor-p o:V
WOT1-pIoH
134.008-PIOH~—___
e L
«iﬁ-aba&_my
Y6T1-327[1q03S
S3yby1- 49303y 1-uoT} §S0d

uo 97qe3s,) (0 .9dTd Uo Buey 03 Ased,)) :SAIUD}IO0UI-IOA <u>]
((L¥6d-TTN .0u0u,)) :53dadU0)-[OUOTITPPY <u> [w] Fi
oL |a]

S93NqQTJ33V S{PTIIPoN O m

po

S PITA OTUINTUY
TSS...&::S&S.TSE& __Sawﬁns_.a__mnav.au__&Em.—__&b:ﬁ__uﬂ_ﬂ_g_ﬂwﬂ._m«ﬂ_@aF

4
m,
W
-}
]
E)
3l
2
v
d
S
A
.}
[
H
all
3
-]
1
b
n
a
3
a
S
J
I
H
d
v
4
9
-]
3
L]
o
d

[1p23095 Gursazo] 1osmolg Ay 2044y

Figure 5.7 - Floor Mount

117

Figure 5.8 shows an example of the total cost attribute. For an iron sand cast
clamp frame, the clamp has a total cost of close to $29. The inspector window under c-
frame on the right side of the screen shows that the frame material is iron; The process
tree identifies a sand cast frame; And the inspector window under the miscellaneous
defpart shows the total cost.

In Figure 5.9, a different material and process is selected and the total cost goes up
to about $77. For this sensitivity analysis, the material and process selection matrix was
over-ridden by the user. In the top right corner of the figure, a choice attribute box shows
the user what materials and processes can be selected. In this case, the user chose the
steel machining option, resulting in a larger cost. Note that the process matrix now shows
a machined clamp frame instead of a sand cast frame.

The frame pictured on the left side of the figure did not change with the new
material and process selection. It could have changed. There is a way to link the
hardware to the selected material and process, however, for purposes of demonstrating the
functionality of the QCAD system, it was not deemed necessary to create a detailed
representation of the hardware. More detailed hardware can be developed in the ICAD
system.

Figure 5.10 shows more detail of the miscellaneous defpart. The function,
hardware, and process trees are condensed to create room for the miscellaneous defpart
inspector window. In the top of the window is a list of the bill of materials for the clamp.
All six parts are listed there. The bill of materials is one list of a set of routines that search
all or part of the function, hardware, and process trees to collect information for a report.
For consistency, all of the search and report generation routines are located in the

miscellaneous defpart.

118

PUROGU YIPTH
1350)-[0j0L
unoqy :s300y
punoqy 13S11-300Y
oy :43404-3dYd
2A0QY 210y

ﬁ!ﬁ [{CERI O
43YSDM~- [34.408-
na L5 _m..BmumnﬁV
usyunYyIN-BUTP [0H- Y6 T 1-8 [quassy
A3 125-1a5- [a440g-fing
[94.40g-3.
3175340 4 4~
ajoy-doy
AOH-[1T40
310H-M31I5-3D 1 4-U TYIOH
a[oy-doy
S[OH-T1T4d
3 [0H-M3 115-335- [34408-IUTYIOH
aunJ4-}sn)-puog
U0 1 4-I-NOH
dun [)-a [qQuassy,
Jaysop-[alaog
M3 UI5- (34008
WsTuUoYIK-6uTp [oH-WB T
R3135-}35- [3.4.008
134108
R31I5-a0 34

NOYI : [DY4330H A:Ivlmy,
1 :2sdoy <
Mg, JSSSUOTYY Swedy, ,3uNT0A,)) IXTIIDN-SAON <M:

200qY 210)y
Sa3nqI33V STQOTITPON D_
W U3-D

A
v

}Ia1aG J1d11dxg 1y-ys
N8| NATARIPI @

drpgy -y
IV T T I Y] .

RILLT!
} 39145

regs| . -
) hpoay

s -g—u
—_—
s3yb¥1-1a303y1-uoty ¥sod
£ EHEI MRTA doy
#£58A0a M0 .4 : sITYdo oA § Tpoy _ 5.:&__a#umx__25_2“.___:23%1_3..3:___S...!__..S:E_E .

[someses] oo [soomes] oo [ssapons [somoon] [o] eveio] [1oiops [o] e v

ln.o::um ”UE(&:HUM ”aun:u"o—zuu”::oxumn.<uw”uoz:w”uczn.mo|

ipajyaoys buryyan

19smolg QYO0 44y

Figure 5.8 - Sand Cast Clamp Cost

119

1Is105 yId%3 tH-ys dupun Hys v Yol -y
NUOH N9 TAYIPI. 1y~ ynjud il Caas

Pmoqur P

SLEVBYERD' L. 1}50)-030)
Pmoqyy 3004)
punoqul :3ST1-3004|a) r
pmoqyy :y3a0d-33atd[w 2
2n0qy 220

< NOTIVNISINIWGY># #0}3adsul (O
SNOAUD | [3IS TH,
1aysopM- [310a-fing
:o..ﬁ#m...ﬂm:gy
WsTUoYIaH-BUTP [OH- b T1-a [quassy,
A3135-}35- [314ng-Aing

j84140g-a |
3.13G-2u0 1 4 : n
ajoH-~-doy .

3joH-11740
B10H-M31I5-DMD 1 4-3UTYI0H
atoy-doj
SI0H-11740 N 1
3 [OH-M3125-}a5- |3 .1.10g8-3UTYI0K : — 1 1
AUD 143U TYI0H X
AD A 4-D)-HOH
dun -3 quassy,
{|SDM- |3 4008
MaLd5- 134908
WS TUDYIaN-BUTP [OH- 6T
M3 .135-}35- {34008
131109
MO IIG-ND A4

ONINIHOWW-T331S

ONLLSYO-310-NOJT

[oNILSVD-aNYS-HINTHNTY

ONILSVO-ONYS-NONT

AITA do)

(3U0 350043) UOT}TUTJE] SS90 PUD DTIAIDH D 333135 :
ET T) po:

[i1eu0a] [idian] [ivdadov] _i.:c.___w:ﬂz__..:S_Eu__..a;«%u__m«%&_EE
[ipoymns Gurram] losmolg avI0%y

LoXWX U< IHOUMNAWOADO || ~awWWl oA COVW | ILOEZNHOOZ LMY

Figure 5.9 Machined Clamp Cost
120

o 128195 J1201dXT y-ys - drpum ni-ys - Yni-s1Eys |
NUap. NITAYIPY Y Ynulw g S RS TS) I [oO | fipnay
—— e

ﬁ._u?.u&:e.....
1 1ows-00} -Butuade-y3ynoy
BHuo1-00]-us yunyday-buynias
1 [puS-001-h}1AD)
Td-43A0-%O00H~3usa0q
] 40H-}uSI0Q-0WD [~
IN_2340443 L 1

0007 :5S34}S-PI3TA-MaUI5
€£02542/68P88L64°0 :48}3UDTQ-NA LIS
pmoqy} ; SApPON-SS330.4d4
240QY 210py
'B0-HS INVHOIH-ONIGTOH-IHOT >4 40} 3adsux Awm_ = ...A
34"

]

ISPV 0O
1SUOTINI0]1-10143) ..

(1IN SOSI: 3LTHM: 30700-3WN43dIMY) :s[o4jucd-holdsia) -
pumoqyy :3xa)-Sudua . Tnbay- Jawo} sn)-pag rduwad]’
10-3dTd-KUWS) 1 DT IuNN-Suaud 1 Tnbay - sauwo} sn)-paf fduad) .
DH0T-NIHM-SNIdS-1HII 34Id-33A0-M00H-INS300}) ‘DUaIPITYoL -
CCADDIND-001-037000)) :guaPITyYo].

COOPIRRAI-JES TIRS-00L-ININIIO-HINOW)) :2u3pTTUdL -
DI0T-NIHM-SNIJS-IHIIT 3d1d-33A0-HOOH-1INS300)) : juaspITyol.
punoqyy : sajuadl -

L s v O
:SIDT4A304-J0- | —nwm |
L

<0EG52 NOYXIVHISININGY>H J03dadsur 0O
SNO3UD | [335TH

duo[D>-ajquassy

duni)

s}yb11-133pay1-uoy) 1sod

| ARSI E 113 /| AITA doy
| &san0a1m0.10: 537yd0 1003 Tpou | | £3ut4d | az1sau || ajonioaa] [matai 13| [a10pdn]| EE&.:..S:E: iopau | F

[300u3asau][300wdn] [300u335 | [0 105pUndxa] [25uapuos] [saanat] [uap1iuo | [a151ad] | 100190V] [oa.a |[on] [mous [iopun
1p33.1035 Butiiao] i9smoig 9\00§

IQ.OIUG"UZ<G.IHUU!”QUD:UIIO—KNN“SOSX“&‘UU”LOZZW "UOZIA.HUI

121

Figure 5.10 - Miscellaneous Defpart

A little farther down in the inspector window of Figure 5.10 is the error locations
attribute. As described in Section 4.5.5.2, there are attributes throughout the product
model that signal errors. In the ICAD system, it makes more sense to instantiate the entire
product model before looking at product specific errors. The alternative is to stop the
product model instantiation process to signal the error. However, once stopped, the error
must be fixed and the model reinstantiated, which can be a very time consuming process
for large product models. Addiiionally, letting the model fully instantiate facilitates
parametric exploration of the product model, by letting erroneous instances be created.

The following is an example of how the error tracking notification system works.
In Figure 5.10, an error is identified by the error-locations attribute. It signals that the
error is in the light holding mechanism defpart. An inspector window is opened in the
error-locations attribute that looks at the light holding mechanism defpart. After some
exploration of the attribute values, the error is found. The barrel screw diameter is larger
than the hole that the barrel that it fits into. The screw is .8 inches wide, whereas the hole
is .5 inches wide. A knowledge of the product model indicates that the large bolt diameter
is caused by the small value for the yield stress. Now that the error has been identified, it
can be corrected. Note that it is difficult to find the problem by just looking at the graphic
picture and that some error indicator is necessary.

On the bottom, right of Figure 5.10 is the start of a fault tree for the clamp. The
rest of the tree runs off the bottom of the screen, but can be scrolled into view. The fault
tree is created by linking fault data embedded in the three hierarchies of the product
model. The miscellaneous defpart collects the fault attributes and organizes them into a

tree structure.

122

5.2.3. Copier Product Model

The clamp is a rather simple product, good for describing the QCAD methodology
and the computer implementation. However, most products are more complex than the
clamp, with more parts, more sub-systems, and many more interactions among the parts
and sub-systems. Even part features are affected by the choice of geometry and material
for other interfacing parts. The idea of this case study is to show that the QCAD
methodology works for a complex product.

The copier example has the same functionality as the clamp model, even though it
has roughly 1000 times as many hardware piece parts. The same methodology was used
to create the copier as the clamp. No rework in QCAD capabilities was necessary to
implement the copier. However, since it was the second case study using the ICAD
design language, the code is a little more compact.

Figure 2.2a shows the total system architecture for a Xerox 1075 copier, which
makes about 70 copies per minute (Clausing 1994). The copier has four main sub-systems
associated with: (1) positioning the original document to be copied, (2) positioning the
blank sheet to receive the image, (3) transferring the image from the original sheet to the
blank sheet, and (4) providing support for the first three sub-systems.

