I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2006-077 November 27,2006

Scoop: An Adaptive Indexing Scheme for
Stored Data in Sensor Networks
Thomer M. Gil and Samuel Madden

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Scoop: An Adaptive Indexing Scheme for Stored Data in Sensor
Networks

Thomer M. Gil and Samuel Madden
{thomer,madden }@Qcsail.mit.edu

Abstract

In this paper, we present the design of Scoop, a sys-
tem for indexing and querying stored data in sensor net-
works. Scoop works by collecting statistics about the rate
of queries and distribution of sensor readings over a sen-
sor network, and uses those statistics to build an index
that tells nodes where in the network to store their read-
ings. Using this index, a user’s queries over that stored
data can be answered efficiently, without flooding those
queries throughout the metwork. This approach offers
a substantial advantage over other solutions that either
store all data externally on a basestation (requiring ev-
ery reading to be collected from all nodes), or that store
all data locally on the node that produced it (requiring
queries to be flooded throughout the network). Our re-
sults, in fact, show that Scoop offers a factor of four im-
provement over existing techniques in a real implemen-
tation on a 64-node mote-based sensor network. These
results also show that Scoop is able to efficiently adapt to
changes in the distribution and rates of data and queries.

1 Introduction

Sensor networks offer the promise of fine-granularity,
low-cost data collection from difficult-to-reach remote
environments. Existing data collection tools (like
Cougar [24] and TinyDB [17]) as well as many deploy-
ments(e.g, [2, 6, 18]) have demonstrated the potential of
this new technology. However, these existing approaches
all tend to work by picking a sample rate and delivering
all data from the network to some “root” node where
the user receives data at that pre-selected rate.

In contrast, we have developed a system called Scoop
that allows users to “scoop” up sensor readings of par-
ticular interest to them. As in other systems, nodes
continuously sample data, but rather than immediately
transmitting data to the root, Scoop nodes use an adap-
tive storage index (which is centrally generated by the
root, as we explain below) that tells them where to store
data — either locally in their Flash memories, in the
Flash memory of a nearby node, or perhaps even on
the basestation. Users then query for readings that sat-
isfy conditions of particular interest — in certain time or
value ranges, for example. Queries can be answered ef-
ficiently by using the storage index to determine which
nodes have a particular value. This allows the network
to transmit far fewer packets than in existing systems

when queries are relatively infrequent (since most data
doesn’t have to be transmitted to the root). When
queries are frequent, Scoop performs as well as these
existing systems because the storage index is adapted
to cause data to be sent directly to the root.

There are a number of applications where a Scoop-
like in-network indexing system is useful. Consider, for
example, a sensornet deployed for monitoring a factory
floor that uses sensors on equipment to measure temper-
ature or vibrational energy in a certain frequency band.
Real-world examples of such deployments (e.g., [2]) typ-
ically consist of some number of battery powered nodes
on different pieces of equipment. (Batteries obviate the
need for expensive and possibly dangerous power wires.)
Current deployments (like [2]) typically send all sensor
readings to a centralized basestation for analysis, but a
more power-efficient approach would be to collect read-
ings on the nodes, possibly pre-process them locally, and
store the values at or near the detecting nodes in the
network. Users could then query the history of readings
relevant to their interests.

Making a Scoop-like index work efficiently is tricky,
because the multihop nature of sensor networks means
that locating data that satisfies arbitrary query predi-
cates inside the network is hard. In a naive system, it
might require flooding the network, interrogating each
node to see if it has data satisfying a particular request.
In Scoop, we address this challenge by using a novel
statistics-based approach, which works as follows: pe-
riodically, nodes report to the basestation histograms
summarizing the data they have produced recently. The
basestation aggregates these histograms together to pro-
duce a storage index that maps sensor values to nodes
in the network that should store those values (here, val-
ues could be, for example, simple temperature readings
or possibly more complex values that are the outcome
of some computation over one or more attributes.) This
mapping tells nodes where to store individual data read-
ings. The basestation disseminates this storage index
throughout the network and uses it to answer queries.

As nodes produce data, they use the mapping to de-
termine where that data should be stored. When the
basestation builds the mapping, it uses an indexing al-
gorithm (based on a simple optimization problem) that
attempts to place data items near to sensors that are
likely to produce that data (based on historical patterns
of data production), as well as placing popular data

items (based on historical queries) to be stored closer to
the basestation. Because nodes typically produce simi-
lar values over time, and because there is typically some
geographic locality between values produced by nodes,
nodes often are assigned their own values in the map-
ping, and when they aren’t, values often only have to to
be transmitted one or two network hops. This leads to
dramatically better results than transmitting all data
to a single basestation, which quickly becomes a net-
work bottleneck in systems like TinyDB [17]. Our re-
sults show that Scoop typically is able to use about a
quarter of the transmissions (under a reasonable query
workload) when compared to simple schemes collect all
data to a basestation (such as Cougar and TinyDB),
despite the additional overheads of statistics collection
and storage index dissemination.

Unlike traditional database indices, Scoop storage in-
dices adapt over time, placing particular sensor values
at different locations in the network over time. Because
statistics are reported periodically, the sink is able to re-
compute the storage index and re-disseminate it when it
has changed significantly. When a query for data from
a particular point in time arrives, the basestation can
compute which storage index was in effect at that time
and request that the nodes with the appropriate data
be used to answer the query.

We have built a complete implementation of Scoop
for TinyOS-based motes [4] and evaluated its perfor-
mance on a 62-node testbed and in the TinyOS simu-
lator, TOSSIM. We show that our system scales well
up to a few hundred nodes, which is comparable to the
size of the largest single-basestation sensor network de-
ployments in use today [6, 2]. This paper describes the
Scoop system, focusing on the algorithms and protocols
for statistics collection, storage index creation and dis-
semination, and query answer, as well as describing our
experimental results and highlighting some directions
for future research.

