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Abstract

We propose a new algorithm for the classical assignment problem. The

algorithm resembles in some ways the Hungarian method but differs substantially

in other respects. The worst case computational complexity of one implementation

of the algorithm for full dense, all integer, NxN problems is O(N3 ) - the same

as the Hungarian method. Its average complexity, however, seems to be considerably

better. In a large number of randomly generated problems the algorithm has

consistently outperformed an efficiently coded version of the Hungarian method

by a broad margin. The factor of improvement increases with problem dimension

and reaches an order of magnitude for N equal to several hundreds.
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1. Introduction

The assignment problem was among the first linear programming problems

to be studied extensively. It arises often in practice and it is a fundamental

problem in network flow theory since a number of other problems, such as

the shortest path, weighted matching, transportation, and minimum cost flow

problems can be reduced to it ([1E], p.186, 187). It is characteristic in this

respect that the first specialized method for the assignment problem, namely

Kuhn's Hungarian method 2], was subsequently extended for solution of much more

general network flow problems. Furthermore, some of its main ideas were

instrumental in the development of more general methods such as the out-of-

kilter and nonbipartite matching methods. This suggests that the assignment

problem is not only an important problem in itself, but also represents a

suitable testing ground for-new computational ideas in network flow theory.

It is for this reason that we restrict attention to the assignment problem

even though the ideas of this paper have extensions to more general problems.

In practice the assignment problem is currently solved by either

specialized forms of the simplex method [3] - [5], or by means of versions of

Kuhn's Hungarian method [61, [7]. There exist several competing codes for

assignment and in fact there seems to be some controversy regarding the

relative merits of simplex codes and primal-dual (i.e. Hungarian) codes

[6], 18]. A recent well documented computational study [7] finds simplex

and primal-dual codes roughly comparable. From our own analysis and computational

experience (see Section 3) it appears that the reported performance of primal-

dual methods can be significantly improved by efficient implementation. We do

not know whether the same is true for simplex codes. We note that we did not
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have access to any existing special code for the assignment problem so our

reasoning is based exclusively on documentation by other researchers rather

than personnal experience.

The computational complexity of many of the existing codes is unknown

and in fact some of these codes ([3], [61) are proprietary. It is known

that the complexity of the Hungarian method for full dense, all integer,

NxN assignment problems is 0(N ) ([1], p. 205), but the complexity of the

implementation of [7] which is reported to be comparable to the best

simplex type methods, is apparently worse than 0(N ) (see Section 3). To

our knowledge there is no simplex type method with complexity as good as

O(N3 ).

The purpose of this paper is to propose a new method for solving

the assignment problem. We show in the next section that the worst case

complexity of the pure form of the method for full dense, all integer, NXN

problems with the elements of the assignment matrix taking values in the

interval [O0,R] is 0(N 3 ) + O(RN2). It appears, however, that for all values

of R, large or small, the method performs at its best when it is combined

with the Hungarian method. This combination is described in Section 4 and

the worst case complexity of the resulting method is 0(N 3). Its average

complexity,however, seems to be substantially better than both 0(N 3 ) as

well as the average complexity of the Hungarian method. This is demonstrated

by means of extensive computational experiments with randomly generated

problems. These experiments show that the new method consistently out-

performs an efficiently implemented version of the Hungarian method

fO(N3 complexity] by a broad margin. Indeed, out of more than a thousand ran-

domly generated problems solved with N > 20 we did not find a single problem where
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our method did not work faster than the Hungarian method, Furthermore, the

factor of improvement increases with N thereby suggesting a better average

complexity. For large problems with N being several hundreds our method

Can converge ten or more times faster than the Hungarian method,

Since we have been unable to characterize analytically the average

complexity of our method we cannot claim to fully understand the mechanism

of its fast convergence. This seems to be a difficult problem and in fact

we do not know of a corresponding average complexity result for the

Hungarian method. On heuristic grounds, however, it appears that the new

method owes its good performance principally to a phenomenon which we

refer to as outpricing. This is explained more fully in the next section

but basically it refers to a property of the method whereby during the

course of the algorithm the prices of some sinks are increased by large

increments - much larger than in the Hungarian method. As a consequence

these sinks are temporarily or permanently outpriced by other sinks and

are in effect driven out of the problem in the sense that they do not

get labeled and scanned further - at least for relatively long time periods.

As a result the algorithm requires fewer row operations since in effect

it deals with a problem of lower dimension.

There are a number of open questions regarding the ideas of this

paper. The performance of our algorithm has been extensively tested with

full dense problems but not with large sparse problems. It will become

evident to the reader that our method is at least as suitable for exploiting

sparsity as the Hungarian method, but we have not yet developed a sparse

problem code. Common sense suggests also that problem sparsity will enhance

the outpricing phenomenon thereby inducing even better performance for our
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method, but this remains to be verified. We also expect that algorithms

similar to the one of the present paper can be developed for other more

general problems such as transportation, minimum cost flow problems, etc.

Such algorithms are currently under investigation. Some preliminary work is

reported in [9].

2. The Pure Form of the Algorithm

Consider a bipartite graph consisting of two sets of nodes S and

T each having N elements, and a set of directed links L with elements

denoted (i,j) where iS and jET. We refer to elements of S and T as

sources and sinks respectively. Each link (i,j) has a weight a..

associated with it. By an assignment we mean a subset X of links such

that for each source i (sink j) there is at most one link in X with

initial node i (terminal node j). We say that a source i is unassigned

under X if (i,j)$X for all (i,j)eL. Otherwise we say that source i is

assigned under X. We use similar terminology for sinks. We wish to find

an assignment that maximizes (i X ai. over all assignments X of cardinality N.
(ij)sX EX

Throughout the paper we will assume the following:

a) There exists at least one assignment of cardinality N.

b) The weights a.. are nonegative integers not all zero, and
1]

the maximal weight will be denoted by R, i.e.

R = max a..>O
(i,j)EL 

c) For each source i there are at least two links (i,j) in L.

The nonnegativity assumption on the weights involves no loss of

generality since if we add a constant to all weights the problem remains

essentially the same. Assumption c) also involves no loss of generality,

_ I_ _� _ C_ _�III�1_LL�
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since if for some source i there is only one link (i,j)SL, then (i,j) is

certainly part of any optimal assignment and as a result nodes i and j

can be removed from the problem thereby reducing dimensionality. We use

assumption c) for convenience in stating our algorithm.

The assignment problem can be embedded into the linear program

(1) maximize E a.. x..

subject to E x.. = 1 , i = 1...,N
(i,j)EL 

E ·. j
(i,j)SL 1ij v .

