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Abstract

Assembly and Test Manufacturing (ATM) at Intel faces new challenges caused by
increased competition, cost pressure, and segmented markets. These forces combine to
present ATM with increasing line items and processes in the face of-extreme demand
fluctuations over relatively short time periods. As a result, the factories are challenged
with accurately planning capacity.

Currently, ATM utilizes static, Excel-based models to plan capacity and perform what-if
scenarios. The applicability of static models in the highly dynamic ATM environment is
questionable. These static models neglect the inherent variability of each tool as well as
the coupling of variability between tool sets caused by WIP flow. This prevents static
models from predicting the values and variabilities of factory outputs and throughput
times (TPT) with sufficient accuracy to optimize the business.

Discrete event simulations have the inherent advantage of modeling factory dynamics.
They allow for factory experimentation without risking actual production. Examples
include availability and run rate improvement impacts, and changes to WIP management
policies.

Both static and dynamic approaches share a dependency on the accuracy of the input
data. In ATM, a few performance parameters are accurately measured in Workstream
including output, TPT, queue size, and yield. Tool performance data (availability, failure
details, etc.) are not accurately measured because of the low priority placed on this type
of data. Parameters such as utilization are back-calculated instead of being measured
directly. No attempt is made to capture other important data like tool idle time.

This thesis explores the development, validation, and application of a full factory
simulation including the consequences of data inadequacies. Tool and factory
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performance data were gathered in the Costa Rica assembly and test factory for WW28-
34 1999, and were incorporated into a dynamic factory model. Results from simulation
using this model underscored the need for automated tool data collection systems by
highlighting the inaccuracies of the tool availability data and labor effectiveness. The
model also proved useful for exploring WIP policy alternatives (CONWIP limits vs.
drum-buffer-rope starts policies). Reduction of CONWIP limits from 4 days to 3 days
appeared robust and generated a 20% decrease in TPT. Equipment protective capacity
was optimized. The results indicate that the current gap policy of 10/15/20 is sub-optimal
and leads to inefficient capital expenditures. The thesis also shows a logical methodology
for optimizing protective capacity levels in factories where there are large capital cost
differences among toolsets.

Thesis Advisor: Donald B. Rosenfield
Title: Senior Lecturer, Sloan School of Management

Thesis Advisor: Roy E. Welsh
Title: Professor of Statistics and Management
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CHAPTER 1. Introduction and Problem Background

1.1. The Assembly and Test Environment at Intel
In recent years, the microprocessor production environment has rapidly changed. Charles
Fine (1998) describes this change as an increase in Intel's clockspeed, which translates
into the decreasing product and process lifecycles. Market conditions and increased
external competition have caused Intel to address a variety of market segments. This is in
stark contrast to Intel's traditional performance as essentially a mass production
company.

Over the past decade, Intel essentially produced a single product at a time. Examples of
this include the 486 and Pentium® processors. The variation in the product line was the
speed, which essentially served to differentiate the market since new, high speed
processors cost significantly more than slower speed processors. Intel owned a large
percentage of the PC microprocessor market and was able to maintain high profit margins
as result. These processors were assembled and tested (A/T) on relatively simple and
inexpensive processes.

Over the past 2-3 years, the microprocessor market has become increasingly segmented.
Three market segments now exist: value, performance, and server. Intel has reacted by
offering a different product for each segment: Celeron* for value PCs, Pentium II/II* for
performance PCs, and Xeon* for servers and workstations. In addition to these basic
market segments, a strong mobile (laptop) market is developing for each of these
segments. Shorter product lifecycles and increased competition in the marketplace have
led to gross margin pressure for Intel.

Products for each segment are assembled and tested using different processes. The A/T
processes have become more complex and costly and now occupy a larger portion of
product cost. As a result of market segmentation, Assembly and Test factories (ATM)
now must work with an unprecedented number of products and processes.