2 Background
2.1 Hardware Trends

Storage: Current-generation hardware has a small
amount of RAM (a few KB to 10’s of KB) with a sig-
nificantly larger amount (up to several MB) of (non-
volatile) Flash memory, where Scoop stores its inter-
mediate query results. Future generations of devices
will certainly have both more RAM and Flash, particu-
larly as consumer devices like digital cameras and MP3
players continue to drive the commoditization of very
low-power, high capacity Flash memories.

Communication: In wireless sensor networks
(WSNs), radio communication tends to be quite lossy
without retransmission; motes drop significant numbers
of packets. Though retransmission can mitigate these
losses somewhat, nodes can still fail, move away, or be
subject to radio interference that makes them temporar-
ily unable to communicate with some or all of their

neighbors. The radios on the Mica2 motes we use pro-
vide a single, shared, 38.6 kilobits per second (Kbps)
communication channel. The actual, usable application
bandwidth is closer to 10 Kbps once channel access and
packet-header overheads are figured in. Newer 802.15.4
have a maximum raw bandwidth of 250 Kbps; delivered
throughput will be closer to 100 Kbps.

Power: Because sensors are battery powered, power
consumption is of utmost concern to application design-
ers. Power is consumed by a number of factors; typi-
cally communications dominates this cost [16, 20]. Our
previous work [16] suggests that up to 90% of the en-
ergy consumption of a typical data collection system
for sensor networks is due to communication. Current
trends suggest that the cost-per-bit of radio transmis-
sion will continue to dominate the cost to store and re-
trieve data from memory—even relatively power-hungry
non-volatile Flash. For example, it costs about 28 nJ to
write 1 bit to a current-generation Micron Technology
128 Mbit NX25P32 Flash chip. Reads are substantially
cheaper. In contrast, current generation 802.15.4 radios
consume about 15 mJ of power per second, for a total
energy consumption of about 700 nJ/bit, making ra-
dio about two orders of magnitude more expensive than
Flash per transmitted (or stored) bit.

2.2 Software

Motes run a basic operating system called
TinyOS [12], which provides a suite of software li-
braries for sending and receiving messages, organizing
motes into ad-hoc, multihop routing trees, storing data
to and from Flash and acquiring data from sensors.
In this section, we briefly summarize the features of
TinyOS that are salient to the design of Scoop.

TinyOS provides a simple link-layer that allows nodes
to exchange messages with other nodes that are within
radio range. Multiple nodes that want to send messages
concurrently negotiate channel access using CSMA-CA,
a variant of the protocol used in shared Ethernet.

The most common multihop networking protocol in
WSNs is tree-based routing. Tree-based routing orga-
nizes the nodes in the network into a spanning tree
rooted at some basestation node at the root of the tree.
This tree allows the basestation to collect data from or
disseminate data to all of the nodes in a network. The
basic idea is to repeatedly broadcast a tree-join message
from the root down the tree. Nodes pick as their par-
ent one of the nodes from which they heard the tree-join
message. The practical details of such protocols are cov-
ered work by Woo et al. [23] and DeCouto et al. [3]; we
use an implementation based on code by Woo et al. [23].

3 Data and Query Model

Scoop operates on a network of nodes that sample
data and store data at a certain sample rate. Periodi-
cally, the user issues queries over this data from a base-
station. Queries consist of a range of values or a list of
nodes to be queried, which are equivalent to queries of
the form:

SELECT attry ...attr,
FROM sensors
WHERE pred; ...pred,

In this work, we focus on this kind of snapshot queries
that retrieve the value of one or more attributes that
are indexed by a Scoop index.

Scoop exports a simple, attribute-based data model
based on TinyDB [17]. Each attribute provides a func-
tion to sample the sensor(s) representing the attribute,
and Scoop invokes this function at the user-specified rate
to generate data to be stored. This sampling rate is cur-
rently established at compile time. This attribute in-
terface currently supports temperature, humidity, light,
acceleration, and sound volume sensors.

In the next two sections, we describe how Scoop im-
plements this query interface to stored data. We focus
on creating the storage index (Section 4), efficiently col-
lecting relevant statistics needed for doing that creation,
(Section 5.2) efficiently disseminating the storage index
(Section 5.3), routing data using the index (Section 5.4),
and, finally, on answering queries (Section 5.5).

4 Storage Indices

This section motivates the design of Scoop’s stor-
age index. We begin by describing two existing (non-
index based) storage techniques for store-and-query sen-
sor networks into two categories: (note that a similar
taxonomy of storage policies appears in [21], but they
do not evaluate an adaptive, statistics driven approach
like Scoop.)

One possible storage technique is “send-to-base”:
sensors send all their data to the basestation through
a network routing tree rooted at the basestation. As
mentioned above, this can be wasteful, since energy is
spent sending data to the basestation where it might
never be used. Secondly, depending on data rates, the
network may become saturated if all sensors try to send
data simultaneously, resulting in high loss.

A second approach is “store-local”: sensors store
sampled data locally. The basestation floods queries
through the entire network; sensors send their reply
back. Unfortunately, this is expensive since only a frac-
tion of the sensors may actually have relevant data.
In contrast to send-to-base, store-local is efficient when
data rates are much higher than the query rate.

Scoop, in contrast, adapts between the two extremes
of send-to-base and store-local: data is stored closer to
the basestation when the query rate is higher than data
rates, and data is stored closer to the source when data
rates are higher than query rates. Each value is stored
on a specific node, as specified in a storage indez that is
periodically updated by the basestation and then broad-
cast to all nodes.

A storage index is a value to node ID mapping. In
this paper we simply map attributes ranges to node ID,
as illustrated in Figure 1, which shows an simple ex-
ample temperature storage index for time period T1-
T2. The node on the right hand side is responsible for

storing all temperature readings in the left column, dur-
ing T1-T2. Nodes may have multiple non-overlapping
ranges assigned to them, like node 2.