The corresponding dual problem in the vectors m = (ml,...,m N), P (PPN)

is

N N

(2) minimize a mi + ~ pj
i=l j=l

subject to m i + Pj > a.. , V (i,j)eL.
-- 1

The scalars pj and (aij - pj) will be referred to as prices and profit margins

respectively. From complementary slackness we have that if (i,j) is part

of an optimal assignment, then for any optimal solution (m,p) of the dual

problem we have

(3) m. = ij - P = max {in - Pn all n with (i,n)SL}

i.e., at an optimum source i is assigned to a sink j offering maximum

profit margin relative to the price vector p.

The Hungarian method solves the dual problem by generating for

k k k
k = 0,1,... vectors m , p together with a corresponding assignment X

·� · I- --- I �- -8111-
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k k k
For each k the vectors m , p are dual feasible and for all (i,j)CX the

complementary slackness condition (3) is satisfied. These features are also

shared by the algorithm we propose. In the Hungarian method if a source i

k
or sink j is assigned under some X it continues to be assigned under all

k 
X , k > k . In our method this is also true for sinks j but it is not

true for sources i. Sources may come in and out of the current assignment

with attendant changes in the vectors m and p. Another difference of our

method over the Hungarian method is the manner in which the dual variables

are incremented. In the Hungarian method every change in the vectors m

and p induces a reduction of the value of the dual cost function. In our

method when changes are made on the values of m and p all that is guaranteed

is that the objective function value will not increase.

Both the Hungarian method and the algorithm we propose involve flow

augmentations along alternating paths, and changes in the values of dual

variables. The roles of these two devices are, however, somewhat different

in the two methods. The Hungarian method is geared towards assigning the

unassigned sources by searching directly for an augmenting path along links

(i,j) with mi + pj = aij . Dual variable changes are effected only when

no more progress can be made towards generating such an augmenting path.

In our method the roles of searching for an augmenting path and changing

the dual variables are in effect reversed. Primary consideration is given

to increasing the prices of assigned sinks as much as is possible without

violating the complementary slackness constraint. The aim here is to make

the prices of unassigned sinks "competitive" with those of assigned sinks.

Augmentation is in some sense incidental and takes place either when it

- I "
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can be effected at essentially no computational cost, or when it is no

more possible to continue the process of increasing prices of assigned

sinks without violating the complementary slackness constraint.

We now describe formally our method. A more specific implementation

together with an initialization procedure will be given in Section 4.

The method is initialized with any integer vectors m,P © that are dual

feasible and with X being the empty assignment.

k k k
For k = 0,1,..., given (m , p , X ) satisfying for all iS

k k if (i,j)Xk
m. + p = a (i )E

k k
mi + P an V (i,n)SL

we stop if Xk has cardinality N. Otherwise we use the following procedure

k+l k+x k+l
to generate (mk p ) satisfying for all iSS

k+l k+l k+l
m. + p = a.. if (i,j)SX

1 j 1D

k+l k+l
m. + P > a v (i,n)CL3. n - in

- -I "" '�� ;--;---�--�-� I-



-8-

(k+l)st Iteration of the Algorithm

k
Choose a source i which is unassigned under X Compute the maximum

profit margin

(4) m = max {a-. - P (i, j)L}

and find a sink T such that

- k
(5) m = a P-

Compute also the "second maximum" profit margin

(6) m = max {alj - p I (i,j)SL, j 3}

Proceed as described for the following two cases:

Case 1 (m > m, or m = m and sink j is unassigned under X ):

Set

(7) mi

(8) k+l
(8) ki

pj

k
mi

= i 1

m

k
Pj

k

Pj

for i 4 i

for i = i

for j j

+ m - m for j = j

k k
If j is unassigned under X , add (i, j) to X , i.e.

X = xk V{(i, j)}

k k+l k
If (i, j)X for some iS, obtain X from X by replacing (i,j) by

(i, j), i.e.

Xk = [x U {(i, ) }] - {(i, j)}

This completes the (k+l)st iteration of the algorithm.

�-------��-II---"�- -I I-�I------D-e
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Case 2 (m = m and, for some iES, (i, j)EX

Give the label "0" to i. Set

k -
(9) M-. Mm_ + m

Tj = O , j = 1,...,N,

and perform the following labeling procedure (compare with tl], p.205).

Step 1 (Labeling): Find a source i with an unscanned label and go to

Step la, or find a sink j Z j with an unscanned label and Kj = 0, and go

to Step lb. If no such source or sink can be found go to Step 3.

Step la: Scan the label of source i as follows. For each (i,j)eL for which

k k
mi + - a < I. give node j the label "i" (replacing any existing label). ij ]

k k
and set . = mi + pj - a... Return to Step 1.

Step lb: Scan the label on the sink j $ j with T. = 0 as follows. If j is

unassigned under Xk go to Step 2. Otherwise identify the unique source i with

(i,j)£X k , and give i the label "j". Return to Step 1.

Step 2 (Augmentation): An augmenting path has been found that alternates

between sources and sinks, originates at source i and terminates at the sink

j identified in Step lb. The path can be generated by "backtracing" from

label to label starting from the terminating sink j to the originating

k ksource i. Add to X all links on the augmenting path that are not in Xk and

remove from X all links on the path that are in Xk to obtain Xk+ l Set mk 1,

k+l
p as in (7) and (8). This completes the (k+l)st iteration of the algorithm.

The notation A-B means that the current value of the variable A is changed
to the current value of B.

__1_1_______1___··______I________� � I _ �as� a _ I



Step 3 (Change of dual variables): Find

6 = min{jjjT, 7t > }

Set

m - 6 if i has been labeled
k+l

(m if i has not been labeled

k
[Recall here that m-- was set equal to m in the initialization of the labeling

1

procedure c.f. (9)]3. Set

p + d if = 0
k+l J D

Pi

(pj if I > 0

Obtain Xk + l from X by replacing (, j) by (i, ), i.e.

k+l k
X = [xk U(i, {(i, j)}

This completes the (k+l)st iteration of the algorithm.

Notice that, by contrast with the Hungarian method (see Section 3), the

iteration need not terminate with a flow augmentation. It can also terminate

with a change in the dual variables (Case, 1, j is assigned, or Case 2, Step 3)
k+l

but in this case the source i under consideration becomes assigned under X

while some other source which was assigned under X
k becomes unassigned under X

Unfortunately the description of the algorithm is quite complicated.