In QCAD, the copier was modeled two levels deep. The first level is shown with
graphics in Figure 5.11. The dots under each heading of the tree on the right side of the
figure indicate that that node has children. In the graphics viewport, each sub-system is
represented by a box that contains all of the sub-systems and piece parts that compose the
assembly. More detailed graphics are used at lower levels of abstraction. Figure 5.12
shows both the first and second level sub-systems for the copier. Due to the large tree
size, the browser window was modified to show three columns of the tree. The first
column shows the function tree; The second column shows the hardware tree; The third
column shows the process tree. Due to its length, only part of the function tree is shown.

There are no dots under the hardware and process tree nodes, because no further

123

) . ' ~ n _ adxy tyeys drpun twoye o o
) M t: Y IR TS 1 LN

m:o.ﬂb:wu ™

}20ddng- 4ayde)- —a:m SV
wa} shis-6uy |puoy- sadog-a —atm SV
}TUN- 134 U0 .1) -3boM Y - _..:u SV

L@.U.Btlu:wsuanlm
_iwmm<

f.o&:m ..w«aou
Eﬁmmbﬁ.uﬁ: ..&E
1UN-13j suD s Twmczu

43 | puoi- acm..:uon
..mqaoo

b&ou «B&:m

siaays-uo(g-}Jodsun.iy
abouy- h&g »%

Sjuauniog- [outbyo- t&u.s:

fido)-v-axou
po

>__«w

S (V)

.
™

™

AITA JTISETI|

|n.o::uz”ux<a.:uum "Oulﬂ:uIID—SUU”SOCMU’E‘UU"I&OGSM ”UOZL&HUI

ipajaoys buyyjan

P T P EEI'EEI
[comiosor[vmwin[sootes [] [smpirs [oo] 5] evo] o] e o] s}]| &
1osmoig Qv 2044

Figure 5.11 - QCAD Copier Product Model

124

ILO:UE ”UE(&:#‘UU‘I”OWG:U"i-“ldl-hl”:°¢¥U’Iﬂ.<uwIIEOE:W"UOZLHUI

10 45 £ :
L I e it L
8] | =28 fedsciibanci e LIRT
i | 11 §E§Z§§§ huli .éﬁg@@z%ff;ﬁi%%%if
] s i
— /SS?.EE%‘%% 2%‘222222?22 222222222222@22222222
L |2 1P === 5;
A|E mW E;
g ;E "”2 3 _-....-..-.:-.3
= | o 1, 10
LRI T B S
[l S s
s 50T A L T
[J= WP "=

MM[A@ml "oelete"amdren"moves||cmnse|

[Pul 1 downeruss 1] [pdate] [Editview] [Eval uate] [Resize] [Print7 |

{ J[er]

4l

i : By . 3% g.%

Lol i

TEERERIE S U RIS R

E?EBEEEE5355538555;*55%Sszsgéfséfsgéfséz’:iz
H §§b/§%§pm «gf/}/:/ g.‘/ HEHEEEEEEE,

= - :W

=3

|

r
T
eady)

% QCAD Browser
2]

Figure 5.12 - Copier Product Structure Tree

125

hardware or processes are defined for those trees (except for the feeder). However, there
are dots under the function tree nodes. Even though no further functions are defined for
the function tree, the dots represent the ability for the user to add sub-functions to the tree
and thus augment the product model.

In addition to modeling the high level sub-systems, the paper feeder sub-system
was modeled in detail. Figure 2.2b shows the paper feeder for the Xerox 1075 copier.
The QCAD model is shown in Figure 5.13. For ease in understanding the screen display,
only the hardware tree is shown. Additionally, each of the top level paper feeder sub-
systems are several more levels deep. However, for clarity, the multitudes of piece parts
and part features are not shown in the tree. The piece parts and part features are shown in
the graphics viewport, which has been changed to shuw four different views of the paper
feeder.

In the hardware tree in Figure 5.13, only one paper feeder and one paper feeder
tray is listed. However, the 1075 copier has two paper feeders, each with its own tray.

To add these two sub-systems to the copier, the user only has to add two functions to the
function tree. Of course, this is only a partially accurate statement, since the function
defparts and their related hardware and process defparts must already exist in the system.
In this case, the feed sheet and store sheet functions are already defined. The user only
has to add them to the function list under the transport blank sheet function.

Figure 5.14 shows the result of adding the two functions—a copier with two paper
feeders. The function tree displayed on the right side of the figure, shows two functions
for storing blank paper and two functions for feeding sheets. To add the two additional
functions, the user modified the :function-list attribute in the modifiable attributes
inspector window, shown directly beneath the transport blank sheets function node. Note

that both feeder sub-functions are identical. Even though the hardware tree is not shown,

126

e
g-mum“!

~—

137003 [QUaS SV,

3} Joddns- 13 1do)
foag- yndyno- sxysyur
waoaus- Jausuta
fio.1)-yndyno- 43ddn
Y303ys- [D3L0Z ¥ J0H- saddn

43} saauy-hdo)
YIDWYS -} IXF-M L

YIoays-pajun |S-n} 1

YID3YS - [DIUO2 T JOH- 43N0)
puag- b TY- 4am0
PSS 10373 S9N 1 A0IL
1-fo.u - sadoy,

apIno- 1adog AITA BT MITA Fu04y

W .. I)

B \.."f@.

DS

Vioy-p 03
uayshs-}10paa3
uayshs- ot 2003
uay sfis- oy - 520k
40}330u00-21.J04-3AT 40~ _eg/:m
But oog-ue1 5
$a3014-3 000
ﬁumﬁ-&mﬁﬁ.wt&g

~—
:E_-bumsmuumonu

—~—
43 pudi- Juasndoq
431d0)
fdad-y-axoH o AITA OTUOMTL| "aTA doj

_ ___ podb
£5300970 10 5374do 1o Yoo || 55&__u:uoz__wE.Eu__c;«Bu__SS&=_u.i;!u:a_E
(][s o] oo v vl o] <]]]

1payos Buriyan dosmoig agvoo \\\

Iuo:mx ”U¢<&=~U¢n"OUE:U"P-“NU”SOE¥U’0-<UU"U—O¢:&B "UOZ&HOI

Figure 5.13 - Paper Feeder
127

lﬂ.O:NE ||u::<n.:~uw||num==u”n—zuu":ozzmn.<uu”uoz:m”uozu.nu|

. PIagpas jongdxy oty oys dupoan gy [FRRTEIY I BIFRY
ol B0 TAIp Y. oy o e G - hpoay

%0} 108550 13V~ }33y5-ap D

——_8
ﬂéﬂm@gcgms_ .

~—~—
5} 404~ 13pad 4- } soddns
m«ﬂ!ﬁn«w..xm_ms..-

~—
$)33YS- Juanbasqns-p 1) ay
133s-ap Ny

—

123ys-dn-yd1d

—
830 4- [DWION-}ID}S-3PTAO 1])
_2-13aus-pasay, |

/
S 40d- 43pa3a 4- } soddns,
$33ays-} sodsuoa |

—~—
sjaays-juanbasqns-panyay
www..ﬁ.wumﬂu:u

—~—
¥3ays-dn-yatd
3340 2- [DUION-}I0}S-IPTAC A
1-133ys-paa 4
2-4adod->un [g-310}5
} - Jadod-ur 1§-3.9035
R24T1TNN, 99001, 9104 PAISTH.)) XTIIDH-|PID <> i
1 :352d <>
W <9704 PIDYTITNW, 970 PIBYSTN,)) IRFIJON-SI4 <>}
PUnOQuy IXTIIOH-UCTIIUNG <M> |-
Y-301S T-Y3Md-INUE-3401S) (3STI-UOTIIUNY <> |]
PUnoQu] 1 DTSN~ SJUINDI ITNDIY- 30 SND <i> [a)
(C(1MW-TNN) ,Bucu,)) 5303300~ [DUOT) PPV < [+
oL
53} v a [u]

B s L e e

4
L 2

AITA JUOL4

L AITA OTUINTL]

ﬂ%:%iglllnllln_iEEEP&.@__@_@E.
e o e e e e e e e e

19smoig Qo044

ipayoys Buryyan

Figure 5.14 - Copier with two Paper Feeders
128

the graphics viewport on the left side of the figure shows identical paper feeders. The
second feeder is positioned below the first feeder.

The hardest part of modeling the copier was creating and positioning the hardware
components. The hardware and positioning for the clamp was relatively simple, since
there were only six pieces and about two levels of abstraction. The copier on the other
hand is about five levels deep, with positioning of parts occurring at different levels of
abstraction. The hardware geometry and positioning is inherent of the ICAD system and
does not affect the QCAD framework other than QCAD is written on top of IDL.

An interesting relationship between function and hardware can be seen by
comparing the function net with the hardware definition for a particular function. The
paper feeder connects to the paper tray by resting on two bearings. These bearings allow
the feeder to swivel to facilitate jam clearance and to enhance paper delivery. The swivel
mechanism can be casily seen in figure 5.13. In the lower right section of the graphics
viewport, labeled “Right View,” two bearings can be seen extending beyond the length of
the feeder. These bearings connect to the top plate of the feeder and rest on the paper
tray.

Figure 5.15 shows a close up view of the front bearing assembly. The graphic
viewport is split into two sections: one which shows the full front view of the paper
feeder support plates, and one which shows a close up view of the bearing assembly
attached to the top plate. The front bearing assembly consists of a bearing and a shaft.
The right side of Figure 5.15 shows the function net for the connect to system bearing 1
function, which defines the front bearing assembly. The function net is read, “The nature
of how the function rotate freely is satisfied depends on the nature of how the function
attach to feeder is satisfied.” In this case, a solid cylindrical shaft is used to attach to the

feeder, and a bearing is press fit on the shaft to enable rotary motion.

129

[n.o::ux”uz<a.:~uu:”auc:u ”.—zuw"zozsmn.<uu IIEOK:U’”UOZEHUI

0} 23UU0)-33 20 4-3AT 4G [OF

bupmsa |

Hyon-uogiaung |

AITA doy

sidos @O
CL9PES HARE-NOILINND e

oy uop L]
<26 1 -ONTHVIE-HILSAS-01-133NN0D>H 20}3adsul [jfe]
oL

s3)01d-3 1047}

uayshs- o1
uayshs-mo1- 43

Pas T pdx g oy gse drpaagy neys
CunoR

DU CETAL TN Y

H

unop_rysft
yripas). hpoay

AITA WBTY

ASTA OTJMTI)

P P) T e e e y
«eox«wmme:3&3:«8««8:!?5:0!&?&0_—gu__em.i_g__uam_on__ _S§<=|iﬂlﬂ=wlﬁ.=||_l

ipajmys Buyyjan

lesmoig QvI0%y

Figure 5.15 - Front System Bearing

130

20}33UU03-31 00 4-3AT X1 [0

:3aN-uopyaung)

<6EG0S HARII-NOILINND e

<GZ6YY Z-ONIHVIE-HILISAS-O1-1DWN0I>Y

i

Do naoy 031ALIPY Y YRR

Poarps 3T Idxy cyeys T drpuin it
[RUE 2] U .