One such mapping exists per

Temperature indexed attribute, per time pe-
time: T1-T2 riod. The basestation creates
values | node a storage index based on statis-
20-22 2 tics over the previous few min-
23-26 1 utes/seconds. (In our experi-
27-28 5 ments, the basestation recreates
a new storage index every 4 min-

: : utes). The mapping is chosen
34-36 2 to minimize the total number of

messages the system sends, as de-
scribed below. This approach re-
lies on the insight that recently
sensed values are likely to be a
good predictor of values a node
produces in the near future; this
temporal correlation has been shown to be present in
practice in sensor data in several recent papers on the
use of statistical models for sensor value prediction [9, 5].
Intuitively, it makes sense that there would be some sta-
tionarity in many kinds of sensor data; for example, in
vibrating equipment, the amplitude and frequency of vi-
bration is likely to remain roughly the same over a short
time window on a particular piece of equipment.

Clearly, the particular index that is chosen impacts
the communication overhead. For example, assigning
a value that is queried very frequently to a location far
away from the basestation will result in high query/reply
overhead. Storing the value on a node closer to the
basestation reduces this overhead, but now the cost of
sending messages from nodes that produce this value
to the chosen destination node may increase. Similarly,
mapping a value v to a node p that is more likely to
produce v reduces the overhead of sending p’s data.

Our algorithm for selecting a storage index is guided
by the following properties that a communication-
efficient storage index should have:

Figure 1. A
storage index
for temperature.

e P1: In the absence of other changes, if the data
rate goes up, data should be stored closer to the
source (or the source itself) to avoid sending that
data across many hops.

e P2: In the absence of other changes, if the query
rate goes up, data should be stored closer to the
basestation to avoid sending queries and replies
across many hops.

e P3: In the absence of other changes data should be
stored closest to the location where it is most likely
going to be produced.

e P4: The storage index should take network condi-
tions into account to avoid, for example, forcing a
node to send data to another node over a lossy link,
causing expensive retransmissions.

The algorithm the basestation runs periodically to
find a storage index is outlined in Figure 2. The goal is
to find one owner, o, for each value, v, i.e., the node that
is responsible for storing all readings of v. The set of
value-to-node mappings is the storage index. This algo-
rithm tries to pick an owner that satisfies the minimum
expected messages metric described above, by placing a
given sensor value (or class of value) on the node that
will incur the minimum overall number of transmissions
over time. (Section 5.2 discusses how the basestation
obtains the various statistics needed in this algorithm.)

for all values: v {
for all sensors: o { [o = owner]
for all sensors: p { [p = producer of v]
cost(o,v) += P(p produces v) x rate, X
xmits(p — o)

[v = value]

}
cost(o,v) += P(user queries v) X query rate x
xmits(base — o — base)
}

storage_index[v] = argmin (cost(o,v))

} o

rate,: the rate at which node x produces data
P(X): the probability that X happens
xmits(z — y): the estimated number of transmissions
required to get a packet from z to y.
cost(o,v): expected no. of msgs. if v stored at node o
Figure 2. Indexing algorithm.

The outer loop iterates over all possible values v of
the attribute to find an owner for it by simply trying out
all possible nodes as owner (the second loop) and picking
the best one. For each potential owner, o, it computes
the cost (i.e., number of messages) if that node were
the owner of v. (The current version of Scoop computes
the cost in terms of number of messages, but the algo-
rithm could easily include power consumption, storage
capacity on nodes, the expected reply volume, or even
the cost associated with disseminating the storage index
itself in the cost metric.) The cost is twofold: sending v
from all sensors that produce it to o (innermost loop)
plus querying o from the basestation. The former is the
product of the probability that each node p produces
value v, the rate at which it does this, and the expected
cost of sending data from p to o. Similarly, the cost to
query node o is the product of the probability that a
user issues a query about value v, the query rate, and
the expected number of transmissions to send the query
from the basestation to o and back. The best owner for
a value v is the one that minimizes this cost.

This algorithm satisfies the aforementioned proper-
ties. P1: if the data rate of p goes up, cost(o) goes up
for all o’s far away from p; hence, a node closer to p
(or p itself) will be better. P2: if the query rate goes
up, cost(o) goes up for all o’s further away from the
basestation; hence a node closer to the basestation will
be better. P3: the more likely it is that a certain node p
produces v, the more attractive it is to pick p (or a node

closer to p) as owner for v because of the lower transmis-
sion cost. P4: the expected number of transmissions,
i.e., xmits(z — y), takes network connectivity into ac-
count; the basestation uses statistics it collects from the
nodes as discussed in Section 5.2.

The time-complexity of this algorithm is O(Vn?),
where n is the number of nodes and V is the number
of values in the domain of the attribute. In our experi-
ments that used real sensor traces, V was at about 150
and n was 62. For the size of sensor networks we are
aiming for — a few hundred nodes — this algorithm is
very practical.

Notice that this algorithm may generate a “send-to-
base” policy (if all values get mapped to the basesta-
tion), but never a “store-local” policy (since the current
version never maps overlapping ranges to more than one
node). The basestation, therefore, also evaluates the ex-
pected cost of a “store-local” storage index and uses it
if the expected cost is lower than the cost of the best
storage index.

Extensions: Though we focus on integer values of
a single attribute, values can also represent more com-
plex composite detections. For example, in an industrial
monitoring network, each sensor might classify its last
few sensor readings according to their vibration level on
a scale of 1-20, and the mapping might tell the sensor
where to store a particular class of vibrations.

Another extension of this algorithm is to pick mul-
tiple owners, i.e., an owner set, per value, thus allow-
ing nodes to pick one nearby node from multiple owner
candidates to store their data. Having multiple owners
per value may reduce communication overhead if mul-
tiple regions in the network exhibit similar data distri-
butions. However, it may increase the size of a storage
index and the cost for querying that value. Naively con-
sidering all possible owner sets makes the algorithm’s
time-complexity exponential in n. Hence, a more feasi-
ble approach is to consider only small owner sets.