For this reason some explanatory remarks are in order. Case 1 is easy to

understand so we concentrate on Case 2. (Actually Case 1 is a degenerate

special case of Case 2 as the reader can verify. We have decided to state

separately the two cases in order to enhance clarity). In Case 2 we

basically try to find an augmenting path not containing j from source i

-- �--�-
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to an unassigned sink. There are two possibilities. Either an augmenting

path will be found through Step 2 of the labeling procedure, or else a change

in the dual variables will be effected through Step 3. In the first case

k+l
the link (i, j) will be retained in X and the sink at which the augmenting

path terminates will be assigned under X as shown in Figure 1. In the

second case the link (i, j) will be replaced by i, j) in Xk + l and no new

sink will be assigned under X as shown in Figure 2. The dual variables

k+l k+l
will change, however, by the minimum amount necessary to obtain mi + p = a.

for some labeled source i and labeled but unscanned sink j. A similar (but

not identical) labeling procedure is used in the Hungarian method (see

Section 3). In the Hungarian method after a change in dual variables occurs

the labeling procedure continues until an augmenting path is found. By

contrast in our method the labeling procedure terminates with a change in

the dual variables and a new iteration is started with a new unassigned sink.

The order in which unassigned sources are chosen by the algorithm is

not essential for the convergence result of Proposition 1. However, from

the practical point of view it is important that a scheme that ensures

fairness for all unassigned sources be utilized. In subsequent examples

as well in our implementation of the method the scheme adopted is one whereby

a list of unassigned sources is maintained by the algorithm. At each

iteration the source at the top of the list is chosen and if a new source

k
becomes unassigned (Case 1, j assigned under X , or Case 2, Step 3) it is

placed at the bottom of the list.

We illustrate the algorithm by means of an example.

I -----·· - - as 1-- 3�
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Example 1: Consider the 4x4 full dense problem represented by the following

initial tableau.

The matrix of weights is shown in the lowerright portion of the tableau.

The row above the matrix gives the initial prices arbitrarily chosen to

be zero. The column to the left of the matrix shows the initial profit

margins. We have chosen m = 10 for all i - one of the many choices

satisfying feasibility. The extreme left column gives the sinks j, if any,

to which sources are assigned. Here we are starting with the empty

assignment. We describe successive iterations of the algorithm. The

corresponding tableaus are given in Figure 3.

1st Iteration: We choose the unassigned source 1. We have m = 6, m = 3,

j = 3. We are thus in Case 1.

2nd Iteration: We choose the unassigned source 2. We have m = m = 4.

Suppose j = 2. Since j is unassigned we come again under Case 1. (If

we had chosen j = 3 then we would have come under Case 2. We would have

j p0 0 0 0

10 1 3 6 1

10 2 4 7 3

10 2 5 7 2

o10 1 3 5 1

� - -- I --I- --·- -



-14-

j m. 0 0 3 0

3 3 , 1 3 6 1

10 2 4 7 3

10 2 5 7 2

10 1 3 5 1

After 1st Iteration

p
i m. O 1 3 0

3 3 1 3 6 1 

' 4 2 4 7 3

2 4 2 5 7 2

10 I 1 3 5 1 

After 3rd Iteration

j i<. 0 2 4 0
1

3 2 1 3 6 1

j4 3 2 4 7 3

4 2 5 7 2

2 1 1 3 5 1

i ' I 

After 5th Iteration

j i 0 0 3 0

i
3 3 { 1 3 6 1

i

2 4 2 4 7 3

10 2 5 7 2

: 10 1 3 5 1

I ; . . . _

After 2nd Iteration

p

|j mi 0 2 4 0 i

J3 2 1 3 6 1

4 2 4 7 3

4 , 2 5 7 2

2 1 1 3 5 1

After 4th Iteration

j 0 2 4 0

3 2 1 3 6 1

4 3 2 4 7 3

2 3 2 5 7 2

:1 1 ! 1 3 5 1

After 6th Iteration

Figure 3

-
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obtained the degenerate augmenting path (2,2) through Step 2 of the labeling

procedure and the end result would have been the same.

3rd Iteration: We choose the unassigned source 3, Here m = 5, m = 4, j = 2.

We are thus again in Case 1. But now source 2 will be driven out of the

assignment and will be replaced by source 3.

4th Iteration: We choose the unassigned source 4. Here m = m = 2. Suppose

j = 2. We are now in Case 2 with i = 3. Applying the labeling procedure

we label first source 4. A simple computation shows that sink 3 is labeled

from source 4 and then source 1 is labeled from sink 3. No more labels

can be scanned so we are in Step 3 of Case 2. Source 4 will enter the

assignment and source 3 will be driven out. We have & = 1 and the corresponding

tableau is shown in Figure 3.

5th Iteration: We choose the unassigned source 2. Here m = m = 3. Suppose

j = 4. We are in Case 1 and (2,4) will be added to the assignment. (The

result would be the same if j = 3 in which case the degenerate augmenting

path (.2,4) would be obtained via Step 2 of Case 2).

6th Iteration: We choose the unassigned source 3. Here m = m = 3. Suppose

j = 3. We are in Case 2 with i = 1. Applying the labeling procedure we

label first source 3. Sink 2 is labelled from source 3 and then source 4

is labeled from sink 2. Next sinks 1 and 4 are labeled from source 4.

Sink 1 is unassigned and this yields the augmenting path (3,2), (4,2),

(4,1) in Step 2 of Case 2. The algorithm terminates.

-- -1' b �*---·----LPI·(·I�
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We make the following observations regarding the algorithm.

(a) The sequences {m } , i = 1,...,N are monotonically nonincreasing while
1

the sequences {p.} are monotonically nondecreasing.

(b) If for some k a sink j is assigned under X then it remains assigned

k
under X for all k > k.

(c) At each iteration initiated with an unassigned source i one of two things

can happen. Either the cardinality of the assignment increases by one

(Case 1, j is unassigned, or Case 2, step 2), or else at least one

variable m. will decrease strictly by an integer amount and at least

one price will increase strictly by an integer amount (Case 1, j is

assigned, or Case 2, step 3).

(d) For every k and isS we have

(10) i if (ij)Xk(10) mi + j = a(ij)X

k k
(11) m. + Pn > an V (i,n)L.

From (10) and (11) we see that dual feasibility and complementary slack-

ness are maintained throughout the algorithm. Thus if the algorithm terminates

(by necessity at an assignment of cardinality N), then the assignment and dual

variables obtained are optimal. The following proposition shows that termination

is guaranteed under the assumption made earlier that there exists at least

one assignment of cardinality N.

Proposition 1: The algorithm of this section terminates at an optimal

assignment in a finite number of iterations.

__�I��_ �a� _I� ___�I� ______



-17-

Proof: Assume that the algorithm does not terminate. Then after a finite

number of iterations the cardinality of the current assignment will remain

constant and at each subsequent iteration at least one Variable mi will

decrease strictly and at least one price will increase strictly [observation

c) above]. Hence the sets S T defined by

S. = {iEs| lim m =
k~t

TX = {jET I lim p = 

are nonempty. For all k sufficiently large the sinks in T are assigned

under Xk [observation (b)], and they must be assigned to a source in S.

