September, 1979

A New Algorithm for the Assignment Problem *

by

Dimitri P. Bertsekas

Dept. of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

July 1979

* Work supported by Grant NSF ENG-7906332

‘LIDS-R-945

Abstract

.We propose a new algorithm for the classical assignment problem. The
algorithm resembles in some ways the Hungarian method but differs substantially
in other respects. The worst case computational complexity of one implementation
of the algorithm for full dense, all integer, NxN problems is 0(N3) - the same
as the Hungarian method. Its average complexity, however, seems to be considerably
better. 1In a large number of randomly generated problems the algorithm has
consistently outperformed an efficiently coded version of the Hungarian method
by a broad margin. The factor of improvement increases with problem dimension

and reaches an order of magnitude for N equal to several hundreds.

1. Introduction

The assignment problem was among the first linear programming problems
to be studied extensively. It arises often in practice and it is a fundamental
problem in network flow theory since a number of other problems, such as
the shortest path, weighted matching, transportation, and minimum cost flow
problems can be reduced to it ({[1], p.1l86, 187). It is characteristic in this
respect that the first specialized method for the assignment problem, namely
Kuhn's Hungarian method [2], was subsequently extended for solution of much more
general network flow problems. Furthermore, some of its main ideas were
instrumental in the development of more general methods such as the out-of-
kilter and nonbipartite matching methods. This suggests that the assignment
problem is not only an important problem in itself, but also represents a
suitable testing ground for -new computational ideas in network flow theory.’
It is for this reason that we restrict attentién to the assignment problem
even though the ideas of this paper have extensions to more general problems.

In practice the assignment problem is currently solved by either
specialized forms of the simplex method [3] -~ [5], or by means of versions of
Kuhn's Hungarian method [6], [7]. There exist several competing codes for
assignment and in fact there seems to be some controversy regarding the
relative merits of simplex codes and primal-dual (i.e. Hungarian) codes
[6], [8]. A recent well documented computatioﬁal stud§ [7] £finds simplex
and primal-dual codes roughly comparable. From our own analysis and computational
expérience (see Section 3) it appears that the reported performance of primal-

dual methods can be significantly improved by efficient implementation. We do

not know whether the same is true for simplex codes. We note that we did not

have access to any existing special code for the assignment problem so our
reasoning is based exclusively on documentation by other researchets rather
than personnal experience.

The computational complexity of many of the existing codes is unknown
and in fact some of these codes ([3], [6]) are proprietary. It is known
that the complexity of the Hungarian method for full dense, all integer,
NxN assignment pfoblems is O(N3) ({11, p. 205), but the complexity of the
implementation of [7] which is reported to be comparable to the best
simélex type methods, is apparently worse than O(N3) (see Section 3). To
our knowledge there is no simplex type method with complexity as good as
o).

The purpose of this paper is to propose a new method for solving
the assignment problem. We show in the next section that the worst case
complexity of the pure form of the method for full dense, all integer, NXN
problems with the elements of the assignment matrix taking values in the
interval [O,R] is O(N3) + O(RNZ). It appears, however, that for all values
of R, large or small, the method performs at its best when it is combined
with the Hungarian method. This combination is described in Section 4 and
the worst case complexity of the resulting method is O(N3). Its average
complexity, however, seems to be substantially better than both O(N3) as
well as the average complexity of the Hungarian method. This is demonstrated
by means of extensive computational experiments with randomly generated
problems. These experiments show that the new method consistently out-
performs an efficiently implemented version of the Hungarian method
[O(N3) complexity] by a broad margin. Indeed, out of more than a thousand ran-

domly generated problems solved with N 3,20 we did not find a single problem where

our method did not work faster than the Hungarian method, Furthermore, the
factor of improvement increases with N thereby sugéesting a better average
complexity. For large problems with N being several hundreds our method
Can converge ten or more times faster than the Hungarian method.

Since we have been unable to characterize analytically the average
complexity of our method we cannot claim to fully understand the mechanism
of its fast convergence. This seems to be a difficult problem and in fact
we do not know of a corresponding average complexity result for the
Hungarian method. On heuristic grounds, however, it appears that the new
method owes its good performance principally to a phenomenon which we
refer to as outpricing. This is explained more fully in the next section
but basically it refers to a property of the method whereby during the
course of the algorithm the prices of some sinks are increased by large
increments - much larger than in the Hungarian method. As a consequence
these sinks are temporarily or permanently outpriced by other sinks and
are in effect driven out of the problem in the sense that they do not
get labeled and scanned further - at least for relatively long time periods.
As a result the algorithm requires fewer row operations since in effect
it deals with a problem of lower dimension.

There are a number of open questions regarding the ideas of this
paper. The performance of our algorithm has been extensively tested with
full dense problems but not with large sparse problems. It will become
evident to the reader that our method is at least as suitable for exploiting
sparsity as the Hungarian method, but we have not yet developed a sparse
problem code. Common sense suggests also that problem sparsity will enhance

the outpricing phenomenon thereby inducing even better performance for our

method, but this remains to be verified. We also expect that algorithms
similar to the one of the present paper can be developed for other more
general problems such as transportation, minimum cost flow problems, etc.

Such algorithms are currently under investigation. Some preliminary work is

reported in [9].

2. The Pure Form of the Algorithm

Consider a bipartite graph consisting of two sets of nodes S and
T each having N elements, and a set of directed links L with elements
denoted (i,j) where ies and JeT. We refer to elements of S and T as
sources and sinks respectively. Each link (i,3j) has a weight aij
associated with it. By an assignment we mean a subset X of links such
that for each source i (sink j) there is at most one link in X with
initial node i (terminal node j). We say that a source 1 is unassigned
under X ié (i,§) £X for all (i,j)eL. Otherwise we say that source i is

assigned under X. We use similar terminology for sinks. We wish to find

an assignment that maximizes alJ over all assignments X of cardinality N.

(i,3)ex

Throughout the paper we will assume the following:

a) There exists at least one assignment of cardinality N.

b) The weights aij are nonegative integers not all zero, and

the maximal weight will be denoted by R, i.e.

R = max a..>o
(i,j)eL *J

c) For each source i there are at least two links (i,j) in L.
The nonnegativity assumption on the weights involves no loss of
generality since if we add a constant to all weights the problem remains

essentially the same. Assumption c) also involves no loss of generality,

since if for some source i there is only one link (i,j)€L, then (i,j) is
certainly part of any optimal assignment and as a result nodes i and j
can be removed from the problem thereby reducing dimensionality. We use
assumption c) for convenience in stating our algorithm.

The assignment problem can be embedded into the linear program

(1) maximize 2: a . X
(i, rer. I H

subject to 2: Xi. = 1 ’ ¥i=1,...,N
(i,y)er I
X
150 1371 ¢ ¥i=1l,....N :

The corresponding dual problem in the vectors m = (ml,...,mN), p = (pl,...,pN)

is
N N
(2) minimize m. + 2: P.
{=1 j=1 3
j +p >a.. ' ¥ (i,] .
subject to m, % > alj (i,j)eL

The scalars pj and (aij - pj) will be referred to as prices and profit margins

respectively. From complementary slackness we have that if (i,j) is part
of an optimal assignment, then for any optimal solution (m,p) of the dual

problem we have

(3) m, = aij - p; = max {ain - pn|all n w1th (i,n)eL}

i.e., at an optimum source i 1is assigned to a sink Jj offering maximum
profit margin relative to the price vector p.
The Hungarian method solves the dual problem by generating for

k=20,1,... vectors mk, pk together with a corresponding assignment Xk.

k . .o k
For each k the wvectors mk, p are dual feasible and for all (i,j)eX the
complementary slackness condition (3) is satisfied. These features are also
shared by the algorithm we propose. In the Hungarian method if a source i

or sink j is aséigned under some Xk it continues to be assigned under all
Xk, k 3'E'. In our method this is also true for sinks Jj but it is not
true for sources i. Sources may come in and out of the current assignment
with attendant changes in the vectors m and p. Another difference of our
method over the Hungarian method is the manner in which the dﬁal variables
are incremented. In the Hungarian method every change in the vectors m

and p induces a reduction of the value of the dual cost function. 1In our

method when changes are made on the values of m and p all that is guaranteed

is that the objective function value will not increase.