A third extension involves range queries. Rather than
considering the placement of individual values, we could
consider placing ranges of values (e.g., modify the outer
loop of the placement algorithm to consider a fixed set of
ranges rather than a fixed set of values). The challenge
is choosing which ranges to iterate over: we might use
distinct ranges that have appeared in queries, or simply
fixed segmentation of values (e.g., 10 degree tempera-
ture ranges.) The advantage of placing ranges is that
popular range queries can likely be satisfied by just go-
ing to one or a small number of nodes; a potential disad-
vantage is that large ranges may end up being stored on
a single node, which could increase the storage burden
on that node.

5 Scoop Design

Given this basic algorithm for index creation, we now
describe how scoop collects statistics, disseminates in-
dices, routes sensor readings, and answers queries.

5.1 Routing tree

Nodes collectively build and maintain a routing tree
of the sort commonly used in sensor networks. This
allows Scoop to route packets to the basestation. The
routing tree spans the network and is formed by having
each node select exactly one parent that is one-hop closer
to the basestation than itself.

A node maintains a “descendants list” of all its chil-
dren, children’s children, and so on, by tracking all
nodes on whose behalf it routes packets up the rout-
ing tree. This list contains at most n entries (32, in our
experiments) and is used for routing data (Section 5.4)
and routing queries (Section 5.5). Finally, each node
keeps track of the nodes in its direct network neighbor-
hood, independent of the routing tree. This list, too, has
a maximum size (32, in our experiments) and is used to
optimize routing. A node evicts other nodes from its
lists after not hearing from them for a long time, thus
adapting to changes in network connectivity. If a node
has more than n descendants, the routing algorithm will
still work, though with somewhat degraded performance
(see Section 5.4.)

5.2 Statistics Collection

The basestation relies on various statistics to run the
storage index algorithm. Specifically, the basestation
needs know about data that sensors have sampled and
what their surrounding network topology looks like. To
achieve this, sensors periodically transmit statistics in
summary messages up the routing tree to the basesta-
tion. A summary message contains a coarse histogram
over recent data, some network topology information,
as well as the lowest, highest, and sum of all values
over recent data, as well as the ID of the last complete
storage index it has received from the basestation (see
Section 5.3).

The basestation always saves the last histogram it re-
ceives from each node, thus allowing it to reason about
a node even if newer summary messages are lost. In
our experiments about 40% of summary messages do
not reach the basestation, mostly due to network con-
gestion near the basestation. Consequently, the base-
station may have old statistics for some nodes, but, in
practice, this does not significantly impair the overall
performance of a storage index.

Summary histogram: The histogram part of the
summary message captures the distribution of sensor
readings on that node over its recent history. It con-
sists of nBins fixed-width bins (in our implementation,
nBins is 10). The value in bin n is the number of read-
ings between min + n((max — min + 1)/nBins) and
min + (n + 1)((maz — min + 1)/nBins), where min
and maz are the smallest and largest values the at-
tribute has taken on at s during recent history. For
example, if min = 1, maz = 100, and nBins = 10 and
a node produced 8 readings between 50 and 60, the value
of the 6th bin (n = 5) in the histogram would be 8.

A node needs its own recent readings to build this his-
togram and, therefore, writes its own readings in round-
robin fashion to a fixed-size recent-readings buffer (size
30, in our experiments). This ensures that summary
messages always contain histograms over the node’s
most recent data.

For the basestation to compute P(p — v), i.e., the
probability that, in the future, a certain node, p, will
produce a certain value v, p’s histogram is used as fol-
lows (assuming that the probability that a sensor takes
on any value in a bin is uniformly distributed):

P(p—v){
binWidth = (max — min + 1) /nBins
bin = (v — min)/binWidth
P(v|bin) = 1/binWidth
P(bin) = height(bin)/ (3, cpins Peight (D))
return P(v|bin) - P(bin)

Summary topology info: The topology part of the
summary message contains a list of the node’s n best
connected neighbors (12, in our experiments), sorted by
link-quality. A neighbor may or may not be a parent
or child in the routing tree. (A node establishes link-
quality from its neighbors by snooping the network and,
per neighbor, counting the number of packets it did not
receive using a monotonically increasing number that all
nodes put in the header of all their outgoing packets.)

In addition to learning about nodes’ neighbors this
way, the basestation also learns about parent/child re-
lationships in the routing tree through Scoop’s custom
packet header: each packet specifies the packet’s origin
and the origin’s parent. Network neighborhood informa-
tion from summary packets and the routing tree infor-
mation from Scoop’s packet headers allow the basesta-
tion to estimate the expected number of transmissions
(xmits(z — y) in Figure 2) between any two nodes.

5.3 Mapping messages

After generating a storage index (see Section 4),
the basestation splits it into different mapping mes-
sages since it is unlikely to fit in a single network
packet. Scoop uses Trickle [13] to disseminate these
storage index “chunks” to all nodes. Trickle uses a
gossip-based probabilistic flooding protocol to dissemi-
nate data throughout a sensor network. To reduce com-
munication overhead, the storage index is compacted
by coalescing consecutive values that map to the same
node into a single value range to node mapping. When
a node has received all chunks for one storage index,
it starts using that storage index, discarding the older
index. Nodes do not synchronize this transition with
other nodes.

Unfortunately, mapping packets may get lost, leav-
ing nodes with incomplete storage indices. In that case,
nodes continue to use the older complete storage index
they have. This allows the basestation to avoid com-
munication overhead by suppressing the dissemination
of a new storage index altogether if it is very similar to

the previous storage index; nodes will simply continue
to use an older storage index. It also allows the base-
station to more easily determine which nodes to query
at query time—something that would be unduly compli-
cated if nodes were to use half-assembled storage indices
(see Section 5.5). If a node has never received a com-
plete storage index, it stores all its data locally. The
next section discusses how to route data between nodes
who may be using different storage indices.

5.4 Routing sensor data

When a node produces a data item, it looks up the
value’s owner in its local copy of the storage index and
sends (if the node itself is not the value’s owner) a data
message to the owner telling it to store the data. This
section explains how data messages are routed in Scoop.
Though this routing algorithm does not always allow
any node to contact any other node in the network, it is
very simple, requires relatively little network state, and
works quite well in our implementation.