[observation (d)]. Furthermore, since the algorithm does not terminate,

some source in S must be unassigned under X. It follows that the cardinality

of S is strictly larger than that of T . From (11) it is clear that there

cannot exist a link (i,j)SL such that iS and jT . Thus we have

{jl (i,j)sL, isS }C TX

while S has larger cardinality than T . This contradicts the assumption

that there exists an assignment of cardinality N. Q.E.D.

We now estimate the worst case computational complexity of the algorithm

for full dense problems (i.e. for problems such that (i,j)EL for all iS, jT).

By subtracting (11) from (10) we have for all k, iS and nET

(12) Pk < a ain < R if (ij)X k.
j n- aJ in-

Suppose that B1 and B2 are lower and upper bounds for all initial prices,

i.e.

(13) B < p < B2 V jT.
B1 <p 2

_II_ � �___ 11_1__ _ �_�
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For each k there must be at least one unassigned sink, say nk and we must

k o
have p = P < B2. It follows from (12) and observation a) that

nk nk

(14) B1 PR < B2 v k = 0,1,..., jeT.

It is easy to see that there is an integer y such that the kth iteration of

the algorithm requires at most ynkN computer operations where

1 in Case 1

nk k

number of labelled sources in Case 2

There can be at most N iterations at which the cardinality of X increases

so the number of operations needed for these is bounded by yN . At each

iteration k for which the cardinality of Xk does not increase, nk prices

will be increased by at least unity. If follows from nk < N and (14) that

the total number of these iterations is bounded by R + (B2 - B1). Hence

the total number of operations for these iterations is bounded by

Y(R + B2 - B1)N . If we restrict the initial prices so that for some integer

y we have B2 - B1 < yR(as indeed would be the case with any reasonable

initialization procedure including the one used in our experiments) we

obtain the upper bound yN3 + y(l + y)PR2 on the number of operations necessary

for problem solution. Thus the worst case complexity of the pure form of the

algorithm for full dense problems is

(15) O(N3 ) + O(RN2 )

While the worst case complexity of the algorithm is inferior to the

one of the Hungarian method for large R, we would like to emphasize that,

as experience with the simplex method has shown, worst case complexity and

I_ � �I � _ I
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average complexity of an algorithm can be quite different. Thus two algorithms

with comparable worst case complexity can differ substantially in their

performance in solving randomly generated problems or problems typically

arising in practice. In our computational experiments with random problems

we found that the algorithm often performed surprisingly better than the

Hungarian method. The following example illustrates what we believe is the

mechanism responsible for this superior performance.

Example 2: Consider the NxN full dense problem specified by the assignment

matrix

N

N N-1

N N-1 N-2

. . . 3

· . . 2 2

N N-1 N-2 3 2 1

with all elements above the diagonal equal to zero. Let us trace the

iterations of our algorithm for this problem starting with p = 0 and the

empty assignment. In the first iteration source 1 is chosen, we have

m = N, m = 0, j = 1 and, under Case 1, link (1,1) is added to the assignment

while price P1 is increased to N. In the second iteration source 2 is

chosen, we have m = N-l, = 0, j = 2 and, under Case 1, link (2,2) is

added to the assignment while price P2 is increased to N-1. Continuing

in this manner we see that at the kth iteration link (k,k) will be added

to the assignment and the price Pk is increased to k. Thus the algorithm

terminates in N iterations and its computation time for this problem is (N2).

�___ __ C �_I� 1�_��1 �� � ____ _·�
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If we apply the Hungarian method of the next section to the same problem

with the same initial conditions we find that at every iteration except

the first all sources will be scanned leading to a computation time 0(N 3).

- essentially N times slower than with our method. This type of example does

not depend on the initial prices as much as it may appear, since if the

standard initialization procedure of the Hungarian method were adopted

(see next section) then by adding a row of the form N,N....N] and a column

consisting of zeros in all positions except the last to the assignment

matrix, the computation times of the two methods remain essentially unchanged

for large N.

In analyzing the success of our method in this example we find that it

is due to the fact that by contrast with the Hungarian method, it tends

to increase prices by as large increments as is allowed by the complementary

slackness constraint. Thus in the first iteration Pi is increased by N.

This has the effect of outpricing sink 1 relative to the other sinks in

the sense that the price of sink 1 is increased so much that, together with

source 1, it plays no further role in the problem. Thus in effect after

the first iteration we are dealing with a problem of lower dimension. By

contrast the Hungarian method in the first iteration will add link (1,1)

to the assignment but will not change its price from zero. As a result

source 1 and sink 1 are labelled and scanned at every subsequent iteration.

Outpricing sink 1 has another important effect namely it allows a large

price increase and attendant outpricing for sink 2 at the second iteration.

This in turn allows outpricing sink 3 at the third iteration and so on.

This illustrates that outpricing has the character of a chain phenomenon

1_1 C _ _�)_ � _Usl �lr_ II_1_� _�_1_ ______ I
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whereby outpricing of some sinks enhances subsequent outpricing of other

sinks.

The preceding example is obviously extreme and presents our method in

the most favorable light. If, for example, the first row contained some non-

zero elements other than N, the change in the price p1 at the first iteration

would be smaller than N. In this case the effect of outpricing, while still

beneficial, would not be as pronounced and it would drive source 1 and sink 1

out of the problem only temporarily until the prices of other sources increase

to comparable levels.

While we found that the algorithm of this section performs on the

average substantially better than the Hungarian method for randomly generated

problems, we often observed a pattern whereby the algorithm would very

quickly assign most sinks but would take a disproportionally large number

of iterations to assign the last few sinks. For example for N = 100 we

observed some cases where 75% of the iterations were spent for assigning

the lasttwo or three sinks. Predictably in view of the complexity estimate

(15) this typically occured for large values of R. This points to the

apparent fact that the beneficial effect of outpricing is most pronounced

in the initial and middle phases of the algorithm but sometimes tends to be

exhausted when there are only few unassigned sources. The remedy suggesting

itself is to combine the algorithm with the Hungarian method so that if

the algorithm does not make sufficiently fast progress a switch is made to

the Hungarian method. A reasonable implementation of such a combined method

will be presented in Section 4. Its worst case computational complexity is

O(N3 ) - the same as for the Hungarian method. Its performance on randomly

generated problems was found to be consistently superior to both the Hungarian

method and the pure form of the algorithm of this section. Significantly,

the factor of improvement over the Hungarian method increases with problem

I . .- -L -L ---- L---il _ � . _
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dimension.