Both the Hungarian method and the algorithm we propose involve flow
augmentations along alternating paths, and changes in the values of dual
variables. The roles of these two devices are, however, somewhat different
in the two methods. The Hungarian method is geared towards assigning the
unassigned sources by searching directly for an augmenting path along links
(i,3) with m, + pj = aij' Dual variable changes are effected only when

no more progress can be made towards generating such an augmenting path.

In our method the roles of searching for an augmenting path and changing

the dual variables are in effect reversed. Primary consideration is given

to increasing the prices of assigned sinks as much as is possible without

violating the complementary slackness constraint. The aim here is to make

the prices of unassigned sinks "competitive" with those of assigned sinks.

Augmentation is in some sense incidental and takes place either when it

-Ta~

can be effected at essentially no computational cost, or when it is no

more possible to continue the process of increasing prices of assigned

sinks without violating the complementary slackness constraint.

We now describe formally our method. A more specific implementation
together with an initialization procedure will be given in Section 4.
The method is initialized with any integer vectors m®,P® that are dual

feasible and with X° being the empty assignment.

For k = 0,1,..., given (mk, pk, xk) satisfying for all ies
k k . . k
= €
mi + pi aij if (i,3)€X
k k
>) .
m.+p Za. ¥ (i,n)€L

1 n

we stop if Xk has cardinality N. Otherwise we use the following procedure

to generate (mk+l, pk+1, Xk+l) satisfying for all i€s
oty PR L, if (i, exTL
i J 1]
+
ety pk"'1 > a ¥ (i,n)eL .

in

(k+1)st Iteration of the Algorithm

- . . . k .
Choose a source i1 which is unassigned under X . Compute the maximum

profit margin

- k, -
4) T, . i, j)eL
(m = max {a:Lj pj[(i, 3)en}

and find a sink J such that

k
(5 ms= ar> - D-
) iy T8

Compute also the "second maximum" profit margin

~ k Sl . -
(6) m = max {ai'j - pjl (i,j)eL, 3 #3731} .

Proceed as described for the following two cases:

Case 1 (m>m, orm=m and sink 5- is unassigned under Xk):

Set
k+1 mk for i # i
(7) m, = i
m for i = i
k . -
p. for j # j
k+1
(8 p. = J
J k —_ ~ —_—
pj +m-m for 3 = 3 .

If -3- is unassigned under Xk, add (i, 37) to Xk, i.e.

o R uLa, .

If (1, JT) i-:Xk for some ieS, obtain Xk‘i'l

from Xk by replacing (i,]T) by
i, 3, i.e.

Xk+l

KULE, DY - (1, DY .

This completes the (kK+l)st iteration of the algorithm.

A

s

Case 2 (m=m and; for some igs, (i, 33€Xk)

Give the label "0" to i. Set

(9) m_“m

m, = © 2 j=l,.--,N,

and perform the following labeling procedure (compare with [1], p.205).

Step 1 (Labeling): Find a source i with an unscanned label and go to

Step la, or f£ind a sink j # Snwith an unscanned label and ﬂj = 0, and go

to Step 1b. If no such source or sink can be found go to Step 3,

Step la: Scan the label of source i as follows. For each (i,j)el for which

m? + p? - a_j < ﬂj give node j the label "i" (replacing any existing label)
i

and set W, = mg + p? - a,.,. Return to Step 1.
3 1 J ij

Step lb: Scan the label on the sink j # g'with ﬂj = 0 as follows. 1If j is
unassigned under Xk go to Step 2. Otherwise identify the unique source i with

(i,j)exk, and give i the label "j". Return to Step 1.

Step 2 (Augmentation): An augmenting path has been found that alternates

between sources and sinks, originates at source i and terminates at the sink
j identified in Step 1lb. The path can be generated by "backtracing'" from

label to label starting from the terminating sink j to the originating

source i. Add to Xk all links on the augmenting path that are not in Xk and

1 k+1

remove from xk all links on the path that are in Xk to obtain Xk+ . Set m '

pk+l as in (7) and (8). This completes the (k+1l)st iteration of the algorithm.

.1.

The notation A«B means that the current value of the variable A is changed
to the current value of B.

-10=-

Step 3 (Change of dual variables): Find

§ = min{nj!jsT, m > 0}

Set K .
m, - & 1if i has been labeled
k+1 1
m" =
* k
mi if i has not been labeled
k

[Recall here that mz-was set equal to m in the initialization of the labeling

procedure c.f£f. (9)]. Set

oKL 3
J x .
P. if T > 0
J]

o Jk+l k A= - -
Obtain X from X by replacing (i, 3j) by (i, 3J), i.e.

k+1 Ky, o T T o=
X = [x Ui, N - {E,
This completes the (k+1l)st iteration of the algorithm.

Notice that, by contrast with the Hungarian method (see Section 3), the

iteration need not terminate with a flow augmentation. It can also terminate

with a change in the dual variables (Case, 1, 3 is assigned, or Case 2, Step 3)

but in this case the source i under consideration becomes assigned under Xk+l

r

while some other source which was assigned under Xk becomes unassigned under Xk+l.

Unfortunately the description of the algorithm is quite complicated.
For this reason some explanatory remarks are in order. Case 1 is easy to
understand so we concentréte on Case 2. (Actually Case 1 is a degenerate
special case of Case 2 as the reader can verify. We have decided to state
separately the two cases in order to enhance clarity). In Case 2 we

basically try to find an augmenting path not containing 3' from source 1

-11~

to an unassigned sink. There are two possibilities. Either an augmenting
path will be found through Step 2 of the labeling procedure, or else a change
in the dual variables will be effected through Step 3. In the first case
the link (;, 33 will be retained in Xk+l and the sink at which the augmenting
path terminates will be assigned under Xk+1 as shown in Figure 1. 1In the

second case the link (i, 53 will be replaced by (i, 3} in Xk+l and no new

sink will be assigned under Xk+l as shown in Figure 2. The dual variables

. . . k+
will change, however, by the minimum amount necessary to obtain m, 1 + p. = a

for some labeled source i and labeled but unscanned sink j. A similar (but
not identical) labeling procedure is used in the Hungarian method (see
Section 3). In the Hungarian method after a change in dual variables occurs
the labeling procedure continues until an augmenting path is found. By
contrast in our method the labeling procedure terminates with a change in
the dual variables and a new iteration is started with a new unassigned sink.
The order in which unassigned sources are chosen by the algorithm is
not essential for the convergence result of Proposition 1. However, from
the practical point of view it is important that a scheme that ensures
fairness for all unassigned sources be utilized. In subsequent examples
as well in our implementation of the method the scheme adopted is one whereby
a list of unassigned sources is maintained by the algorithm. At each
iteration the source at the top of the list is chosen and if a new source
becomes unassigned (Case 1, Eﬁassigned under Xk, or Case 2, Step 3) it is

placed at the bottom of the list.