ASTA Y3TY

520030 .10: 53140 504 1pou] [aus o] ezvsau] [avoniona] [wors] [sropen [smwmopt 1na T jopoe]
7353.&__«83&__«Suuwm__!B&..B&a__...nis.cu__ga__ié.g__wﬁ_wa_EEEEE

|n.o:u¢”uz<n.:~ozn "GUB:U II!—EHN”:QKMU)L<UN ”h.Qﬂ:U)”UOZI&HU'
] ' ”
-

ipa3aoys bButyyan

1esmoig a0y

&)

Figure 5.16 - Rear System Bearing

131

Figure 5.16 shows the rear bearing assembly, which looks completely different
from the front bearing assembly. The function net for the rear bearing shows three
interrelated functions. Two of the functions are the same, but the third function, provide
clutch access, changes the nature of how the attach feeder and rotate freely functions are
satisfied.

The belts and rollers on the paper feeder are driven by a central drive belt system,
such that all of the paper motion inside the copier is synchronized. The paper feeder uses
a clutch to engage and disengage from the centralized drive belt. Only two contact points
can be used to enable the feeder to pivot. As such, the clutch mechanism goes inside the
rear system bearing assembly. The bearing in this case sits loosely in the upper plate for
free rotation; Several washers and a clip hold the bearing in its axial position; and A large

hole inside the bearing provides room for the clutch mechanism.

5.2.4. Larger Product Models

The copier model was an exploration of the use of QCAD for the design of a
complex product. This section describes some considerations for even larger and more
complex product models.

Based on the scale up of the clamp to the copier, it stands to reason that the
QCAD methodology is capable of handling even larger products, such as a car or an
airplane. Boeing currently uses the ICAD system to assist with airplanes design (Gregory
and Mcllroy 1990). However, some coordination of part names will be necessary, so as to
not cause confusion with identical part names for different parts, especially if they are at
different levels of abstraction.

Proper programming in IDL is based on creating generic defparts that can be
called from anywhere, if given the correct inputs. If the system is created in such a generic

manrer, it is possible to build large products out of smaller sub-system models.

132

Another consideration for a larger product model is the amount of information that
is stored and collected in the system. For instance, the fault tree is composed of attributes
collected from the three product hierarchies. Suppose a model has over 1000 defparts,
each with one fault attribute (usually each defpart would have more than one fault
attribute). Cempiling a full fault tree would result in about 1000 nodes on the tree. This
would be crazy for an engineer to look through to find the solution to a problem. A better
idea would be to only collect information from relevant parts of the system. The user
could enter keywords that the system would search for in collecting fault data and only
display the relevant data. This keyword search routine would also benefit the total cost

and error location attributes.

5.3. Observations from QCAD Case Studies

The next several sections examine the effect of the integration of total quality
development and knowledge based engineering through the use of the QCAD system.
Observations about the advantages and disadvantages of the integration are made from the

perspective of both the design process and knowledge based engineering.

5.3.1. QCAD and TQD

This section reflects on the use of a QCAD knowledge based engineering program

with the total quality development design framework.

5.3.1.1. QCAD Improvements over TQD

At a high level of abstraction, QCAD improves over the existing design process in

three areas:
1. Storing design information

2. Standardization
3. Exploring design concepts

133

The ability to store information is one of the strong points of the QCAD system. It
can store and retrieve large quantities of many types of design information. Piles of papers
and notebooks no longer need to be lost in file cabinets and storage sites. They can be
stored on the computer. Of course there are limitations to unrestrained information
storage, and these will be discussed in Section 5.3.1.2.

One of the by-products of storing the TQD design information in the computer is
that it gives the reasoning behind certain design decisions. The TQD matrices show what
the original designers thought ahout the relationships among different criteria, metrics, and
design options. This information, along with the function specifications, hardware
geometries, and process definitions, shows the original design intent. For future designers,
this information will assist in streamlining the design and adapting the product to new
requirements. The designer will be able to answer questions like “What does this gizmo
do?” and “How are we supposed to make this?” Additionaily, for new designers on a
project, the system can help familiarize the designers with the product and with the design
process used.

When designing a large project with hundreds of parts, a company will most likely
break the product into sub-systems, assigning each sub-system to a product development
team. We have seen that unless a design is truly modular, each sub-system will interact
with other sub-systems (Wu and Azarm 1992, Ulrich 1992). These interactions can be
coded into the QCAD product model for retrieval by other groups. That is, as a design
progresses, PDTs can load information about the design into a central computer that
processes the information, makes sure everything is compatible, propagates error
messages to appropriate design teams, and disseminates information about constraints that
PDTs need to look into.

The computer not only stores information, but requires the information to be
stored in a certain way. The QCAD knowledge base is composed of engineering

equations. These equations are only coded in once, standardizing the way products are

134

designed. For example, if a company has multiple formulas to calculate the length of a
beam, one formula has to be selected for use in the computer. Alternatively, each formula
is only used under certain situations. The resulting output is that all of the parts are
designed using the same criteria.

Furthermore, once the design formulas are entered into the system, every time the
program is used to calculate a parameter, the same formula is used. There are no human
errors in running the calculations, other than when entering information or interpreting the
results, as long as the formula is entered correctly. The computer also calculates the
parameters quickly.

One of the ideas behind the QCAD system is to be able to store and select among
many different design possibilities, including sub-functions, hardware, and processes. A
small data base of these defparts is stored up for the first design. For the next generation
design, the same defparts are used, but a few defparts are added. In this way, the design is
based on the original design intent, but incremental changes are also possible. After some
time, a large data base is collected and many variations on the design can be possible.

In addition to just entering the company's product into the QCAD structure, a
competitor's product could be modeled in the system. This expansive modeling of
products assists the company in completing and recording a detailed competitive
benchmark, while expanding the number of design options.

Once an entire product is input to the system, sensitivity analyses can be performed
at several levels of abstraction. Current computer design systems, through parametric
design and variational geometry, change hardware components to see different design
configurations. With the addition of more abstract design levels, more radical design
variations can be seen. Changes in importance ratings or in perceived QFD interactions

can change the nature of the design, radically, providing stimulus for future, inventive

designs.

135

Furthermore, any sub-system that can be created to serve a function can be
implemented in QCAD. When added, each sub-system must fit in with the rest of the
product model, to ensure functionality and standardization. Each hardware piece is linked
to a function through the concept selection matrix. After a while, many sub-systems will
have been built up to provide even more flexibility in the design.

Another benefit can be seen when the design is in the prototype stage. After
testing the prototype, engineering changes may be needed. QCAD is set up to call
hardware based on the function it performs. If a change needs to be made to one sub-
system, that part's interactions with other pieces can be found in two ways. (1) The
hardware piece shows its calling function; that function can call all of the hardware pieces
that satisfy it. Each hardware piece can then be changed. (2) The hardware piece also
shows its immediate parent sub-system. That sub-system can call all of its children for
modification.

Along these same lines, QCAD is object oriented. Identical hardware pieces can
be created from the same defpart throughout the model. If an engineering change is more
than just a parametric variation, the defpart can be modified, which will implement the
change on all like pieces throughout the product model.

QCAD can also be useful farther down the product development process in
production and customer support. If there is a problem with a product, the design history
is stored in a computer for easy retrieval (this view is shared by Sriraman et. al. (1990)
who have implemented a QFD system in an object oriented environment). Additionally, if
fault information is coded into the product model, the computer can provide a structured
view of how to solve a problem. Notes could also be added to the model showing where
and why the sub-systems failed. This kind of knowledge can be very useful for next

generation designs.

136

5.3.1.2. QCAD Difficulties with TQD

Despite the advantages described in the previous section, there are some significant

difficulties when using QCAD with the design process:

1. Design rules must be known
2. Lots of programming
3. Mind numbing numerology

The first on the list states that the design rules used in QCAD must be known. Iiis
hard to program a computer if you do not know what 1o program. Unfortunately, this is
quite often the case in design. The general idea for the product exists, but the questions
often asked include, “What hardware design satisfies that function?” and “How can it be
made?”

There are a couple ways around this difficulty. One is to only program the parts of
the design that have known design rules. However, this information is the same as that
currently used with computers, limiting the usefulness of the QCAD system. A second
alternative is to use the QCAD system to store generic, or text, information until design
rules can be established for that particular hardware configuration. This second option is
more like the actual design process, in that information is gathered and stored, and then,
after sufficient information processing, portions of the design are solidified. The QCAD
system allows for the initial information to be stored with room to add in more detailed
information.

The second difficulty involves the amount of programming required to store a
product model in the system. A lot of design information can be stored in the QCAD
database, but that requires a sizable programming effort. Currently, most ICAD users
only model the product hardware and some of those models require considerable
programming effort. QCAD requests the user to include information about functionality,

processes, and alternatives for each, in addition to the hardware programming.

137

This issue should be explored from three different perspectives. The first
perspective is that the programming effort required is based on my subjective
observations. People who are more experienced with IDL may consider the programming
to require little additional effort. They may even see the QCAD system to require less
effort, since the old product model can be used with new design concepts. The new
product model can be stored with the old model.

A second perspective on the programming effort refers to how the information is
stored without QCAD. Perhaps there is little effort in storing the additional information in
QCAD. Currently, the information is stored in several different places: the QFD matrices
are stored in a QFD program; the geometry is stored in a CAD system; and some
calculations are done on spreadsheets. QCAD consolidates all of this information in one
place, making the programming effort look more time ccnsuming, but really just
consolidating all of the effort in one place. Moreover, since the information is in one
system, the designer always knows where to look for information. With the system, the
information is available for the designer to use, which may not be the usual case.
Additionally, the information can be linked together to provide further benefits.

The third perspective is that the programming effort is specific to the ICAD
system, which is geared toward modeling hardware. QCAD provides a different product
modeling philosophy. Using the same interface for both philosophies may be increasing
the effort to model a product in QCAD. Additionally, while creating a user interface for
QCAD, there is an opportunity to design an interface such that information can be stored
without programming.

For now, the best way to address the programming concern is to start with a small
product model and build up complexity as necessary. Once the information is in the
system, it can stay there, and even more information can be added. One idea for where to

start, is with the portion of the model that provides the most customer satisfaction.

138

Starting with this part of the model makes sure that that part of the design receives the
proper attention with respect to the other sub-systems.

Furthermore, the QCAD system is only as good as the information stored in it. If
the information is outdated, then the system will supply old information. Many times a
system is started with the best intentions, but is not kept up for some reason or another
and information is lost and the system falls out of use. This question of updating the
system becomes even more of an issue, when dealing with design information. Most
designs continually evolve into a final product, which means that at every step of the way,
the information in the computer will have to be updated.

Another variation of the programming concern is that programming requires a
different skill than the creativity required in design. Constantly switching from
programming, to designing, to interfacing with the browser, breaks the designer's train of
thought. For example, the designer could be using the system to get rough cost estimates
for different hardware configurations. Somewhere in the middle of the task, the designer
could discover that a hardware configuration is missing and need to program it into the
system.

A different approach would be to use the hardware nodes to describe the indicated
hardware. This solution uses no geometry statements and no positioning commands. It
just describes the hardware with written statements, which permits flexibility in selecting
hardware, without the complexity of detailing the hardware geometry and positioning.
The nature of this kind of solution moves QCAD more towards the conceptual design
domain than the detailed domain.

Lastly, there is an inherent danger in using a computer for design concept
selection. Computers refy on numbers and make all decisions based on numbers. A
potential solution may make sense according to the numbers, but not according to
common sense. One area of the system where this problem could occur is in the

sensitivity analyses, where the design changes, with the importance ratings. One design

139

may not even fulfill the design requirements, but could be selected anyway, because that is
what the numbers indicated. An alert designer can watch out for this mind numbing
numerology and override the selection process if necessary. However, even an alert

designer could get all tied up in the numbers and lose track of the design.