3. Implementations of the Hungarian Method

Since we intend to compare and combine our method with the Hungarian

method we describe here the implementation that we used in our computational

experiments.

The initial assignment X is taken to be the empty assignment and the

initial dual variables are chosen according to the usual scheme

0
m. = max{ aijjET} , i =
1i iJ

p. = max {a.. - mliiS} j = 1,...,N
j ij m

Notice that the equations above imply

o o
m. + p > a..

1 - 13
v (i,j) EL.

kFor k Xk ) satisfying for all iFor k = 0,1,...,N-i, given m, p , X ) satisfying for all iS

k k
m. +p. =a..

1 j 13

k k
m. + p > a

k+l k
we obtain (m , p

k+l k+l
mi + p = a..

k+l k+l
m. + p >a.
1 n - in

if (i,j) Xk t

V (i, n)EL

+1 k+l
X ) satisfying for all iES

if (i,j)EXk+l

V (i,n)EL

according to the following labelling procedure.

"r k ki

Actually throughout the algorithm the stronger condition m = max{ain-pn (i,n)EL}
holds for all k and iS. We state the algorithm in this form in order to emphasize

that (mk,pk,Xk)need only satisfy the same conditions as in the algorithm of the
previous section,thereby simplifying the transition from one algorithm to the other.

-
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Step 0: Give the label "O" to all unassigned sources under X . Set X = . ,
j = 1,...,N.

Step 1 (Labeling) : Find a source i with an unscanned label and go to Step la,

or find a sink j with an unscanned label and i. = 0 and go to Step lb. If
3

no such source or sink can be found, to to Step 3.

Step la: Scan the label of source i as follows. For each (i,j)EL for which

k k
m.i + pj - aij < Ij give node j the label "i" (replacing any existing label)

k k
and set j = m i + pj - aij. Return to Step 1.

Step lb: Scan the label on the sink j with 7j = 0 as follows. If j is unassigned

under X go to Step 2. Otherwise identify the unique source i with (i,j)Xk ,

and give i the label "j". Return to Step 1.

Step 2 (Augmentation): An augmenting path has been found that alternates between

sources and sinks originating at a source unassigned under X and terminating

at the sink j identified in Step lb. The path is generated by "backtracing"

from label to label starting from the terminating sink j. Add to X all links

on the augmenting path that are not in Xk and remove from Xk all links on the

k k+l k+l k
augmenting path that are in X . This gives the next assignment Xk + l Set m = m

p = p .(Note that m and p may have been changed through Step 3). This completes

the iteration of the algorithm.

Step 3 (Change of Dual Variables): Find

(.16) 6 =min{TrjjST, j > 0}

Set k k
m. + m- M for all iS that are labeled

1 1

pk + p + 6 for all jT with 7. =0

ij. + 7.j - 6 for all jT that are labeled and 7.r> 0.

and go to Step 1.

---� - �--I�._.�. �--- 1�11� �s�- � I· �II__ �_.�_I� �-·------·l-�1X.
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Notice that the labeling procedure will terminate only upon finding

an augmenting path at Step 2 and therefore at each. iteration the cardinality

of the current assignment is increased by one. Thus X has cardinality N and

is an optimal assignment. We now estimate the complexity of the algorithm.

Scanning labels in Steps la and lb requires at each iteration at most 0(N 2 )

operations for a full dense problem. The augmentation CStep 2) requires at

most O(N) operations. The number of operations needed at each iteration for

Step 3 is O(N) multiplied with the number of times Step 3 is performed at

each iteration. We estimate this number as follows. The initial prices can be

easily seen to satisfy

o
-R < P <<0 , VjET.

From (12) - (14) we see that we have

o k
-R < pR , k = 0,1,...,N-1, jET

o k
Since m. < R for all itS and {m .} is monotonically decreasing it follows

1-- 1

that

mk < R V k = 0,1,...,N-l, iES.
1-

During each iteration we have, using the two inequalities above, for each

jET and for some isS

k k
T = m. + p - a.. < 2R.
j i1 j 1 -

Now the number of times that Step 3 is performed at each iteration

is bounded by N as well as by the maximum value of . after the first label
3

is scanned. Using the inequality above it follows that this number is bounded

by min{N,2R}. We thus obtain a bound 0(min{N,2R)N) for the total number of

I -� i�---*c -- --rL..-.·�.. .I - � - ` · ___,
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operations in Step 3 during a single iteration of the algorithm, Summing over

N iterations yields the following complexity bound for full dense problems

(17) O(N3 ) + O(min{N,2R}N 2 )

This bound can also be written as (N 3).

There are other possible implementations of the Hungarian method. The

one described in 7] performs Step 3 in a different way than we do. Instead

of keeping track of the scalars . the entire matrix of "reduced cost co-
J

k k
efficients" cij = m. + p. - aij is maintained and updated each time Step 3

is performed. The increment of dual variable change 6 of (161 is obtained from

6 = min{cijli is labelled, j is unscanned}

The reduced cost coefficients are also updated to reflect the changes in

k k 2
m. and p . Unfortunately for full dense problems this requires O(N2 )

operations thereby resulting in a complexity bound

(18) O(N3 ) + O(min{N,2R}N 3)

When R is small relative to N this is comparable to 0(N 3). But for large values

of R the complexity bound reaches 0(N). This fact explains the strong

dependence on R of the computation times given in [7],C.see also Table 1)

Furthermore it suggests that our implementation of the Hungarian method is

superior to the one of [7] which was in turn found comparable to the best

simplex and primal-dual codes currently available for the-assignment problem.

The purpose of the preceding discussion has not been so much to

demonstrate that our implementation of the Hungarian method is superior to

other existing codes. In fact there isn't sufficient evidence to support

·.---�-·---- ·I -- II -- '"--Ci---- "-·11 II�---·I -i - · I
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such a claim. Rather, our aim is to convince the reader that the Hungarian

code that we have compared our algorithm with is quite efficient and at least

comparable with state-of-the-art codes. To make this point more strongly we

present in Table 1 computation times obtained using our Hungarian code, and

computation times taken from [7] for NxN randomly generated problems with

weights chosen according to a uniform distribution from [0,R]. The top entry

in each cell gives the time in secs for our code. The middle and bottom

entries give the time for the Hungarian code PDAC and the primal simplex

code with alternating basis PACAB of [7] respectively. Each entry represents

an average over ten full dense, random problems. The computation times did not

vary greatly around the mean so we feel that for a sample size of ten it is valid

to compare these times except for the fact that our times are on an IBM 370/168

computer while the times of [7] are on the CYBER 70/74 computer system at Georgia