We illustrate the algorithm by means of an example.

-12-

o o
) - =
O~ A

g -
WA/%/
1 o/ - /)

A‘u\ mevx\'ivx . A
%JCAHA. C& —u Ty

Fi quve L Co.se. Q, SLe‘P 2. O0O~n~nnnO = Assiamu{ QmL,

0——-0 :Unqss-’ﬂwed vk (L)) g ke \m,‘f‘)i :C‘i:\ ,

o

O AAANNAA
O AAAAAAA—
. ,///o
v ool o
o
N 7 ‘4'*\‘
i ©oF 0]

o = Unamgv\@o{ 'QAV\L (i,:ﬂ with Wlﬁ*%g)ﬂ‘f),

T\zbﬂ"ﬁ 2L CQSQ 2 , Sl‘e\: 3, O~~—~—~0O :Agg;ﬁmd JQ/‘“L)

O

(@)

o = uno.sslﬁwe& Link (il:)\ wath \M-,*‘\":l:qij)
o = \:\V\o\sﬁ\ﬁwul)b\wk (1,3) anth Wy %i'>a“‘3' -

-13-

Example 1: Consider the 4x4 full dense problem represented by the following

initial tableau.

10 1 3 6 1
10 2 4 7 3
10 2 5 7 2
10 1 3 5 1

The matrix of weights is shown in the lower right portion of the tableau.
The row above the matrix gives the initial prices arbitrarily chosen to

be zero. The column to the left of the matrix shows the initial profit
margins. We have chosen m, = 10 for all i - one of the many choices
satisfying feasibility. The extreme left column gives the sinks j, if any,
to which sources are assigned. Here we are starting with the empty
assignment. We describe successive iterations of the algorithm. The

corresponding tableaus are given in Figure 3.

1lst Tteration: We choose the unassigned source 1. We have m = 6, m = 3,

? = 3. We are thus in Case 1.

2nd Iteration: We choose the unassigned source 2. We have m = m=4.

—

Suppose §'= 2. Since j is unassigned we come again under Case 1. (If

we had chosen §-= 3 then we would have come under Case 2. We would have

-14-

j 0o 0o 3 o0
3 3 1 03 6 1
10 .2 4 7 3
10 2 5 7 2
1
|
10 i 1 3 5 1
]
After lst Iteration
P
i m, 0 1 3 0
1
3 3 1 3 6 1
? 4 2 4 7 3]
t
2 4 2 5 7 2|
i
L 10 1 3 5 1
i B H
4 N }
After 3rd Iteration
RSS! o 2 4 o0
1
3 2 1 3 6 1
4 3 2 4 7 3
S 2 5 7 2
o
2 1 1 3 5 1

After 5th Iteration

Figure 3

m, pj 0] o 3

3 3 g 1 3 6

2% 4 2 4 7

10 2 5 7
10 ! 1 3 5 §
-

After 2nd Iteration

0 2 4

2 1 3 6

4 2 4 7
4 2 5 7 g
i

1 1 3 5

After 4th Iteration

p.
m N\ 0o 2 4
i
2 1 3 6
3 2 4 7
3 2 5 7
1 1 3 5
After 6th Iteration

-15-

obtained the degenerate augmenting path (2,2) through Step 2 of the labeling

procedure and the end result would have been the same).

~

3rd Iteration: We choose the unassigned source 3. Here m= 5, m=4, §'= 2.

We are thus again in Case 1. But now source 2 will be driven out of the

assignment and will be replaced by source 3.

4th Iteration: We choose the unassigned source 4. Here m=m = 2. Suppose

~

? = 2. We are now in Case 2 with i = 3. Applying the labeling ' procedure

we label first source 4. A simple computation shows that sink 3 is labeled -
from source 4 and then source 1 is labeled from sink 3. No more labels

can be scanned so we are in Step 3 of Case 2. Source 4 will enter the
assignment and source 3 will be driven out. We have d = 1 and the corresponding

tableau is shown in Figure 3.

S5th Iteration: We choose the unassigned source 2. Here m=m = 3. Suppose

§'= 4. We are in Case 1 and (2,4) will be added to the assignment. (The
result would be the same if §'= 3 in which case the degenerate augmenting

path (2,4) would be obtained via Step 2 of Case 2).

6th Iteration: We choose the unassigned source 3. Here m = m = 3. Suppose

A

§'= 3. We are in Case 2 with i = 1. Applying the labeling procedure we

label first source 3. Sink 2 is labelled from source 3 and then source 4
is labeled from sink 2. WNext sinks 1 and 4 are labeled . from source 4.
Sink 1 is unassigned and this yields the augmenting path (3,2), (4,2),

(4,1) in Step 2 of Case 2. The algorithm terminates.

~16-
We make the following observations regarding the algorithm.

k ; . X . .
(a) The sequences {mi} , 1 =1,...,N are monotonically nonincreasing while

k
the sequences {pj} are monotonically nondecreasing.

(b) 1If for some k a sink j is assigned under Xk then it remains assigned

k -
under X for all k.i k.

(c) At each iteration initiated with an unassigned source i one of two things
can happen. Either the cardinality of the assignment increases by one
(Case 1, g'is unassigned, or Case 2, step 2), or else at least one
variable m, will decrease strictly by an integer amount and at least
one price will increase strictly by an integer amount (Case 1, E'is

assigned, or Case 2, step 3).

(d) For every k and ieS we have

k k . .o k
(10) m, + pj = aij if (i,j)ex
k k .
(11) mi + P, z_ain ¥ (i,n)elL.

From (10) and (11) we see that dual feasibility and complementary slack-
ness are maintained throughout the algorithm. Thus if the algorithm terminates
(by necessity at an assignment of cardinality N), then the assignment and dual
variables obtained are optimal. The following proposition shows that termination
is guaranteed under the assumption made earlier that there exists at least

one assignment of cardinality N.

Proposition 1: The algorithm of this section terminates at an optimal

assignment in a finite number of iterations.

-17-

Proof: Assume that the algorithm does not terminate. Then after a finite
number of iterations the cardinality of the current assignment will remain
constant and at each subsequent iteration at least one variable m, will

decrease strictly and at least one price will increase strictly [observation

¢) above]. Hence the sets Se T defined by
. T k
s, = {ies| lim m, = -}
ko T
T, = {jer| lim p]; = o}

koo
are nonempty. For all k sufficiently large the sinks in T, are assigned
under xX [observation (b)], and they must be assigned to a source in S,
[observation (d)]. Furthermore, since the algorithm does not terminate,
some source in S must be unassigned under Xk. It follows that the cardinality
of S, is strictly larger than that of T, - From (11) it is clear that there

cannot exist a link (i,j)eL such that ies_ and jgT_. Thus we have
{3l 4,9ern, ies }cT,

while S has larger cardinality than T, - This contradicts the assumption
that there exists an assignment of cardinality N. Q.E.D.

We now estimate the worst case computational complexity of the'algorithm
for full dense problems (i.e. for problems such that (i,j)€L for all ieS,jeT).