5.3.2. QCAD and KBE

This section reflects on the use of a QCAD design process framework with

knowledge based engineering programs.
5.3.2.1. QCAD Improvements over KBE

At a high levels of abstraction, knowledge based engineering design programs gain

two benefits from the QCAD structure:

1. A framework for expanding the range of use of
traditional KBE software
2. A structured method for planning a knowledge base

Figure 5.17 shows the current range of use of the ICAD software in design,
superimposed over the QCAD structure. Most of the applications are in the hardware
domain. There are some ICAD applications at the total system level, however most are at
the sub-system, piece part, and part feature levels. This hierarchical distinction depends
on what is meant by the total system level of the product. One person's total system can
be another's piece part. Thus, the hierarchical distinction in this case is meaningless.

Of more importance are the relatively few applications in the function and process
domains. A few systems have been developed using ICAD for high level functional
specification (Oulette 1992). None have used ICAD for detailed functional specification.
Additionally, a few systems have used ICAD for detailed process definition (Florusse and
Clausing 1992). None have used ICAD for high level process definition. In these cases,

the level of abstraction is defined relative to the abstraction level of the hardware tree, not

140

Sinjesy ey

4@@ “— W Heq soaiy
R

o) G Wweysfg-gng
- A.L/) — - Emuw\aw lejo
/ L
w._m“mEm‘_mn_ w._m“mEmgmn_
wwmoo;&

141

relative to their individual trees, which make the hierarchical distinction possible. Both the
clamp and copier case studies define the product from high level functions to low level
processes, traversing the entire range of the design.

The QCAD framework also provides a method of structured planning for
knowledge based programs. By following the total quality development process, the
knowledge based product model can incorporate a focus on customer satisfaction, an
emphasis on robust design, and the ability to benchmark competitive products.

The TQD process follows EQFD, which is a systematic method to document
relationships among parts of the design. By thinking of the relationships, thoughts are
stimulated not only on how the part should be designed, but also on what information
should be captured in the product model. This rigorous analysis of the design attempts to
surface concerns about modeling the product while the PDT is meeting in a room
together, instead of several months later, when one or two people are coding the product

into the system.

5.3.2.2. QCAD Difficuities with KBE

The one main drawback of using QCAD with knowledge based engineering
programs deals with the amount of ambiguity in a design. The design process does not fit
precisely into categories. Sub-functions are specified after the hardware is selected. Some
hardware pieces are defined with process selection. A design does not fit neatly into the
objects on the computer as outlined in the QCAD structure. This creates some ambiguity
in defining the product model. The QCAD system attempts to resolve this issue by
straddling design information between boundaries, but the possibility for confusion does
exists.

One of the main differences between the QCAD structure and its implementation
in IDL deals with the hierarchical structure. The QCAD structure emphasizes layered

hierarchies, where each part of a layer can talk with any other part of the layer. In the

142

layered structure, design components at one level of abstraction interact with components
at the same level, at the level above, and at the level below. Parts of the design that
perform different functions or that reside in different sub-systems also interact. Some
design systems can operate in this way, however they are restricted to a few variables and
quickly become cumbersome to use (Wu and Azarm 1992). Even though a layered
structure is desirable, the QCAD system in IDL had to be arranged in a tree structure with
referencing chains.

Additionally, in the QCAD structure, most objects get information from two
different places: One type of information comes from a higher level of abstraction; The
other type of information comes from the object immediately to the left of it, at the same
level of abstraction. Although there are systems that can handle multiple parents, ICAD is
set up to handle one parent. This may be easier for product models that are concerned
only with the hardware. However, when functions and processes are considered, more
than one parent is desirable.

When inheriting down the ladder of abstraction, a specific reference does not need
to be made from the object to its parent to get information. The object just requests the
information as an input. In systems with single parent capability, information that does not
come from the object's parent or ancestors, must be specifically referenced. If the design
is dynamic, the specific referencing method may run into difficulties, especially if the

referenced objects do not exist.

5.3.3. Summary

The last two sections commented on the integration of the design process and
computerized knowledge based engineering. The major comments are summarized in the
table below. To interpret the table, read the column heading followed by the row heading.

For example, the first box in the top left corner describes the QCAD benefits from

knowledge based engineering.

143

QCAD Benefits from QCAD Drawbacks from

Knowledge | 1. design information storage 1. design rules must be known
Based 2. standardization 2. lots of programming
Engineering | 3. design concept exploration 3. mind numbing numerology
Design 1. framework for expanding the | 1. ambiguity of design.
Process range of traditional KBE

2. structured method for
planning a knowledge base

An examination of the table above reveals some relationships among the benefits
and drawbacks of integrating the design process with knowledge based engineering, as
learned from the case studies.

Across the rows, it is clear that both knowledge based engineering and the design
process have different emphases on design. Knowledge based engineering prefers using
known, static design rules, that are easy to program. The programs are good at storing
information that can be used in later stages of the design. The knowledge based programs
store information in predetermined formats, for use in analyses, perhaps by people that
didn't even enter the information into the computer originally. Alternatively, the total
quality development process provides a framework and a set of structured tools to help
guide the way through the ambiguity of design. Although not specifically mentioned in
relation to QCAD, many of the TQD tools promote teamwork and alignment of individual
and group goals, which help a group of people focus on a path to follow in product
development.

Another observation about the rows is that some of the items in the benefits
column are inextricably linked to items in the drawbacks column. For example, the
knowledge based engineering program stores information, however, that information must

be representable in a known format before it can be entered into the computer. The design

144

process, on the other hand, provides a framework for the design, but it is a loose
framework that varies with different design situations.

The linkage of the benefits and drawbacks for the rows signifies that a middle
ground is necessary for a beneficial integration of the two design methodologies. Designs
that are constantly changing may not be the most suitable for use with the QCAD system,
nor would designs that are conceptually static. In the former, the design changes would
be so varied that the computer would not be able to handle the complex variations in the
design. In the latter, the design has been made hundreds or thousands of times and the
customer's requirements have evolved to the point where all of the design requirements

are known, such that the up front design work is not necessary.

5.4. QCAD in Product Development

The first three sections of this chapter discussed the implementation of QCAD in
IDL and show the concept's feasibility. The sections described two case studies, a clamp
and a copier, and projected potential implementation concerns for larger product models.
Based on the two case studies, the third section discussed observations about the
integration of computers and quality methods in product development.

From that experience, this section describes several uses for QCAD in product
development. The nature of the tasks performed change as the product flows through
development. Although no explicit distinction is made in this section, the style of
computer use is different in conceptual design, detailed design, and incremental product
improvement. A further distinction could be made between initial designs with QCAD
where no product model has been stored, and subsequent designs, where a product model
is already in the system.

QCAD use is discussed in the next two sections: the first section describes a new
product being developed in QCAD, and the second section describes additional ways to

use QCAD when incrementally improving a product. The distinction is arbitrary, a design

145

team can use any of the methods described in either section whenever they think the
method will help develop a product.

The overall theme, in the next two sections, is the human design process being
supplemented by the computer. QCAD mixes people's abilities to be creative and to cope
with uncertainty with the computer's affinity for structure and ability to store and retrieve

information.

5.4.1. QCAD Uses in Product Development

This section describes how a product development team could use the QCAD
methodology to develop a product. At the start of a product development effort, the
design team uses the product development process to explore the design problem.
Without the use of the computer, the team explores the voice of the customer, develops
engineering metrics, and obtains some understanding of the problem. The computer can
then be used in this process to reflect on models used in the past to understand the design.
The computer uses a function net representation, described in Section 4.5.2.4, to display
the interactions among the product functions.

Once the team has an understanding of the problem, the team generates hardware
ideas. Some ideas may already have been generated during problem exploration and are
documented in the computer for use in this stage of design. To generate solutions, the
team looks both inside and outside the group for ideas. The team should go out and look
at competitive products to stimulate ideas. The team can also solicit ideas from the
computer, by choosing different functions, and looking at the associated hardware options.
In their solution exploration process, the team may decide that they need to go back and
reformulate the problem.

At some point, the team will have generated a sufficient number of ideas to
perform Pugh concept selection. This matrix is done without the computer, such that the

tearmn can become absorbed with the problem and be free to develop new concepts

146

(Clausing 1994). When filling out the matrix, some additional information may be
necessary to help evaluate ideas. Some of that information is stored in the computer and
could help in completing the matrix.

After finishing the matrix, and selecting a concept, the team records the matrix in
the computer. The final concept ideas are also stored. Everyone on the team can see
what ideas were explored in concept selection and can use this information when working
on the design.

From this point, the design team has several options of how to proceed. They can
further explore the hardware and manufacturing process; they can explore more detailed
hardware embodiments of the product; they can explore sub-functions; or they can explore
a combination of all three. If the team chooses to continue exploring functions then they
continue as already described, with finding the voice of the customer, creating an
understanding of the functions, and selecting a concept. The computer is used to jog new
ideas, store concepts, and help evaluate concepts. For sub-functions, the design team will
also have to pay attention to the higher level hardware configuration.

A second option is to look at how the hardware will be manufactured. In much
the same way as a hardware concept was chosen by looking at a set of functions, the
manufacturing process is chosen by looking at the hardware to be fabricated. The design
team starts the hardware exploration by completing a QFD design matrix. If the same
house of quality engineering metrics were used with previous product designs, then the
design team can use the product expectations already stored in the computer.

As the design team explores the hardware, possible manufacturing processes may
come to mind. These are recorded in the computer for later use in material and process
selection. The team can also get process ideas from comments that were stored in the

computer from previous designs, and from the set of processes recorded in the process

hierarchy.

147

For material and process selection, one set of criteria comes from the QFD matrix.
Another set of criteria is devised by the PDT using the group's knowledge. Other criteria
can be found in previously completed matrices, stored in the computer. The design team
completes the selection matrix in the same manner as Pugh concept selection, using the
computer to provide information to help fill in the matrix and to store the completed
matrix. After selecting a process, the team can continue by further defining the selected
process, by designing more detailed hardware, by exploring the next level functions, or by
doing all three.

Lastly, in the detailed hardware design option, QCAD provides a rigid framework
for defining and analyzing product components. A design team should first sketch out the
design on paper. As the design freezes, bits and pieces of the hardware are modeled into
the computer. In the best case scenario, many of the hardware pieces are already defined
in the system and the design task is composed of assembling the right elements together.
In aless developed system, hardware components will have to be defined before they are
used. Note that the more information in the product model, the more flexible and
powerful the model.

Since the computer looks for clearly defined hardware, as the team progressively
freezes the design and enters the design into the computer, the QCAD system surfaces
problems that would not normally be found until later. For example, in the computer, all
of the interfaces among different sub-systems and piece parts must be clearly defined and
consistent. The design team must resolve the inconsistencies before continuing with the
design, preempting downstream problems.

Once a consistent, product model is defined, designers can use the computer to
explore the design. As mentioned in Section 5.2.2, the designer can modify the design
parametrically in two ways: (1) by just changing the dimensions, and (2) by changing the
importance ratings and relationships in the matrices. These tools are used to help the

designers further understand the design problem and to explore potential solutions for the

148

design. In addition to the parametric desigh capabilities, the product model, or parts of
the model, can be sent to other programs, such as FEA, for analysis and optimization.