The goal of Scoop’s routing algorithm is to route a
certain value, v, to its owner, o, as dictated by the latest
storage index, even if the node that produced v does not
have the latest storage index. To achieve this, a data
message contains three fields: the data item itself (v),
an owner node (0), and a storage index ID (sid), all
three of which are initialized by v’s producer, i.e., the
node that initiates routing. However, o and sid may be
overwritten by nodes with a newer storage index, i.e., a
storage index with a higher ID than sid. On receiving
or producing a data item, a node n applies the following
routing rules (in order):

1. If n’s storage index is newer than sid, look up v
in n’s storage index and update o and sid in the
packet header.

2. If o == n, store data locally on n: write data to
the circular data buffer.

3. If 0 is in n’s neighbor list, send the packet directly
to that neighbor, irrespective of the routing tree.

4. If n is the base station, store it locally, i.e., don’t
route packets down the tree again.

5. If o is a node in n’s descendants list, send the packet
down the appropriate child branch.

6. Otherwise, send data item to n’s parent.

Step 1 allows nodes with storage index newer than sid
to modify the destination of the packet. Step 2 states
that the packet has reached its destination. (Notice that
the data bufferis separate from the recent readings buffer
mentioned in Section 5.2.) Step 3 is an optimization that
uses the neighbor list to take shortcuts through the rout-
ing tree. Step 4 is an optimization that prevents pack-
ets from being routed needlessly once they have reached
the basestation. Step 5 sends the packet towards one
of the node’s descendants, if the destination is in the

descendants list. In step 6, a node sends the packet to
its parent—this step may be invoked repeatedly until a
packet reaches the basestation.

Step 5 relies on a node’s descendants list, which, as
mentioned in Section 5.4, has a limited size. If a packet
is destined for a node that is n’s child, but n does not
have this destination in its descendants list, the packet
will either end up going to the basestation through (mul-
tiple) invocation(s) of step 6 or will be routed through
an alternate path, by virtue of steps 3 and 5.

As an optimization, Scoop reduces the number of
data packets by batching up to n sensor readings des-
tined for the same node together into one packet (by
default we use n = 5). As soon as a node produces data
for another node or the number of batched readings ex-
ceeds n, the message is sent.

As we describe in our experiments, we have used this
routing strategy extensively in both simulation (on net-
works up to 100 nodes) and on a real world, 62-node
sensor network. Our results show that about 85% of the
time, the appropriate destination node is found to store
a particular data value; the remaining 15% of the time,
the value ends up being stored at the root of the net-
work, because the destination node could not be found.
As we describe below, these results are sufficient to allow
us to sustain an aggregate storage rate of about 4 times
what a simple send-to-base strategy can provide, and
also substantially reduces the communications burden
on the root of the network.

5.5 Queries

A user issues queries from the basestation. A query
consists of a select list of attributes (e.g. light, tempera-
ture), a time range specifying a minimum and maximum
timestamp of interest, and a set of value ranges speci-
fying the minimum and maximum ranges of interest for
each of the attributes. With a megabyte of Flash mem-
ory, a Scoop node can store about 670,000 12-bit sensor
readings. Thus, at 10 Hz, users will be able to query
about 1,000 minutes of historical data.

The basestation determines the set of nodes to be
contacted for this query by consulting the storage in-
dex(es) for the specified attribute(s) and time-range(s).
(Unlike nodes, the basestation never discards old stor-
age indices.) The value ranges in the query are used to
find the appropriate entries in storage indices that could
have been active at the time specified in the query. This
yields the IDs of one or more nodes to be queried. Since
different storage indices (see Section 5.3) may have been
active at the query time on different nodes, a particu-
lar value may be stored at different network locations,
rather than just one. For that reason, the basestation
examines all storage indices active at that time (spec-
ified in its collection of summary messages — see Sec-
tion 5.2) to establish the overlapping set of all possible
nodes that may have the queried values corresponding
to the time in the query. Alternatively, a user can query
values from one or more specific nodes, in which case the
query just specifies a time range and the list of nodes.

Once it has established which nodes it needs to con-
tact, the basestation encodes the query in a query packet
and specifies which nodes it wants an answer from using
a bitmap in the packet’s header. (This puts an upper
bound to the size of the sensor network; 128 nodes in
our current implementation.)

Scoop uses a modified version of Trickle [13] to dis-
seminate query packets: our version uses both the
packet’s bitmap and a node’s neighbor and descendants
list to selectively re-broadcast query packets. If a node’s
ID corresponds to a 1 bit in the bitmap, the node lin-
early scans its data buffer for matching tuples. (Given
the current limited size of the buffer, a linear scan poses
no significant overhead. An index may be necessary if
the size of the buffer increases.) The node then sends
a reply—even if no tuples matched the query—through
the routing tree back to the basestation. In practice, it
takes several seconds for the first replies to come back
to the basestation. In the worst case, all nodes are in-
volved in answering a query (if the user queries the en-
tire attribute’s domain), but in all other cases a (much)
smaller subset of nodes is queried, because of Scoop’s
index of value ranges to single nodes.

As an optimization, the basestation may use data
from its summary messages to answer queries, which
requires no network traffic at all. For example, since
summary message contain the maximum attribute value
measured per time period, queries that ask for the max-
imum value can be easily satisfied. To answer historical
queries in similar fashion, the basestation never discards
any summary message.

For each query it issues, the basestation updates its
statistics that keep track of the query rate, and which
attributes and what value ranges get queried. These
numbers are used to estimate P(user queries v) and the
query rate used in the algorithm from Figure 2.

6 Experiments

We implemented Scoop in TinyOS [8] and ran it
in simulation (using the TOSSIM packet-level network
simulator [11]) and on a 62-node indoor testbed consist-
ing of Mica2 and Cricket [4] motes. Because the Scoop
basestation requires more memory and CPU power than
current mote hardware can provide, we ran the basesta-
tion on a PC connected to a mote using EmTOS [6].