By subtracting (11) from (10) we have for all k, ieS and neT

k k k
- < - < i i 4 .
(12) Py~ Pplajy - a = R if (i,j)eX
Suppose that Bl and B2 are lower and upper bounds for all initial prices,
i.e.
(13) B. < po < B ¥ JET
1= P32 5 JET.

-18~

For each k there must be at least one unassigned sink, say E% and we must

have pi = po < B2' It follows from (12) and observation a) that

Oy By

(14) Blip(;f_p]j{iR+B2 , ¥ k=0,1,..., jer.

It is easy to see that there is an integer Y such that the kth iteration of
the algorithm requires at most YnkN computer operations where

1 in Case 1

number of labelled sources in Case 2
There can be at most N iterations at which the cardinality of Xk increases
so the number of operations needed for these is bounded by YNB. At each

iteration k for which the cardinality of Xk does not increase, n, prices

k
will be increased by at least unity. If follows from n < N and (14) that
the total number of these iterations is bounded by R + (B2 - Bl)‘ ‘Hence
the total number of operations for these iterations is bounded by

Y(R + 82 - Bl)Nz. If we restrict the initial prices so that for some integer
?' we have B2 - Bl f_?R(as indeed would be the case with any reasonable
initialization procedure including the one used in our experiments) we

obtain the upper bound YN3 + Y{(1 + §3RN2 on the number of operations necessary

for problem solution. Thus the worst case complexity of the pure form of the

algorithm for full dense problems is

2
(15) o(N’) + o(RN%) .
While the worst case complexity of the algorithm is inferior to the
one of the Hungarian method for large R, we would like to emphasize that,

as experience with the simplex method has shown, worst case complexity and

-19-

average complexity of an algorithm can be quite different. Thus two algorithms
with comparable worst case complexity can differ substantially in their
performance in solving randomly generated problems or problems typically
arising in practice. 1In our computational experiments with random problems

we found that the algorithm often performed surprisingly better than the

Hungarian method. The following example illustrates what we believe is the

mechanism responsible for this superior performance.

Example 2: Consider the NxN full dense problem specified by the assignment

matrix

N-1 ()
N-1 N-2

. . . 3
. . . 2 2
N N-1 N-2 3 2 1 |

with all elements above the diagonal equal to zero. Let us trace the
iterations of our algorithm for this problem starting with p = 0 and the

empty assignment. In the first iteration source 1 is chosen, we have

i

m=0N, m=0, j =1 and, under Case 1, link (1,1) is added to the assignment

while price Py is increased to N. In the second iteration source 2 is

chosen, we have m = N-1, @ 0, §'= 2 and, under Case 1, link (2,2) is
added to the assignment while price P, is increased to N-1. Continuing
in this manner we see that at the kth iteration link (k,k) will be added

to the assignment and the price P, is increased to k. Thus the algorithm

terminates in N iterations and its computation time for this problem is O(Nz).

-20-

If we apply the Hungarian method of the next section to the same problem
with the same initial conditions we find that at every iteration except
the first all sources will be scanned leading to a computation time O(N3).
- essentially N times slower than with our method. This type of example does
not depend on the initial prices as much as it may appear, since if the
standard initialization procedure of the Hungarian method were adopted
(see next section) then by adding a row of the form (N,N....N] and a column
consisting of zeros in all positions except the last to the assignment
matrix, the computation times of the two methods remain essentially unchanged

for large N.

In analyzing the success of our method in this example we find that it
is due to the fact that by contrast with the Hungarian method, it tends
to increase prices by as large increments as is allowed by the complementary
slackness constraint. Thus in the first iteration Py is increased by N.
This has the effect of outpricing sink 1 relative to the other sinks in
the sense that the price of sink 1 is increased so much that, together with
source 1, it plays no further role in the problem. Thus in effect after
the first iteration we are dealing with a problem of lower dimension. By
contrast the Hungarian method in the first iteration will add link (1,1)
to the assignment but will not change its price from zero. As a result
source 1 and sink 1 are labelled and scanned at every subsequent iteration.
Outpricing sink 1 has another important effect namely it allows a large
price increase and attendant outpricing for sink 2 at the second iteration.
This in turn allows outpricing sink 3 at the third iteration and so on.

This illustrates that outpricing has the character of a chain phenomenon

-21-

whereby outpricing of some sinks enhances subsequent outpricing of other
sinks.

The preceding example is obviously extreme and presents our method in
the most favorable light. If, for example, the first row contained some non-
zero elements other than N, the change in the price pl.at the first iteration
would be smaller than N. In this case the effect of outpriéing, while still
beneficial, would not be as pronounced and it would drive source 1 and sink 1
out of the problem only temporarily until the prices of other sources increase
to comparable levels.

While we found that the algorithm of this section performs on the
average substantially better than the Hungarian method for randomly generated
problems, we often observed a pattern whereby the algorithm would very
quickly assign most sinks but would take a disproportionally large number
of iterations to assign the last few sinks. For example for N = 100 we
observed some cases where 75% of the iterations were spent for assigning
the lasttwo or three sinks. Predictably in view of thé complexity estimate
(15) this typically occured for large values of R. This points to the |
apparent fact that the beneficial effect of outpricing is most pronounéed
in the initial and middle phases of the algorithm but sometimes tends to be
exhausted when there are only few unassigned sources. The remedy suggesting
itself is to combine the algorithm with the Hungarian method so that if
the algorithm does not make sufficiently fast progress a switch is made to
the Hungarian method. A reasonable implementation of such a combined method
will be presented in Section 4. 1Its worst case computational complexity is
O(N3) - the same as for the Hungarian method. Its performance on randomly
generated problems was found to be consistently superior to both the Hungarian
method and the pure form of the algorithm of this section. Significantly,

the factor of improvement over the Hungarian method increases with problem

-2~

dimension.

3. Implementations of the Hungarian Method

Since we intend to compare and combine our method with the Hungarian
method we describe here the implementation that‘we used in our computational
experiments.

The initial assignment x° is taken to be the empty assignment and the

initial dual variables are chosen according to the usual scheme

o . .
m, = max-{aijIJET} , i=1,...,N
o) 0. .
p; = max {aij miIlES} j=1,...,N .

Notice that the equations above imply

o} o ..
mi + pj z_aij ’ ¥ (i,3j)€L.
. k k _k . , .
For k = 0,1,...,N-1, given {(m , p , X) satisfying for all ies
. € k t
+ P. = a,. i,3
m pJ alj if (i,3) &X
1 3 .
m, +p 2 a, ¥ (i, n)eL
n in
we obtain (mk+l, pk+l, Xk+l) satisfying for all i€s
k+1 k+1 . . k+1
= 1 £
m; T+ pj aij if (i,j)€x
k+1 k+1
N .
m, +p, Za ¥ (i,n)eL

according to the following labelling procedure.

T |
Actually throughout the algorithm the stronger condition m? = max{ain—pil(i,n)eL}
holds for all k and i€S. We state the algorithm in this form in order to emphasize
that (mk,pk,xk)need only satisfy the same conditions as in the algorithm of the

previous section,thereby simplifying the transition from one algorithm to the other.

-23-

Step 0: Give the label "O0" to all unassigned sources under Xk. Set ﬂj = o,
j=121,...,N.

Step 1 (Labeling) : Find a source i with an unscanned label and go to Step la,

or find a sink j with an unscanned label and ﬂj = 0 and go to Step 1lb. If

no such source or sink can be found, to to Step 3.