Other tools in QCAD that help the team explore the hardware design include the
product structure net, the Taguchi system of quality engineering, and constraint
propagation. The product structure net, as described in Section 4.5.3.1, is a method for
representing interactions among the hardware parts. The Taguchi system, as described in
Section 2.6, includes an experimental method to observe the interactions among hardware
parts. Constraint propagation is done by the computer, which stores the cons'raints that
designers should be aware of when designing, such as limitations on material properties
and dimensions, and indications of analyses to be performed. The constraints were
previously input by the design team.

After a design is defined, it goes through a prototyping cycle, to show that the
design works and that the manufacturing processes are suitable for production. In this
period of time, some problems will be found that require the design to be changed. The
computer can assist here too. The design team can change the design of a hardware
component where it was initially defined and be certain that the hardware definition will
change everywhere that hardware piece is used in the model.

If in testing, the product does not perform a function as well as it should, the
design team can look at the function definition in the system to find the root cause of the
problem. The team can start with the function and look at all of the hardware that satisfies
that function. Additionally, the team could look at the fault tree to find areas where the
product could be failing.

Throughout the development process, QCAD helps the design team organize and
use information. QFD matrices can be stored throughout the system. Notes can be left to
remind people of work that needs to be done, and comments can be left with reasons why

a design was defined in a specific manner. All of the information is in one place, in the

149

computer, making it easier for designers to find and use the information in product

development.

5.4.2. Additional QCAD Uses for Incremental Product Improvements

This section discusses ways that a product development team could use QCAD for
making small revisions to existing products, that were previously developed using QCAD.
The ideas discussed in this section can be combined with the ideas discussed in the last
section.

The first question asked when incrementally improving a design is, “Where to
start?” The team will have many different ideas of what can be done to improve the
design. One idea is to redesign the product to decrease the cost. Other ideas are to add
features or to improve the technology.

These statements are at rather high levels of abstraction. In order to get more of
an idea on what to change, the team should explore the computer model in at least one of
several ways.

One way is to look at the function hierarchy and ask, “What functions are
represented, but do not contribute directly to the primary funciion of the product?” That
is, “What secondary functions are created when a certain hardware configuration is chosen
over a different configuration?”

Another way to get ideas on how to change a design is to look at the hardware
parts that perform a similar function, but look different. The product cost can be reduced
by standardizing the different parts. A twist on this idea is to look at the hardware made
by the same process and to standardize the hardware design to simplify the process
operations.

Ideas for improvement can also be found in the design methods used in defining
the design. For example, the roof of the house of quality shows tradeoffs among different

corporate characteristics. Improving one tradeoff will increase customer satisfaction in

150

the product. Another place to look is in the concept selection matrices. Good ideas that
weren't chosen may be feasible now, given advances in technology.

Changing ideas in the product model is relatively simple, since the system is
modular. Instead of altering the currently defined model, a designer just adds new a
design variation to the system and augments the appropriate selection matrix to
incorporate the new design. If it turns out that the change is undesirable, then the system
is easily restored to its prior state.

Furthermore, adding new designs, instead of replacing old designs increases the
knowledge base in the model. In addition to hardware, both functions and processes can

be added to the product model to increase design flexibility.

151

Chapter 6

Conclusions and Future Work

6.1. Summary and Conclusions

Conventional KBE connects engineers to engineers.

QCAD connects customers to the factory floor.

These two statements express the intent behind this thesis. That is, to provide a
framework for using computerized knowledge based engineering design systems with a
product development process that focuses on quality, cost, and delivery. Characteristics
of the development process include emphases on customer wants and needs, competitive
benchmarking, and the Taguchi system of quality engineering.

This thesis outlined a Quality Computer Aided Design (QCAD) methodology
consisting of: (1) a design process framework and (2) a computer program for use with
the design framework. It is intended that a multifunctional product development team use
QCAD to assist in developing both new and variational products from function
designation to hardware definition to process specification.

The design process consists of a collection of tools that help a product
development team understand the functional requirements, synthesize hardware and
process concepts, and select feasible alternatives from a set of concepts. Some of the
tools include Enhanced Quality Function Deployment (EQFD), Pugh Concept Selection,
fault trees, and robust design of experiments. Many of the methods used are qualitative in
nature and require human creativity. Thus, the design methods are first completed by a
product development team and are then coded into the computer.

The computer both stores and manipulates information entered into the system to
help a designer explore a design concept. Both the design methods and the information

stored in the methods are assigned to a function, hardware, or process category. These

152

categories are broken down further into total system, sub-system, piece part, and part
feature abstraction levels.

Every product is different. As such, it is at the discretion of the PDT to decide
where to enter information into the system. The PDT may decide that the best use of
QCAD is to optimize the geometry of a part using finite element analyses of the part
shape, obviating the need for function and process hierarchies. Or, if a small sub-system is
being modeled, total system information may not be necessary, and the product model
contains information ranging from functions to processes and from sub-system to part
features.

The QCAD system was implemented in the ICAD design language (IDL). ICAD
is the leading supplier of commercial knowledge based engineering software worldwide.
IDL is a super set of common lisp and is geared toward modeling products in the browser.
The browser is the ICAD user interface, which has both a hierarchical and a geometric
representation of the hardware, and many commands to manipulate the product model.

Both an easy to understand clamp model and a more complex copier model were
developed in the methodology. These case studies not only tested and helped refine the
methodology, but also provided insight about combining total quality development with
computers.

There is a strong synergy between computers and quality design. KBE is a vast
resource for storing information. It standardizes product information and provides the
capability for accelerated what-if analysis. The design process provided a framework and
procedures for coordinating design information in the computer and a structured metbsd
for organizing and planning a product model. Additionally, there is increased opportunity
to use the information since it is all stored ir one place.

Even though there is a strong synergy between computers and quality design, there
are several drawbacks to the integration that have strong repercussions for designers. The

ambiguity of the design process does not lend itself to being structured into any one

153

methedology. Design is ambiguous by nature. It takes both analysis and human creativity
to develop feasible solutions. The computer is good at quantitative analyses, but to cope
with ambiguity, the QCAD system requires programming effort beyond that required by
geometry focused KBEs (The increased programming effort may be offset by increased
availablity of information and the decreased programming effort in other software).

Furthermore, any time computers are used in design, the designer must be careful
of mind numbing numerology. It is easy to get caught up in running analyses and making
all of the numbers work. However, a designer should never lose sight of the overall
picture.

Overall, QCAD provides one leap forward to the integrated use of computers and
quality design, by expanding the knowledge based product model to include functions,

hardware, and processes.

6.2. Future Work

The QCAD system, including both the design methodology and the computer
implementation, has several opportunities for future work, which range from design

process improvements to computer specific improvements. Five areas for focus are
presented.

Function tree development
Function matrix and function net
Information represented

User interface

Layered hierarchy implementation

A

The QCAD framework defines three intensely, interrelated trees: a function tree, a
hardware tree, and a process tree. The hardware and process trees are relatively straight
forward to create. ICAD usually tells its customers to set up the hardware tree in reverse

of how the product is manufactured. Function trees on the other hand are less familiar

154

product structures. The function trees for both the clamp and the copier could take on
several different forms depending on how the functions are grouped. Some exploration is
needed to determine the best organization of the function tree for different types of
product models.

To add to the confusion, the lower level functions and hardware parts are defined
by iterating back and forth between the function and hardware trees (Clausing 1994).
Different hardware embodiments that satisfy a given function will create different lower
level functional requirements.

A nominal function tree structure was used in this thesis to investigate the QCAD
methodology. However, variations on constructing a tree structure should be explored.
The ideal QCAD methodology designated a layered structure, but tree structures were
used to make the methodology compatible with IDL. A structured methodology for
creating function trees would advance the QCAD methodology, as implemented in ICAD.

In QCAD, the functions in the function tree are directly connected to specific
hardware that satisfy that function. The functions are diagrammed using a function net to
help specify the hardware concept. An example of the relationship between the function
net and the hardware is given in Section 5.2.3, describing the copier product model.
Different functions and combinations of functions result in different hardware. It seems
likely that different function diagrams would also generate different hardware ideas.
Function structures (Pahl and Beitz 1984) and Bond Graphs (Paynter 1960) are two
among several function diagramming systems that have been developed to chart out
functions. Further exploration of the hierarchical function tree structure, used with IDL,
may be necessary for experimentation with function ¢ 'agramming methods.

QCAD is both a design assistant and a design history system. It can be used to
explore designs, run analyses, and store product specific information. Initial customer
concerns were addressed. The QCAD structure is flexible and can accommodate many

types of information that a PDT would want to use in the system. However, little

155

customer feedback was solicited (ICAD did review the proposed system). What
information do designers want in a quality design system, and how can that information be
integrated into QCAD?

One reason for seeking little customer feedback on the QCAD concept is that its
current implementation in IDL makes the concept hard to understand and system difficult
to use. An improved user interface should be created to enable users who are unfamiliar
with the product model to manipulate the model and to learn from the information stored
in the computer. Appendix C presents several ideas for a user interface, at the conceptual
level.

The QCAD system, as implemented in IDL, consists of three interconnected tree
structures, which is a deviation from the originally specified layered hierarchy. A more
accurate implementation of the methodology in a compater environment that can handle a

layered structure would enhance the flexibility of the product model.

156

References

Akao, Yoji. Quality Function Deployment: Integrating Customer Requirements into
Product Design. Cambridge, Mass.: Productivity Press, 1990.

Algor, Inc. ViviCad Manual. Version 11 Pittsburgh, Penn.: Algor, Inc., 1993.
Asimow, Morris. Introduction to Design. New Jersey: Prentice-Hall, Inc., 1962.

Baiiares-Alcdntara, R. “Representing the Engineering Design Process: Two Hypotheses.”
Artificial Intelligence in Design '91 (1991): 3-22.

Berg, John. “Computer Implementation of the Improved Product Development Process.”
Mechanical Engineering Master's Thesis, Massachusetts Institute of Technology, 1988.

Cadence, Cadence User Guide. Version 4.2.1. San Jose, California: Cadence, 1993.
Chen, Aihua, Brian McGinnis, David G. Ullman, and Thomas G. Dietterich. “Design
History Knowledge Representation and its Basic Computer Implementation.” Design
Theory and Methodology - DTM '90, ASME DE-Vol. 27 (September 1990): 175-184.

Chung, Jack C.H., and Martin D. Schussel. “Technical Evaluation of Variational and
Parametric Design.” Proceedings of the 1990 ASME International Computers in
Engineering Conference and Exposition 1 (1990): 289-298.

CIME Staff Report “CAD Follows New Scripts.” Mechanical Engineering 111, no. 11
(November 1989): 62-67.

Clausing, Don P. “Concurrent Engineering.” Proceedings of the Design Productivity
International Conference (1991).

Clausing, Don P., and Stuart Pugh. “Enhanced Quality Function Deployment.”
Proceedings of the Design Productivity International Conference (1991).

Clausing, Don P. Total Quality Development. Fairfield, New Jersey: ASME Press, 1994.
Cross, Nigel. Engineering Design Methods. New York: John Wiley & Sons, Inc., 1989.

Dixon, J.R. “Designing with Features: Building Manufacturing Knowledge into More
Intelligent CAD Systems.” Proceedings of the ASME Symposium on Product and Process
Design 1 (1988): 51-57.

Drake, Samuel and Samuel Sela. “A Foundation for Features.” Mechanical Engineering
11 (November 1989): 66-73.

157

Eastman, C.M. “Recent Developments in Representation in the Science of Design.”
Proceedings of the 18th Design Automation Conference, ACM, IEEE (1981): 13-21.