Intel is also experiencing the difficulty of trying to predict demand for each of the
different market segments. On several occasions, demand has shifted from one segment
to another and Intel has not had enough capacity to accommodate the demand changes.
Intel has chosen to address this issue through the use of a capacity buffer on all A/T
processes to try to prevent A/T capacity constraints in the future. Another way to address
this issue is to design products and processes that can be converted between market
segments relatively quickly allowing the company to react to market demand changes.
Intel has been much slower to act on this front, although recent improvements in product
design now allow products to be differentiated by the A/T operation instead of at the time
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of fabrication. In other words, most of the microprocessors produced by the fabs are
identical; the products are differentiated in A/T processes. This allows Intel to react to
demand shifts much more quickly, but also creates more complexity for the A/T factories
because of the wide array of capacity scenarios that become possible. Although the idea
of process fungibility is starting to take hold, the need for processes that can be quickly
converted to run products for different segments has not been emphasized enough. For
example, performance and server processors are assembled and tested on independent
manufacturing lines. A fungible process that could be quickly converted between the two
products would help alleviate the capacity challenges faced by ATM.

ATM is a globally dispersed organization with operations in Costa Rica, China,
Malaysia, and the Philippines. In contrast to fabrication facilities, ATM factories are
relatively labor intensive and much less capital intensive. These conditions warrant
factories being located in markets where labor is relatively inexpensive. ATM factories
typically contain two sub-factories; assembly and test. WIP flows straight through the
factory without any re-entrant flow (re-entrant flow occurs when product is processed by
a given toolset more than once during the process). Yields are typically very high and re-
work rates low. Typical cycle times for the factories are about 1 week. The major
variable in the process is the number of tests that have to be performed on a unit which
translates into the total time a unit must spend being tested. Generally, as products
mature, test times decrease. Large cost differences exist between factory equipment with
testers being the most expensive tool. The variation in test times combined with the high
tester cost and relatively complicated operation lead to difficulty in planning factory
capacity. Most of the remaining tools in the factory do not experience large variation in
processing times between products and product maturing making capacity planning and
operational execution an easier task.

1.2. Motivation and Objectives
Because of the relative simplicity and low-cost of A/T processes in the past, the planning
and operation of A/T factories has not received much attention. Capacity planning
systems and operational policies have not kept pace with the increasing costs and
complexity of current A/T processes.

Intel has pushed the concept of Theory of Constraints (Goldratt, 1992) to the next level
by adding excess capacity at non-constraint operations to manage factory cycle times and
output variability. A blanket capacity planning policy was carried over from fab
experience and applied to ATM factories. This policy dictates the amount of excess
capacity at all operations is believed to be sub-optimal. The intent of this thesis was to
optimize excess capacity levels throughout the factory in order to maximize capital cost
avoidance and to develop robust rules that could be applied in a general setting.

It was also believed that the current, Excel-based static capacity models were
inappropriate for the highly dynamic ATM environment. An investigation into the
usefulness of discrete event simulation (DES) for addressing both tactical and strategic
issues faced by the factories was also warranted.
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Therefore, the primary objective of the thesis was to optimize excess capacity levels at all
operations of the OLGA process (the current desktop segment A/T process). This was to
be accomplished through the use of a discrete event simulation. Creation and validation
of the simulation required extensive fact finding into all areas of factory operations and
naturally led to the application of DES in a wide array of factory operational issues. An
assessment of factory data integrity and factory indicators was also incorporated into the
scope of the project through the extensive data collection process.
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CHAPTER 2. Capacity Planning at Intel Corporation

Intel employs excess equipment capacity to manage output variability and throughput
time (TPT) using a methodology known as Gap. Gap is planned idle time (or reserve
capacity) at each operation in the line. Before moving forward in an attempt to optimize
excess capacity levels at each operation in ATM factories, the history of the Gap policy at
Intel needed to be examined. The goal was to expand on historical work in this area in an
attempt to prevent reinventing the wheel.

On several occasions, Stan Gershwin (senior research associate, Department of
Mechanical Engineering, MIT) has commented on the lack of standardized definition
within the manufacturing systems realm. One example he sites is the standard definitions
of ohms and volts used by electrical engineers. These units have become widely
accepted and allow for comparison between a wide variety of devices. Conversely, no
standard definitions exist for basic metrics such as utilization and availability. The lack
of a standard metric makes comparisons of factory performance extremely difficult.
Even within ATM factories, different definitions of utilization and availability increase.
Before exploring the concept of gap, the metrics used in this thesis must be defined.

2.1. Metric Definitions

2.1.1. Availability
Availability is the percent of time that a tool is available to run production. Activities
that cause a tool to be unavailable are PM's, repairs, assists, conversions, and setups. It
should be noted that the activities included in the definition of availability are not
absolute but rather agreed upon by management.