Step la: Scan the label of source i as follows. For each (i,j)€L for which
m? + p? - aij < ﬂj give node Jj the label "i" (replacing any existing label)
k

and set T, = m, + p& - a,.. Return to Step 1.
J 1 3 1]

Step 1lb: Scan the label on the sink j with Wj = 0 as follows.If j 1is unassigned
under Xk go to Step 2. Otherwise identify the unique source i with (i,j)exk ’

and give i the label "j". Return to Step 1.

Step 2 {(Augmentation): An augmenting path has been found that alternates between

. . . . kK . .
sources and sinks originating at a source unassigned under X and terminating
at the sink Jj identified in Step lb. The path is generated by "backtracing"
from label to label starting from the terminating sink j. Add to Xk all links

on the augmenting path that are not in Xk and remove from Xk all links on the

. k+1 k
augmenting path that are in Xk. This gives the next assignment Xk+l. Set m =m,
k+1 k k k _ .
P = p .(Note that m and p may have been changed through Step 3). This completes
the iteration of the algorithm.
Step 3 (Change of Dual Variables): Find
(16) S =min{'rrj|j_€'1‘, o> o} .
Set K K
m, <m; - § for all ieS that are labeled
k k . .
3 <+ pj + 4 for all jE€T with ﬂj =0
ﬂj <« ﬁj -6 for all jeT that are labeled and ﬂj> 0.

and go to Step 1.

-24-

Notice that the labeling procedure will terminate only upon finding
an augmenting path at Step 2 and therefore at each iteration the cardinality
of the current assignment is increased by one. Thus XN has cardinality N and
is an optimal assignment. We now estimate the complexity of the algorithm.
Scanning labels in Steps la and 1b requires at each iteration at most 0(N2)
operations for a full dense problem. The augmentation (Step 2) requires at
most O(N) operations. The number of operations needed at each,iteration for
Step 3 is O(N) multiplied with the number of times Step 3 is performed at
each iteration. We estimate this number as follows. The initial prices can be

easily seen to satisfy

-R<p <0 , ¥JeT.

o
n
From (12) - (14) we see that we have
o
J

—R_<_p._<_p]j‘iR » ¥k =0,1,...,81, JeT

~Since mi_i R for all ieS and {m?} is monotonically decreasing it follows

that
m?li R ¥ k=20,1,...,N-1, 1igS.

During each iteration we have, using the two inequalities above, for each
jeT and for some i€S

m, = mg + pg - a,. < 2R.
J 1 J i) —

Now the number of times that Step 3 is performed at each iteration
is bounded by N as well as by the maximum value of nj after the first label
is scanned. Using the inequality above it follows that this number is bounded

by min{N,2R}. We thus obtain a bound O (min{N,2R}IN) for the total number of

=25~

operations in Step 3 during a single iteration of the algorithm. Summing over

N iterations yields the following complexity bound for full dense problems
3 . 2
(17) 0(N”) + O(min{N,2R}IN®) .

This bound can also be written as O(N3).

There are other possible implementations of the Hungarian method. The
one described in [7] performs Step 3 in a different way than we do. Instead
of keeping track of the scalars ﬂj the entire matrix of "reduced cost co-

efficients" cij = mg + p& - aij is maintained and updated each time Step 3

1 J
is performed. The increment of dual variable change § of (16) is obtained from

§ = min{cij|i is labelled, j is unscanned}

The reduced cost coefficients are also updated to reflect the changes in
m? and p? . Unfortunately for full dense problems this requires O(Nz)

operations thereby resulting in a complexity bound
3 . 3
(18) 0(N”) + O(min{N,2R}N")

When R is small relative to N this is comparable to 0(N3). But for large values
of R the complexity bound reaches O(N4). This fact explains the strong
dependence on R of the computation times given in [7],(see also Table 1).
Furthermore it suggests that our implementation of the Hungarian method is
superior to the one of [7] which was in turn found comparable to the best
simplex and primal-dual codes currenily available for the.-assignment problem.
The purpose of the preceding discussion has not been so much to
demonstrate that our implementation of the Hungarian method is superior to

other existing codes. In fact there isn't sufficient evidence to support

-26—-

such a claim. Rather, our aim is to convince the reader that the Hungarian
code that we have compared our algorithm with is quite efficient and at least
comparable with state-of-the-art codes. To make this point more strongly we
present in Table 1 computation times obtained using our Hungarian code, and
computation times taken from [7] for NxN randomly generated problems with
weights chosen according to a uniform distribution from [0,R]. The top entry
in each cell gives the time in secs for our code. The middle and bottom
entries give the time for the Hungarian code PDAC and the primal simplex

code with alternating basis ?ACAB of [7] respectively. Each entry represents

an average over ten full dense, random problems. The computation times did not

vary greatly around the mean so we feel that for a sample size of ten it is valid
to compare these times except for the fact that our times are on an IBM 370/168
computer while the times of [7] are on the CYBER 70/74 computer system at Georgia
Tech. All programs were written in Fortran and compiled using the FTN compiler in
the OPT=2 optimizing mode. Integer arighmetic has been used throughout and compu-
tation times exclude input and output operations. It is estimated in [7] that 1

solution second on a CDC for this type of problem is approximately equivalen to 1.43

seconds on the CYBER 70/74. Based on our experience with the IBM 370 and
the CDC 6600, and data given in [4], we estimate that one solution second on
the IBM 370 should be equivalent to somewhere between 2 and 3 seconds on

the CYBER 70/74. This is also consistent with the computation times listed
in Table 1 for R = 10 in which case the two Hungarian codes should be
roughly equivalent since, for R = 10, Step 3 is hardly ever performed
[compare also the estimates (17) and (18)]. It can be seen from Table 1
that even if we scale down the times of the Hungarian code of [7] by a

factor of 3, our code comes out much superior for R.i 100. Notice that

. . 10 {100 1,000 10,000 100,000
{
! o0.038 0.058 0.070 0.073 0.073
50 ; 0.092 0.290 0.537 0.715 0.704
i o0.258 0.464 | 0.478 0.502 - 0.484
} 0.103 0.343 0.430 0.475 . o0.488 |
100 | 0.253 1.079 ; 2.795 5.365 I 6576 |
P 1.246 2.505 | 2.987 2.849 i 3153
p : i
§ ! 1.036 ¢ b 1.0
| 150 ' 3.639 § | {24332
; | 6.017 P 7.868 %
% z]
© 200 P o2.383 | ~ © 3.695
% 735 | © 53.395
‘ | 12.375 : ¢ 16.316

TABLE 1: Computation times in secs of our Hungarian code on IBM 370 (top
entry in each cell), the Hungarian code of [7] on CYBER 70/74
(middle entry), and the primal simplex code of [7] on CYBER 70/74
(bottom entry)‘. Each entry is an average over 10 randomly generated
full dense problems. One solution second on IBM 370 approximately

equivalent to 2-3 seconds on CYBER 70/74.

-28-

the times given in Table 1 show remarkable agreement with qualitative predictions

based on the complexity estimates (17) and (18).