Tech. All programs were written in Fortran and compiled using the FTN compiler in

the OPT=2 optimizing mode. Integer arighmetic has been used throughout and compu-

tation times exclude input and output operations. It is estimated in [7] that 1

solution second on a CDC for this type of problem is approximately equivalen to 1.43

seconds on the CYBER 70/74. Based on our experience with the IBM 370 and

the CDC 6600, and data given in [4], we estimate that one solution second on

the IBM 370 should be equivalent to somewhere between 2 and 3 seconds on

the CYBER 70/74. This is also consistent with the computation times listed

in Table 1 for R = 10 in which case the two Hungarian codes should be

roughly equivalent since, for R = 10, Step 3 is hardly ever performed

[compare also the estimates (17) and (18)]. It can be seen from Table 1

that even if we scale down the times of the Hungarian code of 7]1 by a

factor of 3, our code comes out much superior for R > 100. Notice that

--· 111·-··-·�·��___1____-·- -1_...- ..
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Ri -- 1 -- I 100,000

N 1 10 100 1,000 10,000

0.038 0.058 0.070 0.G73 0,073

S 50 0.092 0.290 0.537 0.715 0.704

0.258 0.464 0.478 0.502 0.484

0.103 0 0.343 0.430 0.475 0.484

100 0.253 1.079 2.795 5.365 6.576

1.246 2.505 2.987 2.849 3.153

: _i _ _ __r_ |

1.036 3 1.49_8

150 3.639 : 24.382

6.917 - 7.868

_ _ _ _ _ _ _ _ _ _ _ _ _ _ __i~ __ ....... .... _ _I_

200 2.383 . 3.695

7.355 j 53.395

1 12.375 16.316
. · ' 1631

TABLE 1: Computation times in secs of our Hungarian code on IBM 370 (top

entry in each cell), the Hungarian code of [7] on CYBER 70/74

(middle entry), and the primal simplex code of [7] on CYBER 70/74

(bottom entry). Each entry is an average over 10 randomly generated

full dense problems. One solution second on IBM 370 approximately

equivalent to 2-3 seconds on CYBER 70/74.

- -- ------- �------ II- II- --I-------�"-p-s�-�-- �--��---���- �-�` -I�--�-�---��--I------ --



-28-

the times given in Table 1 show remarkable agreement with qualitative predictions

based on the complexity estimates (17) and (18).

4. Combinations with the Hungarian Method - Computational Results

As discussed at the end of Section 2 it appears advantageous to combine our

new algorithm with the Hungarian method. A switch from the new algorithm to the

Hungarian method is very simple in view of the similarities of the two methods.

We have used the following scheme in our experiments;

We are making use of two lists of unassigned sources during execution of

the algorithm. Each unassigned source is contained in one and only one of

the two lists. We select at each iteration the unassigned source which is at

the top of the first list. If in that iteration a new source becomes unassigned

(Case l,j assigned, or Case 2, Step 3) this source is placed at the bottom of

the second list. Initially the first list contains all sources and the second

list is empty. As the algorithm proceeds the size of the first list decreases

while the size of the second list increases. When the first list is emptied

the contents of the second list are transferred to the first and the second list

becomes empty. We refer to the portion of the algorithm between the time that

the first list is full to the time it is empty as a cycle. At the end of each

cycle we compare the number of sources in the second list with the number of

sources contained in the first list at the beginning of the cycle. If they

are the same (implying that no augmentation occured during the cycle) a counter

initially set at zero is incremented by one. The counter is also incremented

by one if during the cycle Case 2, Step 3 was reached more than a fixed pre-

specified number of times (4 in our experiments) with the number of labelled

sources being more than a fixed prespecified number (10 in our experiments).t

t
Actually this last device does not seem to play an important role for practical

purposes. It was introduced in order to make possible a proof of an 0(N3) complexity
bound for the combined algorithm.

--------------- --- I -X ------ II ----s. -�-_I- --- al-----�--
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At the point where the counter exceeds a prespecified threshold value a switch

is made to the Hungarian method of the previous section. The threshold value

was set at 0.1N in all of our experiments, but the average performance of the

algorithm seems fairly insensitive to this value within broad limits. It is

a straightforward but tedious exercise to show that the complexity of this

combined algorithm is bounded by 0(N3 ). The proof essentially consists of

showing that at most 0(N 3 ) operations are necessary before a switch to the

Hungarian method takes place. In almost all the problems we solved, the great

majority (95-100%) of sinks were assigned by the new algorithm and the remainder

by the Hungarian method after a switch was made. This was particularly true

for small values of R when for most problems a switch to the Hungarian method

was not necessary.

Finally regarding initialization we have in all cases chosen X = empty,

0 0
and p = 0, mi = R for all i and j. However at the end of the first cycleJ 1

(i.e. at the end of the Nth iteration) the prices of all unassigned sinks j

are changed from p = 0 to

p = max{aij - m. i: assigned under XN}3 13 1

The remaining prices and all values m. are left unchanged. This is in

effect an initialization procedure quite similar to the one for the Hungarian

method of the previous section. Its purpose is to reduce the prices of the

unassigned sinks as much as possible without violating the complementary

slackness constraint. It has worked quite well in our experiments.

Tables 2 and3 show the results of our computational experiments with

randomly generated full dense, NxN problems. Each entry represents an average

over five problems, which were the same for all three methods and for

_1_1�11� �1_ �1_1_1� _ _ _1�1 � _ I �___ _ _
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each N. The weights were chosen from a uniform distribution over [0,1] and

subsequent multiplication by R(Table 2), or from a normal distribution N(0,1)

and subsequent multiplication by (Table 3). They were then truncated to the

nearest integer. The programs were written in Fortran and compiled with the

optimizing compiler in the OPT = 2 mode. The times given in the top entry of

each cell refer to the IBM 370 at M.I.T. We give in the bottom entry of each

cell the average number of sources scanned for each method (Case 1 in the

new algorithm corresponds to one source scanned). The average computation

time per source scanned does not differ much from one method to another, so

the number of sources scanned represents a valid measure of comparison which

is independent of the computer, compiler, programmer, and time of the day the

run was made. The results clearly indicate that the combined method is overall

superior to the others. The pure form of the new algorithm also appears superior

to the Hungarian method, but not by as much as the combined method. Also the

variance of computation time exhibited by the pure form of the algorithm is

larger than those of the Hungarian and the combined methods. The combined

method had the smallest variance in computation time over the three methods

tested.