Availability is generally expressed as a single number percentage. For example, an IX
tester may have an availability of 93%. It is very important to realize that this number is
only the average availability. Equally important to the average availability is variation in
availability. Figure 2.1 shows two separate tools, both with average availabilities of 60%.
However, the distribution of availabilities are very different for each tool. The tool with
the larger distribution is a more unstable which significantly adds to the variability of the
factory.

The central limit theorem also plays a key role in the variation of availability. This idea
basically states that the more tools there are in a given toolset, the lower the variation in
total availability for the toolset. Intuitively, this makes sense. A toolset with 20 tools
will generally show less variation for the entire toolset than a toolset with 3 tools.
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Figure 2.1: Demonstration of Variation in Availabilities
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In the following sections, the point will be made that availability is an ignored indicator,
although it actually deserves more attention than the current indicators. One of the
reasons that it is ignored is because the data are not accurate. Accurately measuring
availability is technically involved and is discussed further in Section 3.5.2.

2.1.2. Utilization
Although several definitions of utilization have existed in the past in ATM, utilization
can simply be defined as the percentage of time a tool is actually running product. ATM
abbreviates this quantity as MU (machine utilization). In order for a tool to be utilized,
three conditions must be met:

" The tool must be available
" There must be WIP present for the tool to process
" An operator must be present to run the WIP

If any one of these conditions is not met, the tool can not be utilized. Utilization can
never exceed availability, although it can be often be lower than availability due to WIP
starvation and/or the lack of an operator.

In some respects, availability is related to utilization, although this relationship is difficult
to quantify. As a tool's utilization approaches its availability, the probability of an assist
or failure increases which then reduces the availability. Conversely, as utilization
becomes much less than availability, the chance for unexpected downtime decreases
which allows availability to remain high.

2.1.3. Throughput Time (TPT)
Throughput time is the time it takes for a unit to pass through the entire manufacturing
line. TPT is the sum of the total time a part spends waiting in queues added to the total
time a part spends being processed. In mathematical terms,
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TPT = Processing Time + YQueue Time (Eq. 2.1)
all operations all operations

The equation shows that the two ways to reduce TPT are either to reduce queues or to
reduce processing time. In ATM factories, the queue times are usually much greater than
the processing times which makes WIP management policies a powerful lever for
reducing TPT. Although processing times for ATM factories are relatively constant due
to automated processing, queue time are highly variable and lead to variation in TPT.
Variation in the quantity and duration of lots on hold adds to the overall TPT variation.

The theoretical TPT (the fastest possible TPT) is simply the sum of the processing times
for each tool in the line.

2.1.4. Run Rate
Run Rate is the average planned capacity of a tool.

Run Rate (units/week/tool) = uph*MU*168 hours/week (Eq 2.2)

Where uph = units per hours that a tool can process (without interruption)



surprising since maintaining a WIP buffer at the constraint leads to more factory
inventory and thus longer TPTs.

Installing additional excess capacity at non-constraint operations was tried as a means to
reduce TPT. Excess capacity at non-constraint toolsets leads to expected idle time in
these areas. The reasoning is that the excess capacity will reduce queues at non-
constraint operations. This reduction in WIP leads to faster TPTs. This strategy was
implemented in the fabs and is still evolving today. The fabs face the challenge of
several hundred process steps with a high degree of re-entrant flow. These challenges
lead to complexities in WIP management and factory design that are much different than
the ATM factories.

2.3. The Gap Policy
The methodology of purchasing excess equipment capacity to create planned idle time at
toolsets became known as gap. Gap is defined as:

Gap = Availability - Utilization (Eq. 2.3)

As a result of the ToC/excess capacity experiments in the fabs, the 10/15/20 policy was
introduced. This means that the constraint toolset should have a gap of 10%, the near
constraint(s) a gap 15%, and all other tools (non-constraints) should have a gap of 20%.

Constraints were primarily determined by the toolset cost. The toolset cost is a function
of an individual tool's cost and its uph. Thus the implicit policy inherent to 10/15/20 is to
have a 10% gap at the most expensive toolset, a 15% gap for other expensive tools, and a
20% gap at the relatively inexpensive tools.