As shown below, results obtained from simulation ex-
periments and experiments on the real testbed are sim-
ilar (modulo topology differences), which we take to in-
dicate that the experiments run solely in simulation are
a good predictor of real-world performance.

As we argued before, energy consumption is domi-
nated by communication overhead. Therefore, our cost
metric is the total number of messages the nodes collec-
tively send. The goal of our experiments is to compare
Scoop against other storage policies using this cost met-
ric under different loads. The systems involved in our
experiments are:

SCOOQOP is an implementation of the system we de-
scribe in this paper, with one important change: the

name description implemented
SCOOP | hybrid storage policy yes
LOCAL | store locally, broadcast queries | yes
BASE send all data to basestation yes
HASH static hash to route data no, analytically

optimization described in Section 4 where Scoop can de-
fault to “store-local” (aka LOCAL) has been disabled.
In LOCAL, nodes store all data locally and queries are
flooded to all nodes in the network. In BASE, all nodes
send their data up the routing tree to the basestation
and queries have no associated cost. Assuming nodes
are uniformly distributed, we expect, on average, each
data item to be sent roughly halfway across the net-
work. In HASH, a uniform, static hash function maps
each value to a node in the network where it is stored.
Particular data values can then be found by applying
this hash function to find the desired nodes. This ap-
proach is similar to the proposal for geographic hash
tables (GHTs) [21] described in the literature as in-
network storage technique. We expect the overall stor-
age costs of HASH to be comparable to the storage costs
of BASE because, on average, each packet has to be
sent roughly halfway across the network as a result of
hashing. However, HASH will incur additional costs for
querying. As noted in papers that originally proposed
the HASH scheme [21], one major benefit of HASH over
BASE is reduction in load on certain hotspot nodes,
since during storage no node has to transmit more data
than any other. We briefly evaluate Scoop according
to this same metric below. Because we did not have
a working implementation of HASH (in particular, we
didn’t have a routing protocol that could reliably route
from any node to any other node) we evaluate the cost
of this HASH approach analytically.

name description sim/testbed

REAL trace of real light data sim only

UNIQUE produce value equal to node ID | both
EQUAL all nodes produce same value both
RANDOM random values both
GAUSSIAN | values distributed around mean | both

Since Scoop is sensitive to the actual data distri-
bution, we generate sensor data according to different
methods, enumerated in the table above. For REAL,
we use a trace of light data collected from a 50-node in-
door sensor network deployment [1]. Each time a node
in our experiments needs to produce a value, it reads
the next number from this trace and produces that. Be-
cause these sensors were deployed in the same build-
ing, their light readings are highly correlated. However,
since TinyOS has no file system support, we could only
use the REAL data trace in simulation. For RANDOM,
nodes produce random numbers in the range [0,100]. For
EQUAL, all sensors in the network produce the same
value for the duration of the experiment. For GAUS-
SIAN, each sensor ¢ randomly selects a mean value u;
from the range [0,100], which it uses for the duration of
the experiment. It generates readings by sampling from
a uni-dimensional Gaussian with mean p and variance
of 10. This is meant to approximate the behavior of

20 20
= =
o o
3 S
Lol ko)
X 15 X 15
0 %3
> >
3 3
2 10 @ 10
£ £
i} k]
5 > 5
[=] [=]
c =

o - o -

scoop/unique local/gaussian
scoop/gaussian base/gaussian

storage method/data source

scoop local hash base

storage method

query/reply messages
mapping messages
summary messages
data messages

15

10 —

no. of messages (x1000)

unique equal real random
gaussian

data source

Figure 3. Left: Scoop compared to BASE and LOCAL on the testbed. Middle: Simulation results of Scoop compared to
LOCAL, HASH, and BASE over the REAL data trace. Right: Simulation results of Scoop over different data sources.

a number of independent sensors generating data. For
UNIQUE, each sensor produces its own, unique node 1D
as its value for the duration of the experiment.

The parameters we used in our experiment are listed
below. All experiments use these default parameters,
unless specified otherwise. All results we present are
averages over three trials.

parameter value remark
attributes 1

sample rate 1 in 15 seconds

query rate 1 in 15 seconds

summary rate | 1in 110 seconds Scoop only
remap rate 1 in 240 seconds Scoop only
size 62 nodes + 1 base

duration 40 minutes

data source REAL

By default, nodes sample their sensor (we measure
only one attribute) once every 15 seconds. The base-
station issues a query once every 15 seconds over 1-
5% of the attribute’s value domain (the query width).
Nodes send a summary packet every 110 seconds and the
basestation creates a new storage index (“remap rate”)
every 240 seconds which were values that worked well
across a range of experiments. We experimentally vary
the query width and data production rates in the exper-
iments below.

The 62-node testbed is spread out across one floor
of a large office building. The simulated topology also
consisted of 62 nodes that, on average, can communicate
with 20% of the nodes in the network at any given time,
and of the pairs that can hear each other loss rates vary
from twenty-five percent to about ninety percent. Con-
nections are slightly asymmetric, as in most real wire-
less networks. All experiments ran for 40 (simulated)
minutes. The first 10 minutes are spent stabilizing the
network: nodes send heartbeat messages to form the
routing tree. After the initialization period, nodes start
sampling their sensor. Prior receiving their first storage
index, nodes default to LOCAL storage.

Comparison of Scoop to other methods: Fig-
ure 3 (left) shows, per storage method, the breakdown
of cost into data, summary, mapping, and query/reply
messages on our mote testbed. Scoop running with
UNIQUE performs very well on our testbed—each node

produces its own, unique sensor reading, which allows
Scoop to generate an optimal storage index. On the
GAUSSIAN data source, Scoop outperforms LOCAL
and BASE. In the BASE case, the only packets are data
packets (from sensors to the basestation). In the LO-
CAL case, the only packets are query packets flooded to
all nodes from the basestation and the resulting reply
packets. SCOOP, with GAUSSIAN, adds some over-
head for summary and mapping messages but, in doing
so, finds an efficient storage index that vastly reduces
the number of data, query, and reply packets. Note
that we do not show HASH here because we can only
evaluate it using an analytical model in our simulator.