As a final comparison with existing methodology it is worth observing

that the computation time of Table 2 for the combined method and 200x200

problems with weights in the range [0,100] is 0.526 seconds. There are five

200x200 NETGEN benchmark assignment problems with weights in the range [0,100]

that have been solved by a number of presently available codes. The best solution

times achieved [3], [7] range from 0.96 to 1.68 secs on a CDC 6600. Making an

adjustment for the advantage in speed of the IBM 370 over the CDC 6600 we

----"-"--;CII---L^-------·�- -I -I -·-" -1 ---



-31-

conclude that our time is at least comparable and probably superior (41 gives

an advantage in speed of 5 to 6 for the IBM 370 over the CDC 6600 for network

problems). Yet the NETGEN problems are only 3-12 % dense while the problems

we solved are 100% dense.

-- ------- ·�··�···II-LarPP-·III�
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_ _Hungarian Method |Combined New Algorithm Pure Form of the New
Hungaria Method I and Hungarian Method Algorithm

__ I ___ 0 ___ ____ __ ___ _
N 30 100 10,000 30 100 10,000 30 100 10,000

;,I I I ....
50 .079 .085 .089 $ .024 .025 .026 .033 .037 ' 038

44 '449 458 f 135 1 136 140 192 233 i 238
, i i i ,

100 > .419 ! .455 .487 .091 .091 .094 f .103 .118 . 113

i i
,1317 , 1383 1447 285 288 283 326 388 395

150 .1.25 1.40 1.53 .260 .267 .292 1 .342 .425 .420 '

j2868 ~ 3128 3265 570 599 601 28 929 1024

200 2.78 3.07 3.43 .492 .486 .533 .603 1.00 .800

'i4975 5395 5700 808 819 852 975 1607 1536

300 8.25 10.0 1.21 1.15 1.45 2.2

1010 1 OO 11864 1318 1268 1576 2270

400 i20.4 24.8 2.63 2.45 2.85 9.55

1!19103 22755 2140 2083 2350 8108

TABLE 3: Top entry in each cell = Time in secs on IBM 370. Bottom Entry = Number

of sources scanned. Average over five NxN full dense problems with

weights chosen by normal distribution N(0,1) and subsequent multiplication

by Z and truncation to the nearest integer.
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AN ALGORITM FOR THE HITCHCOCK TRANSPORTATION PROBLEM Allerton Park,1ll,
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DIMITRI P. BERTSEKAS
Dept. of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Abstract: An algorithm proposed by the author for the classical assignment
problem [1] is generalized for solution of the linear uncapacitated
transportation problem.

1. INTRODUCTION

In an earlier paper [1] we proposed a new algorithm for solving the
classical assignment problem. The algorithm was shown via computational
experimentation to'offer substantial computational savings over the
Hungarian method. It is thus natural to consider extensions of this
algorithm to more general network flow problems. The present paper provides
such an extension for the classical linear uncapacitated transportation
problem, commonly referred to as the Hitchcock problem. As is well known
[2], the general minimum cost flow problem with capacity constraints on the
links can be reduced to the Hitchcock problem. Thus the algorithm of this
paper can be adapted to solve such problems although we will not discuss
the precise form of the necessary modifications.

Due to space limitations our presentation is somewhat abbreviated.
It is thus inevitable that some familiarity with the contents of [1] on
the part of the reader is necessary for understanding the mechanism of the
algorithm.

2. THE HITCHCOCK PROBLEM

Consider a bipartite graph consisting of two finite sets of nodes
S and T with elements denoted i i=l,...,M) and j (j=,...,N) respectively,
and a set of directed links L with elements denoted (i,j) where iS and
j6T. We refer to elements of S and T as sources and sinks respectively.
Each source i (sink j) has a positive scalar a (. ) associated with it
referred to as the supply of i (demand of j). We 3 assume

i6S j jT : (1)

Each link (i,j) has a weight a.. associated with it. We assume that there
is at most one link (i,j)6L 1j for all iGS.,jGT. We wish to find a flow
x {xi j(i,j)6L} solving the (primal) transportation problem

maximize Z a.. xi
(i,j)L ij i

subject to xij i V Y S
Ci,j)L

ijLj 6 T
(i,j)6 

V (i,j)GL .
ij > 0
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Throughout the paper we will assume the following:

a) There exists at least one feasible solution for (PTP).
b) The weights a.., the supplies i, and the demands j are

all integers. 
The corresponding dual transportation problem in the vectors

m = (,...,mM) and p ('PN) is

(DTP) minimize Z .m. + . jpj
ieS jeT

subject to m i + pj > aij , v (i,j)eL

The scalars p. and (aij - pj) will be referred to as prices and
profit margins respectively.

3. The Algorithm
The algorithm generates a sequence of vectors { (m, p , x)} such

that for each k the following conditions are satisfied:
k k

m. + p > a.. V (i,j)eL, (2)

k k k
mi + p = aij V (i,j)eL with x.. > 0 , (3)

k
x.. o>0 , V (i,j)eL (4)13 -

k
£ .x.< , v ies, (5)
(i,j)eL

k
7 x < B , v jeT . (6)
(i,j)eL ij- j

Thus dual feasibility and complementary slackness are maintained
throughout the algorithm [cf. (2),(3)], but primal feasibility may be
violated to the extent allowed by (4) - (6). The algorithm, under the
preceding assumptions, can be shown to terminate at a flow for which (5)
and C6) are satisfied with equality. Since in this case primal and dual
feasibility as well as complementary slackness are satisfied, this flow
must be optimal.

The overall scheme is similar with the one of the primal-dual method
([2], p.95), in that successive flow augmentations and changes in the dual
variables are effected, but there are important differences as discussed
in [1]. We now state the algorithm.

o o
The method is initialized with any m , p that are dual feasible, and

with x° . = 0 for all (i,j)eL.

kkk
For k 0,1,.., given (mk,p ,x ) satisfying (2) - (6) we stop if (5)

and (6) are satisfied with equa_%ty. Otherwise we use the following
iteration to generate (m , p , xk+l). During the iteration additional
intermediate variables, vectors and sets of nodes are generated, and are

denoted by m, m, T, T, x,,f.

(k+l)st Iteration of the Algorithm

Choose a source i such that x < k-

(i,j)eL 13 1

Set m to the maximum profit margin for i

---�111"~~~~~"~"""""� '



m + max {aj - p (i,j)eL}

Set also

{j eT m = a-.. Pj

Step 1 (Preliminary adjustment of flows and dual variables):

c- < j1 - jeT J go to Step 2. If a- > _ . go to Step
jeT 

Step la: Set

~ k( maxa-j- pj(,j)L, }T -i-f jeTIm = a-j - p. 
13 3

k

Pjk

p +- Pj + (m - m)

k
mi

k
m. 4-
1

m

if jeT

(12)

if jeT

if i i

(131

if i = i

k
1]

k

O

If a. -= Z_ 
jeT

k+l
m

if j T

if i = i and j e T

if i i and j e T

set

k
4- m

k+l k
p - p

k+l k

thereby completing the (k+l)st iteration.