4. Combinations with the Hungarian Method - Computational Results

As discussed at the end of Section 2 it appears advantageous to combine our
new algorithm with the Hungarian method. A switch from the new algorithm to the
Hungarian method is very simple in view of the similarities of the two methods.
We have used the following scheme in our experiments:

We are making use of two lists of unassigned sources during execution of
the algorithm. Each unassigned source is contained in one and only one of
the two lists. We select at each iteration the unassigned source which is at
the top of the first list. If in.that iteration a new source becomes unassigned
(Case l,E'assigned, or Case 2, Step 3) this source is placed at the bottom of
the second list. 1Initially the first list contains all sources and the second
list is empty. As the algorithm proceeds the size of the first list decreases
while the size of the second list increases. When the first list is emptied
the contents of the second list are transferred to the first and the second list
becomes empty. We refer to the portion of the algorithm between the time that
the first list is full to the time it is empty as a cycle. At the end of each
cycle we compare the number of sources in the second list with the number of
source; contained in the first list at the beginning of the cycle. If they
are the same (implying that no augmentation occured during the cycle) a counter
initially set at zero is incremented by one. The counter is also incremented
by one if during the cycle Case 2, Step 3 was reached more than a fixed pre-
specified number of times (4 in our experiments) with the number of labelled

sources being more than a fixed prespecified number (10 in our experiments).

.f.

Actually this last device does not seem to play an important role for practical
purposes. It was introduced in order to make possible a proof of an 0(N3) complexity
bound for the combined algorithm.

-29«

At the point where the counter exceeds a prespecified threshold value a switch
is made to the Hungarian method of the previous section. The threshold value
was set at 0.1N in all of our experiments, but the average performance of the
algorithm seems fairly insensitive to this value within broad limits. It is
a straightforward but tedious exercise to show that the complexity of this
combined algorithm is bounded by 0(N3). The proof essentially consists of
showing that at most O(N3) operations are necessary before a switch to the
Hungarian method takes place. In almost all the problems we solved, the great
majority (95-100%) of sinks were assigned by the new algorithm and the remainder
by the Hungarian method after a switch was made. This was particularly true
for small values of R when for most problems a switch to the Hungarian method
was not necessary.

Finally regarding initialization we have in all cases chosen X° = empty,
and p? = 0, mi = R for all i and j. However at the end of the first cycle

(i.e. at the end of the Nth iteration) the prices of all unassigned sinks j

are changed from p? = 0 to

pg = max{a,, - m'| i: assigned under s T
J 1] 1

The remaining prices and all values m? are left unchanged. This is in
effect an initialization.procedure quite similar to the one for the Hungarian
method of the previous secéion. Its purpose is to reduce the prices of the
unassigned sinks as much as possible without violating the complementary
slackness constraint. It has worked quite well in our expériments.

Tables 2 and3 show the results of our computational experiments with
randomly generated full dense, NxN problems. Each entry represents an average

over five problems, which were the same for all three methods and for

-30-

each N. The weights were chosen from a uniform distribution over [0,1] and
subsequent multiplication by R(Table 2), or from a normal distribution N(0,1)
and subsequent multiplication by I (Table 3). They were then truncated to the
nearest integer. The programs were written in Fortran and compiled with the
optimizing compiler in the OPT = 2 mode. The times given in the top entry of
each cell refer to the IBM 370 at M.I.T. We give in the bottom entry of each
cell the average number of sources scanned for each method (Case 1 in the

new algorithm corresponds to one source scanned). The average computation

time per source scanned does not differ much from one method to another, so

the number of sources scanned represents a valid measure of comparison which

is independent of the computer, compiler, programmer, and time of the day the
run was made. Ihe results clearly indicate that the combined method is overall
superior to the others . The pure form of the new algorithm also appears superior
to the Hungarian method, but not by as much as the combined method. Also the
variance of computation time exhibited by the pure form of the algorithm is
larger than those of the Hungarian and the combined methods. The combined
method had the smallest variance in computation time over the three methods
tested.

As a final comparison with existing methodology it is worth observing
that the computation time of Table 2 for the combined method and 200x200
problems with weights in the range [0,100] is 0.526 seconds. There are five
200x200 NETGEN benchmark assignment problems with weights in the range [0,100]
that have been solved by a number of presently available codes. The best solution
times achieved [3], [7] range from 0.96 to 1.68 secs on a CDC 6600. Making an

‘adjustment for the advantage in speed of the IBM 370 over the CDC 6600 we

-31-

" conclude that our time is at least comparable and probably superior ([4] giyes
an advantage in speed of 5 to 6 for the IBM 370 over the CDC 6600 for network
problems). Yet the NETGEN problems are only 3-12% dense while the problems

we solved are 100% dense.

-32=-

- zobo3juUT 3SoIESU Oyl O3 uorjeouniy pue A A uotaeoTTdTiTnw jusnbesdqns pue [T1’0]

ISAO0 UOTINGTIASTP Wrojrun Aq ussoyd s3zybrom yatm swelqoid osusp TINF NXN 9ATI I2A0 sberaay

‘pouuUBOS S$90INOS JO JASqUNN = AIJUS wWO330d -QLE WAI UO SO8S UT WLl = [[90 yoes utr Axjus dog HAC (A AR
: w i : §
¥80TT . TTie 5 €81€ L ozeie 52922 LEETT |
6°CT . ob T . v9°€ W ov°c S°vT STl | 00v
; A m : {
4 ; m
z8s8 ¢ PPST | 9L0T L VPST S9LTT 0zZEL m
gstL | 6T i €8°T ¢ 6e°T L°0T 9T1°9 !} 00¢€
; : :
w
££8¢ LT6T | 198 L9V v66 zZLot i 198 L9V £995 986% Teoy | 8021 4
! ;] {
ze e €€°T 1 92§° 9LT” 4N L€9° % 9z§” 9Lz” 6S°€ 18°¢ £z | e8” 007
| : i
L1Zz i 69¥T . €65 zov ZTIL seL | €65 zZov 95€¢€ €562 Zhve | GLTT
AL G99° | 88T" v8T" 8ve" 8ce” 88z " v8T" % 95° 1T ze'1 60° T 8LG" 0ST
14 1 . i1
LOTT gzot LTE 682 88¢ r4:13 61¢ S82 96€T €621 LTOT 718
00¢* T1E" €0T" 160" 01 611" €0T" 160" { 6SP” 907" 61E" z9z° I o001
¥ wmv
€LE 88¢ A OET | Ly 6vT T €€l 0€€ 4 682 162
950" z90° | 0€0° zzo° | L20" LTO" £20° £€20° ¥90° | <z90° zs0° zso" 0S
i
000’00T | 000'T 00T 0t W 000‘00T | 000’T 00T o€ 000/00T | 000‘T 00T o€ m N
w Y
; . :
! poylsl ueTxebuny pue ; i
] : oylaW uetaebun i
WY3ITIOHTY MON Y3 JO WIOL DIng | WATIOBTY MON PSUTCUOD w POYISH UeT H

-33-

Hungarian Method

Combined New Algorithm
and Hungarian Method

Pure Form of the New

Algorithm

30

100

10,000

30 100 10,000

30

100 10,000

.079

.085

.089

.024 .025 .026

.033

.Q37 .038

440 | 449 458 135 136 140 192 | 233 238
| {
i _ :
B | -
100 .419 ! .455 | .487 091 | .091 | .094 .103 ¢ .118 | .113 §
1317 § 1383 | 1447 285 288 283 326 | 388 i 395 :
! § § : : ;
| ! 1.40 ;1.53 f 5 ; ;
150 §1.25 § 1. § .260 | .267 | .292 i.342 § .425 | .420 ;
: f : H < : | i
12868 | 3128 | 3265 570 599 ! 601 728 | 929 | 1024 :
j ‘i | : : |
; : : z i) 4
(200 [2.78 | 3.07 3.43 | .492 | .486 § .533 1.603 © 1.00 | .800 :
| 4975 ¢ 5395 5700 |k 808 | 819 : 852 D975 | 1607 i 1536 :
. H i | : i ; i : 5
300 ,8.25 ©10.0 I 1.21 i C1.15 i 1.45 bo2.21
§ 10101 ; ;11864 | 1318 . 1268 ' 1576 | © 2270
g
;400 i{20.4 124.8 | 2.63 i 2.45 i 2.85 9.55
: {19103 . 122755 [2140 ¢ 2083 . 2350 8108

TABLE 3:

Top entry in each cell = Time in secs on IBM 370. Bottom Entry = Number

of sources scanned.