Edwards, John S. Building Knowledge-Based Systems: Toward a Methodology. London:
Pitman Publishing, 1991.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala.
“Organizing the Tasks in Complex Design Projects.” Design Theory and Methodology
(September 16-19, 1990): 39-46.

Feigenbaum, Edward A., and Pamela McCorduck. The Fifth Generation: Artificial
Intelligence and Japan's Computer Challenge to the World. Reading, Mass.: Addison-
Wesley, 1983.

Finger, Susan, and John R. Dixon. “A Review of Research in Mechanical Engineering
Design. Part II: Representations, Analysis, and Design for the Life Cycle.” Research in
Engineering Design 1 (1989): 121-137.

Florusse, Leendert B. and Don P. Clausing. “A Detailed Framework for Quality Function
Deployment Phase 3, Process Engineering.” LMP working paper. Massachusetts Institute
of Technology, December 28, 1992.

Ganeshan, R., S. Finger, and J. Garrett. “Representing and Reasoning with Design
Intent.” Artificial Intelligence in Design '91 (1991): 737-755.

Garcia, A.C.B., and H.C. Howard. “Building a Model for Augmented Design
Documentation.” Artificial Intelligence in Design '91 (1991): 723-736.

Gregory, Jack and Dan Mcllroy. “Tool designers work to rule.” Engineering. 230, no. 3
(March 1990): ACE15-ACE17.

Griffin, Abbie and John R. Hauser. “The Voice of the Customer.” Working Paper, Sloan
School of Management. Massachusetts Institute of Technology, 1991.

Hauser, John R. and Don Clausing. “The House of Quality.” Harvard Business Review
(May-June 1988): 63-73.

Head, George, Charles Pietra, and Kenneth Segal. The AutoCAD 3D Book. Chapel Hill,
North Carolina: Ventana Press, 1989.

£

Heatley, Lynn C. and William J. Spear. “Knowledge-Based Engineering Design at Xerox.’
Artificial Intelligence in Engineering Design 3 (1992), v3.

Hu, David. Programmer's Reference Guide to Expert Systems. Indiana: Howard W. Sams
& Company, 1987.

158

Hunt, John E. and Mark H. Lee. “Towards a Knowledge-based Design Assistant.”
Engineering Applications in Artificial Intelligence S, no. 4 (1992): 275-287.

ICAD, Inc. The ICAD System User's Manual. Version 4.0. Cambridge, Mass.: ICAD,
Inc., 1993.

ICAD, Inc. About Understanding Knowledge-Based Engineering. Cambridge, Mass.:
ICAD, Inc., September 1992.

International TechneGroup Incorporated. QFD/Capture “Windows Version” User's
Manual. Milford, Ohio: International TechneGroup Incorporated, 1992.

Ishii, Kosuke and Krizan, Steven “Computer Aided Life-Cycle Design.” Aerospace
Product/Process Design Interface 912220 SAE International SP-886 (1991): 79-86.

Ishii, K. and L. Hornberger, “The Effective use and Implementation of Computer-aids for
Life-Cycle Product Design.” Advances in Design Automation, DE-Vol. 44-1 (1992): 367-
374.

Jackson, Greg. “Shareware for Engineering.” Mechanical Engineering 114, no. 10
(1992): 80-81.

Jebb, Alan, S. Sivaloganathan, and N.F.O. Evbuomwan. Design Function Deployment
User Guide. Engineering Design Center, City University, Northampton Square, London,
1993.

Jebb, A., S. Sivaloganathan, R.C. Edney, N.F.O. Evbuomwan, and H.P. Wynn. “Design
Function Deployment.” ASME Engineering Systems Design and Analysis, PD-Vol. 47-1
(1992): 251-256.

Knight, Thomas P. “A Knowledge System for Functionally Integrated Product
Development.” Mechanical Engineering Bachelors Thesis, Massachusetts Instititute of
Technology, 1990.

Krick, Edward V. “An Introduction to Engineering and Engineering Design.” New York:
John Wiley & Sons, Inc., 1965.

Krinninger, Andreas and Don P. Clausing. ““Quality Function Deployment for Production.’
LMP working paper, Massachusetts Institute of Technology, August 1991.

Kuffner, Tom A. and David G. Ullman. “The Information Requests of Mechanical Design
Engineers.” ASME Design Theory and Methodology - DTM '90, DE-Vol. 27 (1990): 167-
174.

159

Moses, Joel. Organization and Ideology. unpublished, 1990.

Oulette, Mark. “Form Verification for the Conceptual Design of Complex Mechanical
Systems.” Masters Thesis, Georgia Institute of Technology, 1992.

Pahl, Gerhard, and Wolfgang Beitz. Engineering Design. London: The Design Council,
1984.

Parametric Technology Corp. Pro/Engineer User's Guide. Version 12 Waltham,
Massachusetts: Parametric Technology Corp., 1993.

Paynter, Henry M. Analysis and Design of Engineering Systems. Cambridge: The MIT
Press, 1960.

Phadke, Madhav S. Quality Engineering Using Robust Design, New Jersey: Prentice Hall,
1989

Pugh, Stuart. “Concept Selection - A Method that Works.” Proceedings of the
International Conference on Engineering Design ICED'81 (1981): 497-506.

Pugh, Stuart Total Design. New York: Addison Wesley Publishing Co., 1990.

Quality Engineering Services. The Taguchi Expert Software User's Manual. Webster,
New York: Quality Engineering Services, 1992.

Ramamoorthy, C.V., and Benjamin W. Wah. “Knowledge and Data Engineering.” IEEE
Transactions on Knowledge and Data Engineering 1, no. 1 (1989): 9-16.

Reddy, Ramana. “Editorial: System Support for Concurrent Engineering.” International
Journal of Systems Automation: Research and Applications 1, no. 3 (1991): iii-iv.

Shiba, Shoji, Alan Graham, and David Walden. A New American TQM. Cambridge,
Mass.: Productivity Press, 1993.

Siegel, Paul. Expert Systems: A Non-Programmer's Guide to Development and
Applications. Pennsylvania: Tab Professional and Reference Books, 1986.

Sontow, Karsten and Don P. Clausing. “Integration of Quality Function Deployment with
Further Methods of Quality Planning” LMP working paper, Massachusetts Institute of

Technology, April 3, 1993.
Sriraman, Vedaraman, Phadhana Tosirisuk, and Hsing Wei Chu. “Object-Oriented

Databases for Quality Function Deployment and Taguchi Methods.” Computers and
Industrial Engineering 19, no. 1-4 (1990): 285-289.

160

Suh, Nam P. The Principles of Design, New York: Oxford University Press: 1990.

Swanson Analysis Systems, Inc. ANSYS User's Manual for Revision 5.0. Houston,
Pennsylvania: Swanson Analysis Systems, Inc. 1992.

Taguchi, Genichi. Introduction to Quality Engineering: Designing Quality into Products
and Processes. White Plains, New York: UNIPUB/Kraus International Publications, 1986.

Taguchi, Genichi. System of Experimental Design. 2 Vols. White Plains, New York:
UNIPUB/Kraus International Publications, 1987.

Takeuchi, Hirotaka, and Ikujiro Nonaka. “The new new product development game.”
Harvard Business Review 64, no. 1 (1986): 137-146.

Traughber, Thomas J. “Expert System for Tool Selection.” SAE International Congress &
Exposition on Artificial Intelligence 860338, SP-664 (1986): 37-41.

Vora, Lakshmi S., Philip C. Jackson, and Robert E. Veres. “Technical Information
Engineering System (TIES).” SME Technical Paper, MS89-736 (1989): 38-45.

Ulrich, Karl. The Role of Product Architecture in the Manufacturing Firm, Course Notes
for 2.739], Product Development, Massachusetts Institute of Technology, October 1992.

United States Congress. “Integrated Computer-Aided Manufacturing (ICAM)
Architecture Part I Volume IV - Function Modeling Manual (IDEF;).” AFWAL-TR-81-
4023, Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio, 1981.

Ward, Allen C. “A Recursive Model for Managing the Design Process.” ASME Design
Theory and Methodology - DTM '90, DE-Vol. 27 (1990): 47-52.

Wu, Bi-Chu and Shapour Azarm. “A Reduction Method for Nonhierarchichal

Optimization-Based Design.” Advances in Design Automation 1 (Sept 13-16, 1992): 203-
212.

161

Appendix A

Starting QCAD Product Models in IDL

This appendix gives step by step instructions for starting the clamp and copier
product models in the ICAD Design Language (IDL). Both product models are in ascii
format on the DOS disk in the pocket on the inside back cover. An introductory course in
IDL is helpful for using a product model once it is running in the Browser. The
instructions assume that the user is familiar with the Unix operating system and with
emacs.

The product models were created using:

Workstation ICAD Software
e Sun SparcStation 1+ e ICAD, Version 4.0
e 64 MBRAM e Allegro Common LISP,
e 1.05 GB hard drive Version 4.1
e 200 MB swap space e Unigraphics II, parasolids,
e SunOS4.1.3 Version 4.2.81
e Open Windows 3.0

The instructions below are written generically for any ICAD supported platform.
When appropriate, an example of the command is given, as it would be used on the above
described workstation. For reference, the machine name is “winston”. As a typographic
convention, commands that the user types are printed in bold font and computer output is
printed in normal font.

1. Log in to an account with access to the ICAD system.
Login: qcad

2. Start the window system, if not already active. This should pop up several windows,
including a console and a cmdtool.

winston% openwin (the qcad account automatically starts Open Windows)

3. Load the product model files from the DOS disk into a new direciory using dosread,
or a similar command. On winston, the clamp product model is in a directory called
clamp and the copier model is in a directory called copier.

162

The files with the .cla extension are part of the clamp product model. The files with
the .cop extension are part of the copier product model. All of the files, except for the
readme file should be changed to end in .lisp (i.e., function.cla.lisp).

The system. 2.lisp file may need to be changed depending on the configuration of the
account running ICAD. (The ? represents cla or cop, referring to clamp or copier,
respectively). The system.?.lisp file has a line defining where to find the clamp and
copier files. Follow the instructions in the system.?.lisp file to change the directory
path that references the clamp and copier files.

. Open an emacs window, if one is not already active. Position the mouse in an active
unix window and start emacs. The text cursor in the window may need to be activated
by clicking the left mouse button once, while the mouse is positioned in the desired

window.
winston% emacs & (the qcad account automatically starts emacs)

Emacs is used for bringing up the Browser and for interacting with IDL. Emacs
buffers are used for editing and compiling product models, debugging product models,
and issuing commands directly into IDL.

. Start ICAD. With the mouse positioned in the emacs window, type <meta-x> icad.
On the Sun SparcStations, meta is the diamond key next to the space bar. Meta works
just like the shift key. Keep the meta key depressed while typing x. Type icad when
the cursor appears on the last line of the window. (The qcad account automatically
starts ICAD).

This command loads the IDL world (including Allegro Common LISP) and pops up
the Browser when it is done. The Browser accepts both keyboard and mouse
commands. In general, the mouse is used to select and run commands, while the
keyboard is used for supplemental information. The three mouse buttons have the
following assignments:

Mouse-left: Select
Mouse-middle: Match
Mouse-right: Pop up a menu

There are two actions involved with issuing a command. The first is to select a
command to run or an object to manipulate. The second is to match the command to
an object or to match the object to a command. The border around the selected item
will blink to signify that it is selected. Pressing ESC will de-select the item. Pressing
mouse-right on an item will pop up a menu of additional commands. The next
instruction gives a chance to practice issuing a command.