If ai- E a. set
jeT 3

m 4- 

and go to Step 1.

The notation A B means that the current value of (the variable,
vector, or set) A is changed to the current value of B.

(7)

(8)

(9)

If

la.

(10)

(11)

(14)



Step 2.

k k k
(Note: At this point we have from Step 1 vectors m , p , x and nonempty

sets of sinks T, T with T C T such that (2) - (6) hold and

_= E_ -x . a < x- < (16)
je(T-T) je(T-T) 3 (i,j)eL jeT

-. = sj V' je(T-T), (17)

k k
mr. + pj = a-., V jeT , C18

1i 3 1)

where if T = T we interpret sums over je(T-T) to be zero).

If there is no unassigned demand for sinks in T, i.e. if

a. = E- X.,k
je r jeT (i,j)eL 1

go to Step 3.

Otherwise increase the flow xy. along links (i,j) for sources jeT
13 >

for which a portion of their demand is unassigned, i.e., > i xj)
(i,j)eL

until either

a) the unassigned portion of the supply of i (i.e. a- - xk)is
i ({i,j)eL i

exhausted,

or
b) The unassigned portion of the demand of sinks in T

(i.e. E C .- E E xki) is exhausted.
jeT jeT (i,j)eL j

k+l k k+l k k+l
In case a) set m k l m , p +-p , and set x to be the new flow.

This completes the (k+l)st iteration.

k
In case b) increase further flows xk. with jeT and decrease flows

k
x.j with i i, jet as necessary until all unassigned supply of i is

k
exhausted. (Note: The choice of flows x-. which are increased and flows
k - -~ 13

x.i., ii, jeT, which are decreased is arbitrary).
k+l k+l k k+l k

Set x to be' the new flow, and set m +l m, p pk This
completes the (k+l)st iteration.

k k
Step 3: Increase flows x-. with jeT and'decrease flows x.. with i i,

..... 13

jeT as necessary until all unassigned supply of i is exhausted. We denote
k

the new set of flows xi, (i,j)eL and refer to ( x' , jeT as the

incremental flows and to (x.. - x..), jeT, i i as the displaced flows.
-- i k13

Give to i the label "( f)" where = - set
(i, j) eL 13

7j r , v jeT

and go to Step 4.
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Ste 4 (Labeling): Find a source i with an unscanned label and go to Step 4a,
or find a sink j with an unscanned label and j = 0, and go to Step 4b.

If no such source or sink can be found go to Step 6.

Step 4a: Scan the label of source i as follows. For each i,j)eL for which
k k k k k k
m. + p ij < Ij set rrj = m i + p. -aij. If in addition m + p = a..
1 - i j 1 - j 11]

give node j the label "(i,fj)"where fj = min {fi, j -xj.. Return to

Step 4.

Step 4b: Scan the label of sink j with r. = 0 as follows. If

x.. < .j go to Step 5. Otherwise give to every unlabeled. source
(i,j)eL
i with xij > 0 the label "(j,fi)" where fi = min {fj, i} . Return to

Step 4.

Step 5 (Augmentation) : An augmenting path has been found that alternates
between sources and sinks,.originates at source i and terminates at the
sink j identified in Step 4b. The flow on this path is

f min {f., Sj - E X.j} . Modify x by adding or subtracting as

appropriate f along the augmenting path. Subtract from x a portion of
incremental flows totalling f and add to x the corresponding displaced flows

k+l k+l k
totalling f. The end result is the new set of flows x . Set m m 

k+l pkp +p . This completes the (k+l)st iteration.

Step 6 (Change of dual variables): Find

6 = min'{r. IjeT, .> 0 }

Set

km. - if i has been labelled

mi

m . ,if i has not been labelled,

k

k+l pj + 6 ]if j = 

pk if jr. > 0 ,

k+l -
X -4- .

This completes the (.k+l)st iteration of the algorithm.

The description of the algorithm is quite complicated so we provide
some explanatory remarks. The objective of each iteration originating
with source i is to assign all unassigned supply of i while in the process
to either change some of the dual variables or assign some of the unassigned
demand of certain sinks or both. This is done at the expense, perhaps,
of displacing some already assigned supply of other sources. Step- is
the preparatory stage whereby by modifying flows and dual variables if
necessary cf. (12) - (14)] we identify two sets of sinks T and T such
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that (16) - (18) are satisfied. The iteration may end in Step 1 or in

Step 2 after essentially scanning only source i. This is the simpler of
two possible cases and corresponds to Case 1 of the algorithm of [1. The
more complicated case, corresponding to Case 2 of the algorithm of [1], is
when the demand of all sinks in T are fully satisfied and therefore in
order to assign even a portion of the remaining unassigned supply

A' k
ai- - xr. of source i it is necessary to displace some portion of

(i,j)eL D
already assigned supply of other sources. This is done by means of the
labeling procedure starting with Step 3. A preliminary assignment of the
unsatisfied supply of i is made by displacing assigned supply of other

k_.
sources x _replacing x in Step 3). We then try to find an augmenting
path from i to a sink with unsatisfied demand. There are two possibilities.
Either such an augmenting path can be found (Step 5) in which case a. portion
f of the unsatisfied supply of i is chanelled through the augmenting path
and the corresponding portion f of the displaced supply of other sources is
reinstated; or else a change is effected in the dual variables CStep 6).
The amount of change is the maximum allowed by the complementary slackness
constraint.

Observe that the following hold true similarly as in the algorithm
of [1]:

k
a) The sequences {m.} are monotonically nonincreasing and

1

the sequences {pk} are monotonically nondecreasing.

b) The sequences of unassigned sink demands 
b) The sequences of unassigned sink demands {a. - x..

3 i,jleL 13
are monotonically nonincreasing.

c) Dual feasibility and complementary slackness are maintained
by the algorithm.

d) At every iteration either the unassigned demand of at least one
sink will decrease strictly by an integer amount, or at least
one price will increase strictly by an interger amount.

e) In order for the price of a sink to increase it is necessary
that its demand is fully assigned.

Based on these observations we can show in a very similar manner as
in [1 that the algorithm will terminate at a feasible flow. In view
of the fact that complementary slackness and dual feasibility are maintained
throughout the algorithm, the flow obtained at termination is optimal.

We have no computational experience with the algorithm with general
transportation problems. We except, however, that similarly as for
assignment problems [1], some combination with the primal-dual method will
turn out to be beneficial. It is hoped that computational experience will
be gained in the near future in this regard.
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