Similarly, Figure 3 (middle) shows simulation results
for different storage policies over the REAL data trace
(in simulation). These results are similar to Figure 3
(left): Scoop adds overhead for summary and mapping
packets for the storage index, but reduces overhead of
other packet types. Note that HASH is included here,
and, as expected, performs about as well as BASE since
the query and data production rate are approximately
the same.

Figure 3 (right) shows Scoop’s performance over dif-
ferent data sources in our simulation. Scoop performs
very well over UNIQUE since it exploits data locality.
In RANDOM, however, there is no data locality at all
for Scoop to exploit and so it performs no better than
BASE or HASH. In EQUAL all nodes produce the ex-
act same value; it incurs very few mapping messages
because the basestation suppresses new mappings that
do not change over time. EQUAL outperforms RAN-
DOM even though every value has to be transmitted to
a random node in both cases. EQUAL allows nodes to
batch equal values (up to 5 in our experiments) before
sending a data packet as described in 5.4. Note that
RANDOM represents the case where there is no pre-
dictability in the data (e.g., past is not a good indicator
of future values) and that in this case the system basi-
cally degenerates into performance that is equivalent to
BASE or HASH.

The “unique” and “gaussian” columns, when com-
pared to the “scoop/unique” and “scoop/gaussian”
columns in Figure 3 (left), show that the relative per-
formance of the simulation and real network are about

% Nodes Queried vs. No. Msgs

140 - /u 140 4

120

Query Interval vs. No. Messages

-+ SCOOP
=~ LOCAL

120 4 v BASE
~ -
s 3
g 100 H
S S
L tJ
¥ ¥
g 80 g
a 2
? 60 ?
[} [}
= =
§ 40 -O-SCOOP 5
4 z

=-LOCAL
-/v- BASE

N
o
L

o

0 2‘0 4‘0 6‘0 8‘0 1(;0 0 1‘0 2‘0 3‘0 4‘0 5‘0
% Nodes Queried Query Interval (s)

Figure 4. Cost as a func- Figure 5. Total cost
tion of percentage of for different storage
nodes queried for dif- methods as a function
ferent storage methods of the interval between

in simulation with REAL queries in simulation
data. with REAL data.

the same, although the overall breakdown of messages
is somewhat different due to variations in the topology
used in the two cases.

Varying query selectivity: Figure 4 shows the cost
of all storage methods with variable percentage of nodes
queried. Note that LOCAL and BASE perform simi-
larly because the sample rate and query rate are equal.
LOCAL performs slightly worse due to the overhead of
query dissemination, but this is negligible due to the
efficiency of Trickle at disseminating queries.

LOCAL is unaffected by the percentage of nodes
queried since it has to always query all nodes. Scoop
outperforms both BASE and LOCAL for various query
widths, but, around 60%, becomes slightly more expen-
sive than BASE due to messaging related overheads.
Clearly, when queries repeatedly ask for a substantial
subset of the data (e.g., when the percentage of nodes
queried is 100%), the best approach will be to simply
ship the data out of the network (i.e., use BASE).

Varying query rate: Figure 5 shows the total cost
for different storage methods as the query rate goes
down, i.e., query interval goes up. Since the query cost
is very small in SCOOP and zero in BASE, only LO-
CAL is substantially affected by this; as the query rate
drops, it becomes a more attractive option relative to
the others.

Other experiments: We measured the cost of
Scoop running on different data sources as the sample
interval increases (i.e., the rate at which data is stored
decreases). As less data is stored, differences between
the behavior of Scoop on different types of data are less
pronounced as the cost of queries, mappings, and sum-
maries becomes dominant.

In another experiment, we measured the loss rates of
Scoop on the testbed. Data messages are successfully
stored about 93% of the time, and about 78% of query
results are successfully retrieved on average. This query

success rate is comparable to the success rates obtained
from other systems like TinyDB [17].

We also measured the number of messages sent by
the root node in the network in the SCOOP, BASE, and
LOCAL cases to compare the skew in the total number
of transmissions. In most cases, the root node was the
most active node. In the case of the FILE workload run-
ning in simulation, the root node in SCOOP sent about
4,000 mapping and query messages, and receives approx-
imately 8,000 summary messages and 2,000 query reply
messages. In the case of BASE, the root node receives
about 24,000 data messages (and does no transmission).
In the case of LOCAL, the root node send about 2,000
query messages and receives about 1,800 query reply
messages. Hence, LOCAL places a lower burden on the
root, but requires all nodes to receive and retransmit all
2,000 query messages (explaining its high overall cost),
while BASE requires the root to do a great deal of re-
ception (which is costly as the radio must be on at all
times.)

This suggests that SCOOP has slightly more skew
than LOCAL, since the root and nodes near it must
consume additional energy due to handling of summary
and mapping messages, but we believe this tradeoff is
worthwhile as it allows SCOOP to use significantly less
energy overall. In terms of overall energy consumption,
this means that, for example, if a node running LOCAL
can last for one month using a small battery, an aver-
age SCOOP node would last for about three months,
although the battery on the root in SCOOP would have
to be replaced every two weeks.

We also ran several experiments on different sized
topologies (up to 100 nodes) in simulation, though we
omit a detailed study of those results due to space con-
straints. We found that the system scaled well up to 100
nodes with little overall effect on loss rate. We observed
that Scoop over a RANDOM distribution is more sensi-
tive to larger networks as data is sent further across the
network; Scoop over other distributions is less sensitive
to network size.

We believe these real-world results demonstrate the
practicality of Scoop —it runs on a large mote testbed,
providing good overall performance using standard
TinyOS networking protocols.