163

6. Start solid modeler.

a.

7. Compile and load product models. The clamp and copier product models are stored in
several different files. The file, system.?.lisp, contains a script of files to compile and
load in order to run model ?, where ? stands for clamp or copier. In order to run the
script program, type <meta-x> open-lisp-listener and wait for the emacs buffer to
change. At the command prompt in the lisp listener type the series of commands listed

Mouse-left on “Workspace” on the right side of the Browser to
open the workspace menu.

Mouse-left on “Start Solid Modeler” and a window will pop up.

Under “host”, type the name of the machine licensed to run the solid
modeler. (winston is licensed to run the solid modeler). Ignore the
space about the journal file name.

Mouse-left on “Accept” to start the solid modeler. The pop up
window will disappear and the menu button will change to “Stop
Solid Modeler!” On winston, the Lisp buffer in emacs should say
“Started Parasolids Version 4.2.81.”

below. Some commands may take a long time to execute.

a.

:cd ~/directory-with-product-model-files This command
changes the active directory to the one with the product model files.
Replace the “directory-with-product-model-files” with the name of
the directory with the files that was created in step 3.

(on winston) for the clamp type: :cd ~/clamp
for the copier type: :cd ~/copier

:ld ~/system.?.lisp This command creates the functions that
compile and load the desired product model. Replace the ? with
either cla or cop, for the clamp or copicr models.

(compile-qcad) This command compiles the files that comprise the
product model and stores several binary files with the “.sparc”
extension in the directory specified in part a. An error may occur if
there is not enough disk space in that partition to create the binary
files.

d. (load-qcad) This command loads the compiled code into memory.

164

8. Instantiate QCAD. Now that the product model is loaded into memory, it can be
instantiated in the Browser.

a. Mouse-left on “Tree” on the right side of the Browser to open the
tree menu.

b. Mouse-left cn “Make Part” and a window will pop up.

c. Type qcad under “part name” in the window. This tells IDL to
instantiate the qcad product model. Ignore the “more” button on
the bottom of the window.

d. Mouse-left to select the make part window. The border around the
window should blink.

e. Mouse-middle on the workspace rectangle on the left side of the
screen. After a few seconds, a top level inputs window will pop up
on the screen.

f. In the tree menu, mouse-left on the “close” button directly above
the menu title in order to close the menu.

g. In the top level inputs window, mouse-left on “accept” to use the
values for the top level inputs. One of the inputs is titled “strings-
for-display”. It contains the name of the root node, which in this
case is qcad. The other input is titled “display-controls” and
contains values for how the part will be seen in the workspace. A
few seconds after choosing accept, the top level inputs window will
be replaced with a graphics viewport and the start of a product
structure tree.

165

9. Congratulations, you have just instantiated a QCAD product model. Several useful
commands for exploring the product model are listed below. The commands are
activated by the mouse, as described in step 5. You may also wish to try the mouse-
right command, which pops up menus. For further information on commands, see the
ICAD user's manual (1993). Have fun.

children: Add one layer to the selected node on the tree.

leaves: Expand the entire selected region of the tree.

condense: Shrink the selected region of the tree to the parent
node.

expand and draw: Expand the entire selected region of the tree and

draw the associated hardware (QCAD only
associates hardware with the hardware tree.
Drawing nodes on the other trees will display points
in the graphics viewport.

References

ICAD, Inc. The ICAD System User's Manual. Version 4.0. vols. 1, 2, 3, and 6.
Cambridge, Mass.: ICAD, Inc., 1993.

166

Appendix B

Overview of ICAD Concepts
This appendix describes the ICAD software, including the ICAD Design Language
(IDL) and the browser user interface. Only the major ICAD concepts are presented here.

More complete documentation is available in the ICAD User's Manual (ICAD 1993).

B.1. ICAD Design Language (IDL)

ICAD product models are created using the ICAD Design Language (IDL). IDL
is a super set of common lisp and is geared toward modeling products in the ICAD
browser interface. IDL extends the capabilities of common lisp, while keeping the
functionality of common lisp intact. IDL is an object oriented language. It is demand
driven, such that a variable is only evaluated if it is needed. In a conventional
programming language, like Fortran or C, all of the variables are evaluated in sequence,
whether they are needed or not (Harmon and Sawyer 1991; ICAD 1993).

Some features of object oriented programming languages are (1) described

generically in the first section below and (2) described in the context of IDL, in the second

section below.

B.1.1. Objects and Information Sharing

Object oriented languages have sets of building blocks, or objects, that are linked
together to create a program. An object is a structure that can store both information and
procedures. A structure is a generic term for a pattern of organization. In conventional
programming languages, a variable is a structure that stores information. The information
is usually of type integer, floating point, or string. In the C programming language, there
are structures that combine multiple types of information into one structure (this is done
with the struct command). One structure can have string, integer, and floating point

information (Harmon and Sawyer 1991, 2).

167

An object is an even more general structure that combines both information and
procedures. Whereas information just sits around waiting to be looked at, a procedure is a
routine that is executed when it is called. One reason to use objects is to separate the
program into categories such that one object only contains information and procedures
representative of a certain class of problems (Harmon and Sawyer 1991, 4).

Objects are linked together in three different ways to create an entire program.
One type of linking is called inheritance. Inheritance occurs when one object assumes all
of the information and procedures from another object. In Figure B.1, Object A is said to
define a class of objects. The horizontal and vertical lines in Figure B.1 represent lines of
inheritance. Object A has a base set of rules and procedures which objects B, C, and D
augment or modify in order to create a more specialized object (Taylor 1990, 29).

For example, imagine that the objects in Figure B.1 represent a set of living animal
cells. Object A defines the part of the parts of the cell, i.e., the membrane, the nucleus, the
mitochondria, etc. Objects B, C, and D represent specialized cells, like a muscle cell, a
blood cell, and a nerve cell, each with the same parts defined in object A. A blood cell is
atype of living cell (Taylor 1990, 29). In ICAD terminology, objects B, C, and D mixin
the attributes of object A (ICAD 1993). This type of object linking will not be discussed
in the rest of this appendix.

The second type of linking, in an object oriented system, takes place when one
object needs information from another object. For example, if one object is calculating the
stress in a beam and doesn't have the beam's cross-sectional area, the object will send a
message to the appropriate object to request the cross-sectional area. Figure B.2 shows
five different objects, with different data and procedures. Object A is sending a message
to object B. Object B is responding to object A with the requested information. In an
object oriented language, one object can send a message to any other object, requesting

information (Taylor 1990, 41).

168

Object A

Information and
Procedures

Object D

Object B Object C

Information and
Procedures

Information and
Procedures

Information and
Procedures

Figure B.1 - Object Inheritance Structure

information

Object B

Object A

Information and Object C

Procedures

Information and
Procedures

Information and
Procedures

Object D

request Object E

Information and
Procedures

Information and
Procedures

Figure B.2 - Sending and Responding to a Message

169

The third type of linking occurs when more sophisticated structures need to be
represented. This type of linking is actually an assembly of other objects and is called a
composite object. Figure B.3 shows a composite object, where object A is a composite
object with references to objects B and C. The lines in Figure B.3 are diagonal and
indicate references from object A to the other objects. This reference is different from the
inheritance concept described earlier, in that inheritance describes a type of relationship,
where the composite structure describes a part of relationship. For example, in Figure
B.3, arelationship is read as, “Object B is a part of object A.” Whenever the information
and procedures in object A are desired, the links to objects B and C also come along

(Taylor 1990, 39).

Object A

Information and
Procedures

Object B Object C

Information and
Procedures

Information and
Procedures

Figure B.3 - Composite Object

Objects B and C, in Figure B.3, could also be composite objects. When one or
more composite objects reference one another, the group of objects form a tree hierarchy,
as shown in Figure B.4 (Taylor 1990, 39). In Figure B.4, objects A and C are composite
objects because they are composed of other objects. Table B.1 explains some terminology

associated with a tree structure (ICAD 1993).

170

Object A

Information and
Procedures

Object B Object C

Information and
Procedures

Information and
Procedures

Object D Object E

Information and
Procedures

Information and
Procedures

Figure B.4 - Nested> Composite Objects

Term Example (See Figure B.1)

node Each object is a node.

root A is the root node, because it is at the top of
the tree.

parent Ais aparentto B and C.

child D and E are children of C.

siblings B and C are siblings.

leaf B, D, and E are leaf nodes, because they
have no children.

ancestor A is an ancestor of all of the objects.

descendants All of the objects are descendants of A.

Table B.1 - Tree Structure Terminology (ICAD 1993)

5 In this case, nested means that one composite object is part of the definition of another composite object.

171

B.1.2. IDL Description

This section relates the generic concepts described in the last section to IDL
specific terms. Some new concepts associated with IDL objects are also introduced.
When reading this section, remember that IDL is used to model physical products, such as
compressors, engines, and vending machines. As such, objects, information, and
procedures are geared for geometric applications.

In IDL, an object is called a defpart, for definition of a part. Just like objects, each
defpart can contain both information and procedures. In IDL, the information and
procedures are organized into several sections. Each section is titled with a keyword.

The ICAD manual describes many different types of keywords, all of which divide the
defpart into specialized regions. At a high level of abstraction, the most common
keywords categorize information and procedures according to inputs, attributes, and parts.
Figure B.5 pictorially shows the sections of a defpart. The arrows show the direction of

information flow, both inside and outside the defpart (ICAD 1993).

sinputs

From Parent . .
] information

:attributes

information and
procedures
:parts
information and procedures

organized according
to children.

To Children

Figure B.5S - Graphic Description of an ICAD Defpart

172

Defpart Table

User Inputs:
people
height

:inputs
people
height

:attributes
diameter = 12 x # people

:parts
table-top
diameter
legs

height

Defpart Legs

Defpart Table-top

inputs
height

tinputs

diameter

:attributes :attributes

table height leg thickness

Figure B.6 - Tree Structure for a Table

The inputs section gets information from the parent defpart. If the defpart is the
root node, the information is requested from the user. In generic terminology, the defpart
sends a message to its parent or to the user requesting information. The attributes section
lists the information and procedures that characterize the defpart. For example, a defpart
representing a table, might have an input requesting the number of people sitting around a
table and have an attribute to calculate the size of the table to accommodate the number of
people. The parts section identifies more detailed parts of the table, that will become the
defpart's children. In generic terminology, the parts section references other defparts that
altogether create a composite object.

In IDL, most defparts are related to each other as composite objects. In a sense,

the entire product, modeled in IDL is one big composite object, which forms a tree

173

hierarchy. All messages are passed up and down the tree hierarchy to the appropriate

nodes (ICAD 1993).

Figure B.6 shows a tree structure for a table, along with representative information

flows (ICAD 1993). The table is made of a table top and legs. Note that both the table

top and legs are listed in the parts section of the table defpart. To create the table, both

the legs and the table top need more information, which they get from the table defpart.

In order to satisfy this request, the table defpart asks the user for inputs.

(defpart table (box)

:inputs

(:height
:number-of-people
)

:attributes

(:table-top-height (inch 3)

:width (* 12 (the :number-of-people))
:length (* 12 (the :number-of-people))
)

sparts
((table-top
:type cylinder
:height (twice (the :width))
:length (the :table-top-height)
:radius (the :width)
:position (:top 0)
:orientation (:rotate :right)
)
(legs
:type box
:quantify (:matrix :lateral 2
:longitudinal 2)

:height (- (the :height) (the :table-top-height))

:width (the :table-top-height)
:length (the :table-top-height)
:position (:bottom 0)

)

This defpart defines a table.