Average over five NxN full dense problems with

weights chosen by normal distribution N(0,1l) and subsequent multiplication

by ¥ and truncation to the nearest integer.

(1]

(2]

(31

(4]

[5]

(6l

[7]

[8]1

{9l

-34-

References

Lawler, E., Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, 1976. '

Kuhn, H.W., "The Hungarian Method for the Assignment Problem,"
Naval Research Logistics Quarterly, Vol. 2, 1955, pp. 83-97.

Barr, R.S., Glover, F., and D. Klingman, "The Alternating Basis
Algorithm for Assignment Problems", Math. Programming, Vol. 13, 1977,
p.1.

Bradley, G .H., Brown, G .G., and G.W. Graves, "Design and Implementation
of Large Scale Primal Transhipment Algorithms", Management Science,
vol. 24, 1977, p.l.

Helgason, R.V., and J.L. Kennington, "NETFLO Program Documentation",
Technical Report IEOR 76011, Department of Industrial Engineering
and Operations Research, Southern Methodist University, 1976.

Hatch, R.S., "Bench Marks Comparing Transportation Codes Based on
Primal Simplex and Primal-Dual Algorithms", Operations Research,
vol. 23, 1975, p.ll67.

McGinnis, L.F., "Implementation and Testing of a Primal-Dual Algorithm
for the Assignment Problem", Industrial and Systems Engineering
Report Series No. J-78-31, Georgia Institute of Technology, Noyvember 1978.

Glover F., and D. Klingman, "Comment on a Note by Hatch on Network
Algorithms", Operations Research, Vol. 26, 1978, p. 370.

Bertsekas, D.P., "An Algorithm for the Hitchcock Transportation Problem",
Proceedings of 18th Allerton Conference on Communication, Control, and

Computing, Allerton Park, Ill., Oct. 1979.

~

PROCEEDINéS OF 17th ALLERTON CONFERENCE ON COMMUNICATION,CONTROL & COMPUTING

~ ; - ‘ Allerton Park,Ill,
AN ALGORITHM FOR THE HITCHCOCK TRANSPORTATION PROBLEM October 1979
-DIMITRI P. BERTSEKAS
Dept. of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Abstract: An algorithm proposed by the author for the classical assignment
problem [1] is generalized for solution of the linear uncapacitated
transportation problem. ' -

1. INTRODUCTION

In an earlier paper [1] we proposed a new algorithm for solving the
classical assignment problem. The algorithm was shown via computational
experimentation to offer substantial computational savings over the
Hungarian method. It is thus natural to consider extensions of this
algorithm to more general network flow problems. The present paper provides
such an extension for the classical linear uncapacitated transportation
problem, commonly referred to as the Hitchcock problem. As is well known
[2], the general minimum cost flow problem with capacity constraints on the
links can be reduced to the Hitchcock problem. Thus the algorithm of this
paper can be adapted to solve such problems although we will not discuss
the precise form of the necessary modificatioms.

Due to space limitations our presentation is somewhat abbreviated.
It is thus inevitable that some familiarity with the contents of [1] on
the part of the reader is necessary for understanding the mechanism of the
algorithm.)

2. THE HITCHCOCK PROBLEM

Consider a bipartite graph consisting of two finite sets of nodes
S and T with elements demoted i (i=1,...,M) and j (j=1,...,N) respectively,
and a set of directed links L with elements denoted (i,j) where i6S and
j6T. We refer to elements of S and T as sources and sinks respectively.

Each source i_(sink j) has a positive scalar a (Bj) associated with it

referred to as the supply of i (demand of j). e assume
Za, = Z B. :

Each link (i,j) has a weight a,. associated with it. We assume that there
is at most ome link (i,j)6L 3 for all i6S., j€T. We wish to find a flow
{xij[(i,j)GL} solving the (primal) transportation problem

ﬁaximize z a.. x
(1,0 3 1

subject to r xij =Qy, R ¥1€S
i,3)€L
I x,, =8B, R ¥jerT

(1,5)eL 3 3

xij _>‘ 0 ’ ¥ (iyj)GL . B

Throughout the paper we will assume the following:

a) There exists at least one feasible solution for (PTP).
b) The weights a,., the supplies ,, and the demands B. are
all integers. * J
The corresponding dual transportation problem in the vectors
m = (ml,...,m) and p = (pl,...,p) is

(DTP) minimize I a.m, + I B.p.

jes % jer 373
subject to m, + Py Z-aij ' _ v (i,j)eL .
The scalars p_., and Lalj - pj) will be referred to as prices and)

Qroflt margins resgectlvely.
3. The Algorithm

The algorithm generates a sequence of vectors {(m ’ p r X)} such
that for each k the following conditions are satisfied:

k k .
mpo+ Py Ay , v (i,j)erL, (2)
Kk _ e ok s
m; + Py = a5 . ¥ (i,3j)€L with X5 o, (3)
ko ..
xij‘zp ' ¥ (i,j)eL (4)
T 'x]i<j<ai- , v ies, : (5)
(lrj)eL - i '
. k .
z X <B. v jeTr . (6)

(i,j)en i3 — 3

Thus dual feasibility and complementary slackness are malntalned
throughout the algorithm [cf. (2), (3)], but primal fea31b111ty may be
violated to the extent allowed by (4) - (6). The algorithm, under the
Preceding assumptions, can be shown to terminate at a flow for which (5)
and (6) are satisfied with equality. Since in this case primal and dual
feasibility as well as complementary slackness are satisfied, this flow
must be optimal.

The overall scheme is similar with the one of the primal—dual method
({21, p.95), in that successive flow augmentations and changes in the dual
variables are effected, but there are important differences as discussed
in [1]. We now state the algorithm.

. The method is initialized with any mo, po that are dual feasible, and
with xgj = 0 for all (i,j)eL.

For k = 0,1,..., given (m ,p ' X) satisfying (2) - (6) we stop if (5)
and (6) are satisfied w1£h equﬁiity. Otherwise we use the. follow1ng
lteratlon to generate (m ’ *+1). ‘During the iteration additional
intermediate variables, vectors and sets of nodes are generated, and are

denoted by m, m, T, T, X,T7,f.

{k+1) st Iteration of the Algorithm

Choose a source i such that z xﬁ < 0= .
(i,j)eL

Set m to the maximum profit margin for i

- ki . +

m * max {ap; - py| (1,9)er} : (7)
Set also

T« {jer|m = az, - B3}

T jeTim = aij 3) (8)

‘ TerT . (9)

Step” 1 (Preliminary aajustment of flows and dual variables): If

ar < I_B. go to Step 2. Ifay > I_B, g0 to Step 1la.
jeF J jer
Steg la: Set
~ Ky o~ . -
m < max{az. - pj‘(l,J)GL' ierT}.
J (10)
~ s x
T «{jeT|m = a=, ~ p. 11
jer| 3 ~ Ps! (11)
p§ if 3T
x
b, €4 (12)
J k
Py + (m-m) if jeT
s if i #1
k 1
m; + . —.~ (13)
m ifi=1
k P
xij “ ifjegrT
k
- — —
%33 By ifi=iand jerT

H|

0 ifi#1and je (14)

If GE- # I B, set

and go to Step 1.