7 Related work

Ratnasamy et al. [21] compare the performance of
a hashing-based approach called “data centric storage”
with the performance of a local storage approach and
a “ship-to-root” approach similar to our local storage
and base storage methods described in Section 4. They
show that hashing performs better in sensor networks
that (a) are large and (b) collect data at high rates, but
with an overall lower query rate. The overall perfor-
mance of their approach is similar to that of the hash-
ing scheme we compare against: it works well when the
query rate is high relative to the data rate, but as the
data rate gets high, the cost of routing data to a random

location dominates the overall cost. Unlike Scoop, such
in-network storage schemes are non-adaptive, choosing
a random location for each value or event type according
to a fixed hash function.

Liu et al. [15] propose a system that investigates the
trade-offs between push and pull in query systems; these
two opposites are analogous to our BASE and LOCAL
schemes; as we show, the Scoop approach outperforms
either of these approaches.

Li et al. [14, 7] propose a hash-based approach called
DIM that strives to hash nearby sensor readings to the
same node. This approach is well suited to range queries
in sensor networks. Although the DIM approach is good
for range queries, it suffers from the same limitations as
GHT since it high data-storage cost because readings
are sent far across the network and is non-adaptive.

Trigoni et al. [22] present a system that uses statis-
tics about query frequency and data production rates to
optimize network bandwidth in a multi-query environ-
ment. Their idea is to “push” data some distance up the
network, towards then sink, and then “pull” the data the
rest of the way when queries arrive. They tune the dis-
tance that data is pushed in the initial phase based on
expected rates of querying and data production. Unlike
our approach, they do not take into account the values
that sensor produce or that queries ask for in determin-
ing how far to push data or where to store it. Kapadia
and Krishnamachari [10] present a theoretical analysis
of several such push-pull strategies, but also do not use
a statistics driven approach.

There has been much work on building summaries
and histograms in the database community that could
be adapted to Scoop. Mannino et al. [19] summa-
rize much of the early work in this area; our statis-
tics are currently based on equal-bin-width histograms,
and could benefit from more sophisticated summariza-
tion techniques.

8 Conclusion

By collecting statistics about network conditions and
data and query rates in a store-and-query sensor net-
work, Scoop periodically creates a storage policy that
optimizes where sensors should store their data such to
minimize overall communication. Scoop is a hybrid be-
tween several existing in-network storage approaches,
sometimes acting like a purely local store when query
rates are low and sometimes degenerating to the case
where all data simply routed to the root of the network
when query rates are very high. For this reason, Scoop
almost always performs as well as, and usually much
better, than existing approaches. Furthermore, our net-
working protocols work well despite high loss rates in
sensor networks and we do not rely on complete network
topology information or geographic routing protocols.
Our results demonstrate that Scoop runs quite well on
current generation medium-scale mote-based networks
on the order of 100 nodes. For these reasons, Scoop is a
core piece of our work on sensor network querying that

10

we view as essential technology for future WSN-based
monitoring deployments.

References

[1] Intel lab data. Web Page. http://db.lcs.mit.edu/labdata/
labdata.html.
(2] R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, L. Kr-
ishnamurthy, N. Kushalnagar, L. Nachman, and M. Yarvis.
Design and deployment of industrial sensor networks: Expe-
riences from the north sea and a semiconductor plant. In
Proceedings of SenSys, 2005.
D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In Proceedings of MobiCom, 2003.
I. Crossbow. Wireless sensor networks (mica motes). http:
//www .xbow.com/Products/Wireless_Sensor_Networks.htm.
A. Desphande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In VLDB, 2004.
L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Es-
trin, E. Osterweil, and T. Schoellhammer. A system for simu-
lation, emulation, and deployment heterogeneous sensor net-
works. In Proceedings of SenSys, 2004.
R. Gummadi, X. Li, R. Govindan, C. Shahabi, and W. Hong.
Energy-efficient data organization and query processing in
sensor networks. In ICDE, 2005.
J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pis-
ter. System architecture directions for networked sensors. In
ASPLOS, November 2000.
A. Jain, E. Change, and Y.-F. Wang. Adaptive stream re-
source management using kalman filters. In Proceedings of
SIGMOD, 2004.
S. Kapadia and B. Krishnamachari. Comparative analysis
of push-pull query strategies for wireless sensor networks. In
DCOSS, 2006.
P. Levis. Tossim: Accurate and scalable simulation of entire
tinyos applications. http://citeseer.ist.psu.edu/651380.
html.
P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The emergence of net-
working abstractions and techniques in tinyos. In Proceedings
of USENIX NSDI, 2004.
P. Levis, N. Patel, D. Culler, and S. Shekner. Trickle: A self-
regulating algorithm for code propagation and maintenance
in wireless sensor networks. In Proceedings of NSDI, 2004.
X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-
dimensional range queries in sensor networks. In SenSys,
2003.
X. Liu, Q. Huang, and Y. Zhanh. Combs, needles, haystacks:
Balancing push and pull for discovery in large-scale sensor
networks. In Proceedings of SenSys, 2004.
S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor net-
works. In Proceedings of SIGMOD, 2003.
S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin.
TinyDB web page. http://telegraph.cs.berkeley.edu/
tinydb.
A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler.
Wireless sensor networks for habitat monitoring. In ACM
Workshop on Sensor Networks and Applications, 2002.
M. V. Mannino, P. Chu, and T. Sager. Statistical profile
estimation in database systems. ACM Computing Surveys,
20(3):191-221, 1988.
G. Pottie and W. Kaiser. Wireless integrated network sen-
sors. Communications of the ACM, 43(5):51 — 58, May 2000.
S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govin-
dan, and S. Shenker. GHT: A geographic hash table for
data-centric storage. In WSNA, 2002.
A. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman.
Hybrid push-pull query processing for sensor networks. In
Proceedings of the GI Workshop on Sensor Networks, 2004.
A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks.
In ACM SenSys, 2003.
Y. Yao and J. Gehrke. Query processing in sensor networks.
In CIDR, 2003.

[3]

[4

[5]

6

[7]

8

[9]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17]

(18]

(19]

[20]

21]

[22]

23]

24]