This is the inputs section.

The program will prompt the user for
the height and number-of-people
when this part is called.

This is the attributes section.

Set the table-top-height to 3 inches.
Set the width and length to be 12 times
the number of people.

This is the parts section.

This section defines the table-top.

The table-top is round.

Set these values to previously defined
values from the inputs and attributes
sections.

These two lines position and orient the
table-top to the rest of the table.

This section defines the table legs.

The table legs will be square.

This expression creates four legs to
hold up the table.

This is an equation to subtract the table
thickness from the leg height.

The leg thicknesses (width and length)
are set equal to the table thickness.

The legs are positioned below the
table-top.

Figure B.7 - ICAD Defpart for a Table

For reference, Figure B.7 shows the IDL code for the table defpart. In the IDL
code, all of the words that start with a “:”, but are not keywords are attributes, that
contain information. All of the parenthetical expressions to the right of the attributes are
procedures to calculate attribute values.

In ICAD, the composite object tree structure, as shown in Figure B.6 is called a
product structure tree. Figure B.8 is a generic representation of a product structure tree,
since no specific product is shown. The arrows in the figure show the direction of
information flow in the system. The attributes in the :inputs section of the lower level
defparts ask for information from the higher level defparts(ICAD 1993).

Another type of information flow is represented, in Figure B.8, by the dashed
arrow between defparts D and F. In IDL, this type of information request is called a
referencing chain. Defpart F needs information from defpart D, but needs to specifically
send a message to defpart D requesting information. In order for the information to go
from defpart D to defpart F, the information must travel up and then back down the tree,
along the path D-B-A-E-F. ICAD does not recommend this cross-branch information
sharing, because the product model becomes confusing to implement and hard to decipher.
The referencing chain also makes the product structure tree non-generic, because defpart
F can only be used in its current position in the tree. A generic defpart can stand alone, or
can be called from anywhere in the tree (ICAD 1993).

Up until now, only the structure of a product model has been described. The
collection of defparts in a product structure tree only organizes information for use in a
product model. An actual design is created when the product model is instantiated with
specific values. One instance of a table is a tall, wide table, five feet high, with twenty
people seated around it. A different instance of a table is a small, squatty table, one foot
high, with four people seated around it. The process of creating one specific product in a

product model is called instantiation (ICAD 1993).

175

Defpart A

sinputs
-attributes
:parts

:attributes
:parts

:attributes
:parts

:inputs
:attributes
‘parts

tinputs
:attributes
:parts

sinputs
:attributes
:parts

:attributes— f = = = = %

Figure B.8 - Generic ICAD Product Structure Tree

As shown in this example, the ICAD defparts and product structure tree enable the
ICAD parametric capability (the ability to create several instances from one product
model). In the table example, the table defpart uses equations to relate table size to input
values, such that different table instances are created just by changing the input values.
The ICAD system also allows changes in part geometry with different inputs. For
example, an equation could be written in the table defpart to make a round or square table
top, depending on the number of people sitting at the table.

There are many more concepts about object oriented programming and IDL which
are not explained here. For more information, see a general reference book on object
oriented programming (Taylor 1990), the ICAD user's manual (ICAD 1993), or a

common lisp reference book (Steele 1990).

176

B.2. Browser

The browser is a user interface environment that reads the product models defined
in the ICAD Design Language. The browser interface is used to help develop and debug
product models and to provide an environment for the production user to view a product
model.

Figure B.9 shows the browser, with an instantiated table defpart, as described in
Section B.1.2 on the ICAD Design Language. There are five parts to the screen,
numbered 1 through 5 in the figure. Acros: the top and right side of the screen are menu
options (1 and 2). The bottom line is a status bar (3). The two parts in the middle of
picture comprise the workspace area (4 and 5).

The workspace has two parts: the product structure tree on the right (4) and the
graphics viewport on the left (5). Both the product structure tree and the graphics are
specific instances of the product model. The product structure tree was defined in IDL,
using defparts. Sometimes, when modeling large products in ICAD, it is hard to keep
track of all of the relationships among all the defparts. The product structure tree
facilitates the creation and interpretation of the product model. Since each name on the
tree corresponds to a user defined defpart, it is possible to open an inspector window to
look into a defpart on the tree to examine its attribute values.

The geometry displayed in the graphics window matches the same instance
represented by the product structure tree. However, the defpart name does not have to be
visible in the product structure tree for the geometry to be displayed in the graphics
viewport. The graphics window displays the three dimensional part geometry. Depending
on the settings, the view can be changed to show orthogonal graphic views, such as top
and front, or a custom user view. It is also possible to zoom in on the graphics image.
The geometry of a specific part is viewed by drawing the appropriate defpart in the

product structure tree.

177

sqeL NueN ‘e

8941 8.MINAS JoNpoLd v

Jeg smels ‘e

WYUG YT dRy iy oy

NUaK D0 tAY I

o

Uoon

uodmaip sojydesn g

hpupn oy ooy oy oy
. . ajaar

ASTA OTJQNTL|

lv.o:uz"u¢<n.=~um"aun:lu"u-n:wu||zo¢xma.<uu"u.o¢:m||uo:u.~c|

ipayaoys Buyiyen

sAe) 10H °1

[esvoavon oo haoon] | cvwra][eersea] _wﬁ,gu_llgl
(o] [[owes [s s [] [pives o] iz oo 2]
s@gakm avol

am|vL

Figure B.9 - ICAD Browser

178

Along the right side of the screen is a set of menu tabs (2). The menu tabs pull to
the left to display a menu of commands. The commands are grouped according to those
that change the graphics, manipulate the product structure tree, alter the workspace,
debug the product model, and configure the browser.

Quick menu commands are provided along the top of the screen (1). The hot keys
across the top are a customizable set of buttons that facilitate exploration of the product
model. Scrolling through levels of menus is time consuming and cumbersome. Some of
the most frequently used commands are initially assigned to the hot keys. However, if a
different set of commands is desired, new commands can be pasted into place. The user
can even define commands that are connected to the product model.

The bottom status bar (3), indicates whether the system is working or waiting and

gives helpful messages on how to use selected commands.

For more information on the browser, see volume 3 of the ICAD User's Manual.

References

ICAD, Inc. The ICAD System User's Manual. Version 4.0. vols. 1, 2, 3, and 6.
Cambridge, Mass.: ICAD, Inc., 1993.

Harmon, Paul and Brian Sawyer. Object Craft: A Graphical Programming Tool for
Object-Oriented Applications. Reading, Mass.: Addison-Wesley, 1991.

Steele, Guy. Common Lisp: the language. 2nd ed. Bedford, Mass.: Digital Press, 1990.

Taylor, David A. Object-Oriented Technology: A Manager's Guide. Alameda, Calif..
Servio, 1990.

179

Appendix C
User Interface

C.1. Introduction
This appendix describes a conceptual user interface for QCAD at a high level of

abstraction. The goal is to convey an idea of what the user interface should be able to do,
without discussing any concrete details about what the screens should look like, or how
they should be implemented. This appendix is meant to be a starting point for the
development of an user interface.

The user interface should provide easy access to QCAD's capabilities for both the
initial programmer and the end user. There should be two modes: input mode and design
mode. The input mode is used to store permanent information in the system, such as part
geometries, parametric relationships, concept review matrices, and process definitions.
The design mode is used to explore designs and to change information stored in variables.
It should be possible to save the state of the system when in design mode.

In input mode, the user adds to the knowledge base of the system. However, in
design mode, the user plays around with the knowledge already in the system, making
non-permanent changes to the stored information. In design mode, the user should also be
able to select a product model to explore.

As discussed in Section 4.3, there are multiple views of a product. The user
interface should be able to display all of the possible views, from functions to hardware to
processes and from total system to part features.

Since QCAD is specified with three hierarchies, the user interface should support
three primary screen sections: function, hardware, and process. Other screen sections,
such as menu bars and status bars, should also be available. In each of the primary
screen sections, the user should be able to move up and down in the abstraction levels.

The discussion here refers to sections of one display screen, but the user interface can be

180

different (i.e., composed of separate screen windows). Each section must be linked, such
that changes in one section are reflected in the other sections. The user should also be

able to look at any screen section at will.

The rest of this appendix discusses elements of the user interface.

C.2. Function Interface

The initial screen for the function interface is the total system function net. At the
total system level, there is only one function. Thus, the function net is just a circle, with
the function written inside. The user should be able to change the level of abstraction to
see function nets at different levels in the hierarchy. It should be possible to view all of the
functions on that level at the sar:e time, even though some functions may be part of a
different function net.

The user should be able to modify the function net, by adding and removing
functions, and by changing the links between the functions. A different function net
arrangement may result in a different hardware configuration.

Furthermore, the user should be able to look at two different sets of information:
(1) information related to the layer, and (2) information related to an individual function.
Some of the information at the layer level includes the house of quality, concept selection
matrix, and concept review matrix. Each function also has related information, including
constraints and related sub-functions. Additionally, each function should be able to look

at its associated hardware.

C.3. Hardware Interface

The hardware screen has two parts. One is a graphics viewport. The otheris a
hierarchical representation of the product structure. The viewport is used to display and
ana!-ze the product geometry. The user should be able to look at the geometry for

interferences and should be able to send a part geometry to an analysis program.

181

In the viewport, the whole product can be displayed, or just pieces of the product,
depending on what the user selects. The hierarchical representation helps the user to
select hardware to be displayed.

The hardware is represented by a product structure net. Just like the function net,
the user can change the level of abstraction to see different product structure nets. The
user can select different hardware nodes for viewing, or can select the whole structure to
draw the entire product.

Additionally, the user should be able to look into each hardware node. For
information about sub-hardware, hardware parameters, the QFD design matrix, and the
manufacturing process. The hardware node should also be able to display all of the

functional requirements that it satisfies.

C.4. Process Interface

Just like the other interfaces, the process interface shows the process flow at
several levels of abstraction. The higher abstraction levels show diagrams of how the
parts fit into an assembly. The lower levels show the process steps o manufacture a piece
part. Each element on the flow diagram should be set up such that a user can look at the
parameters, QFD matrix, and design of experiments for that process. The user should also
be able to display the hardware made by that process.

In addition to displaying a process flow chart, the user should also be able to look
at a specific process type, which should give information about the process, the company's
capabilities with the process, and the parts made with the process. It would be useful to
display all of the hardware made by one process simultaneously in order to both refine the

hardware design and to plan the manufacturing process.

182

C.5. Miscellaneous

The user interface should also have features that affect the whole product model.

One such feature is to display the fault tree. Fault information is dispersed
throughout the model. There should be a comrnand that collects all of the faults and
displays them in a fault tree. This command should also be selective such that a user can
define keywords that only find faulits related to a specific area. This fault command could
also keep track of fault information, i.e., the number of times a fault occurs.

Furthermore, there should be a command that finds inconsistencies in the product
model. The user should be able to define places where problems might occur. If these
problems develop, the command should display a list of the inconsistencies, from which
the user can select one to explore. Upon selection, the display changes to show the area in
question, with the inconsistency highlighted.

Another important capability for the user interface is the display of generic
information about the product, such as the total cost and bill of materials. The user should

also be able to define other information to be displayed.

183