T The notation A + B means that the current value of (the #ariable,
vector, or set) A is changed to the current value of B.

Step 2.

k
(Note: At this poxnt we have from Step 1 vectors mk, pk, x and nonempty

sets of 51nks T, T with T C T such that (2) - (6) hold and

2 2_~x-k'<_z x}f<a~<28 T (16)

jG(T-T) "3 je(r-1 I T {,j)en I jet 3
Xpy = Bj , ¥ je(T-T), (17)
k k =)
— + . = Qe T ’
m pJ alj, v je (;8)

where if T = T we interpret sums over je(ELE) to be zero).

If there is no unassigned demand for sinks in T, i.e. if

) 2: ‘2: x?. ’
JeT £ 36 (i,gen
go to Step 3.

Otherwise increase the flow x%j along links (i,j) for sources jeT

for which a portion of their demand is unaSQLgned G.e., 83 > ,<§: x#*)
(i,j)eL

until either

a) the unassigned portion of the supply of i (i.e. O— =] E: xg;)is

T,jreL
exhausted,
or - . ' ~
b) The unassigned portion of the demand of sinks in T
(i.e. Z:B Z: 2: xzj) is exhausted.
J€T jGT (i,j)eL '
In case a) set mk +l “ mk, pk+l*-pk, and set xk+l to be the new flow.

This completes the (k+1l)st iteration.

In case b) increase further flows x§5 with jE€T and decrease flows

xtj with i # I, jET as necessary until all unassigned supply of 1 is

exhausted. (Néte: The choice of flows x%a which are incfeésed and flows
xtj,iﬁf,'jeE, which are decreased is arbitrary) .
Set;rk+l to be the new flow, and set mk+l < mk, pk+l < pk. This
completes the (k+1)st iteration.

Step 3: Increase flows x%a with j€T and 'decrease flows ij with i # 1,
{jei-as necessafy until all unassigned supply of i is exhausted We denote

the new set of flows §;,. (i,j)€L and refer to (x i3 J ’]GT as the

. : k - . . v)
1ncre§enfél flows and to (xij xij?f jeT, i# i as the dlsglaced flows.
Give to i the label "(O,fza" where jf;' = Oy - 2: Xrﬁ set .

‘ " (i,j)en

s + , V¥ jer

and go to Step 4.

Step 4 (Labeling): Find a source i with an unscanned label and go to Step 4a,
or find a sink j with an unscanned label and T, = 0, and go to Step 4b.

If no such source or sink can be found go to Step 6.

Step 4a: Scan the label of source i as follows. For each (i,j)€L for which
k k k k . s k k
- < . . = - v =
mi + pj alj "3 set WJ m. + pj alj If in addition m, + pj aij

give node j the label "(i,fj)"where fj = min {fi, Bj - EEE}. Return to

Step 4.

Step 4b: Scan the label of sink j with “j = 0 as follows. If

2 x.. < B. go to Step 5. Otherwise give to every unlabeled . source
. 5 1] J
(i,3)eL_
i with x;4 > 0 the label "(j,f,)" where £, = min {fj, ai} . Return to

Step 4.
Step 5 (Augmentation) : An augmenting path has been found that alternates

between sources and sinks, originates at source i and terminates at the
sink j identified in Step 4b. The flow on this path is

f =min {£,, B, - }: X..} . Modify x by adding or subtracting as
I3 w,pent _

appropriate f along the augmenting path. Subtract from x a portion of

incremental flows totalling f and add to x the corresponding displaced flows

totalling £. The end result is the new set of flows xk l. Set mk 1 « mk,

pk+1”+pk. This completes the (k+l)st iteration.

Step -6 (Change of dual vériables): Find

§ =min'{1%]je'r,. ™y 0}.

Set k
K+l m, - 8 if i has been labelled
m,. -go— 4
. k
m, .if i has not been labelled,
[k
’ p. + 6 ifwm, =0
k+1 J J
. e e d
J k
, ifm, >0
PJ 3 ’
k+1 -
X T o+x .

This completes the (k+1l)st iteration of the algorithm.

The description of the algérithm is quite complicated so we provide
some explanatory remarks. The objective of each iteration originating
with source i is to assign all unassigned supply of i while in the process
to either change some of the dual variables or assign some of the unassigned
demand of certain sinks or both. This is done at the expense, perhaps,
of displacing some already assigned supply of other sources. Stepl is
the preparatory stage whereby by modifying flows and dual varlables if

necessary [cf. (12) - (14)] we identify two sets of sinks T and T such

that (16) - (18) are satisfied. The iteration may end in Step 1 or in
Step 2 after essentially scanning only source i, This is the simpler of
two possible cases and corresponds to Case 1 of the algorithm of [l]. The
more complicated case, corresponding to Case 2 of the algorithm of [1], is
when the demand of all sinks in T are fully satisfied and therefore in
order to aSSLgn even a portion of the remaining unassigned supply

GI - 2: x;a of source i it is necessary to displace some portion of
(i,jreL

already assigned supply of other sources. This is done by means of the

labeling procedure stg;tlng with Step 3. A preliminary assignment of the

unsatisfied supply of i is made by displacing assigned supply of other

sources (§;;eplacing xk in Step 3). We then try to find an augmenting

path from i to a sink with unsatisfied demand. There are two possibilities.
Either such an augmenting path can be found (Step 5) in which case a. portion
f of the unsatisfied supply of i is chanelled through the augmenting path
and the corresponding portion £ of the displaced supply of other sources is
reinstated; or else a change is effected in the dual variables (Step 6).

The amount of change is the maximum allowed by the complementary slackness
constraint.

Observe that the following hold true similarly as in the algorithm
of [1]:)

k . " . s
a) The sequences {mi} are monotonically nonincreasing and

the sequences {p?} are monotonically nondecreasing.

b) The sequences of unassigned sink demands {B, - 2: %5 J
v - (i,j)en
are monotonically nonincreasing.

c) Dual feasibility and complementary slackness are maintained
by the algorithm.

d) At every iteration either the unassigned demand of at least one
sink will decrease strictly by an integer amount, or at least
one price will increase strictly by an interger amount.

e) In order for the price of a sink to increase it is ﬁecessary
that its demand is fully assigned.

Based on these .observations we can show in a very similar manner as
in [1] that the algorithm will terminate at a feasible flow. In view
of the fact that complementary slackness and dual feasibility are maintained
throughout the algorithm, the flow obtained at termination is optimal.

We have no computational experience with the algorithm with general
transportation problems. We except, however, that similarly as for
assignment problems [1], some combination with the primal-dual method will
turn out to be beneficial. It is hoped that computational experience will
be gained in the near future in this regard.

References

[1] D.P. Bertsekas, "A New Algorithm for the Assignment Problem",
Lab. for Information and Decision Systems Working Paper,
Massachusetts Institute of Technology, July 1979.

[2] L.R. Ford and D.R.}Fulkerson, Flows in Networks, Princeton University
Press, 1962.

Acknowledgement: This work wésrsuppérted by Grant NSF ENG-7906332. .