2.3.1. Gap Implementation in ATM
As a result of the dramatic improvements observed in fab operations, constraint
management and gap were introduced to ATM in 1995. Initial simulations were run to
determine to correct gap for the SPGA factory (Srivatsan et. al., 1995). The starting point
for the simulation was the 10/15/20 policy chosen by the fab. The simulation determined
that a 10% gap was appropriate for the constraint, a 15% gap for the near-constraint, and
20% for all non-constraint operations. This simulation only consisted of three data points
and was simply a starting point for determining ATM capacity policies. Only the
constraint gap was optimized; the near and non-constraint gaps were held constant.
While the simulation was a good first step, 10/15/20 has become POR (plan of record) in
ATM and has not been revisited since 1995.

ATM introduced 10/15/20 and constraint management in the factory with dramatic
results. During the first quarter of implementation, output increased by 18% and
inventory decreased by 11%. Within a year, TPT decreased by 50% (Kempf et. al,
1998). These results proved the effectiveness of excess capacity and constraint
management in an ATM environment.
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2.3.2. Variation in the Factory
Before further exploring the gap methodology, factory variation must be visited.
Variability is present in all aspects of factory operations. Consider the three requirements
for utilizing a tool:

" The tool must be available
" An operator must be present to run WIP on the tool
* WIP must be available to run on the tool

It is easy to see the variation in each one of these conditions. Tools are subject to repairs,
PM's, and other sources of downtime making their availability variable. Operators must
tend to a variety of tasks making their availability at a particular tool variable. Finally,
variation in tool availability and labor availability leads to variation in WIP flows
throughout a factory. The end result of all of this variation is unpredictability in factory
output and throughput times.

Two options exist for addressing these sources of inevitable variation:
1. Try to eliminate the variation.
2. Manage the variation.

Option 1 is a very costly solution. This option involves expensive engineering solutions



2.3.3.1. TPT Management
TPT management can be easily seen in the following example which develops the TPT-
MU trade-off curve. MU is inversely related to idle time: as MU increases and
approaches availability, idle time decreases (and vice versa).

Suppose a constant WIP queue of 1600 units is to be processed by a toolset. Each tool
can process 160 units per shift. Assuming perfect execution and tool availability, the
number of tools in the toolset is varied and the impact on TPT is observed. Table 2.1
shows the results of this example. When 7 tools are operated, the capacity of the toolset
is 7 tools * 160 units/tool/shift which equals 1120 units/shift. 1120 of the 1600 units are
processed on the first shift and the remaining 480 are processed on the second shift. The
total capacity of the toolset is 1120 units/shift * 3 shifts which equals 3360 units. A total
of 1600 units were processed which results in a utilization of 48% (1600 units
processed/3360 unit capacity). Similarly, 1120 units were completed in 1 shift while 480
units were completed in 2 shifts. The average TPT is a weighted average of these TPTs
and equals 1.3 shifts.

Table 2.1: Example Factory Statistics
Queue Size # ot Tools loolset Gapacity MU Average TPT Shift 1 Shift 2 Shift 3

per shift (over 3 shifts) (# of shifts) units processed units processed units processed
1600 7 1120 48% 1.3 1120 480 0
1600 6 960 56% 1.4 960 640 0
1600 5 800 67% 1.5 800 800 0
1600 4 640 83% 1.8 640 640 320

As the number of tools is increasing (while the initial queue size remains constant), MU
decreases (idle time increases) while TPT becomes faster. The graphical representation
of these data (Figure 2.2) clearly demonstrates this relationship.

The inverse relationship between MU and TPT is clearly shown by the data from the
sample factory. In other words, as idle time increases, TPT becomes faster. The makes
intuitive sense as well. Idle time at a toolset allows it to immediately process any
incoming WIP and minimizes the presence of WTP queues. This in turn leads to faster
TPTs. In a more general sense, the MU vs TPT relationship is shown in Figure 2.3.

At some point, MU is low enough (idle time is great enough) that no WIP queues are
present in the factory. At this point, the factory TPT is simply equal to the theoretical
TPT. As idle time decreases (and MU increases), the TPT increases. Eventually, as the
factory becomes overloaded, TPT approaches infinity.

The Gap policy allows Intel to take advantage of this relationship. If the gaps are
increased, TPT will decrease (the converse of this is also true). Correspondingly, in order
to increase idle time, excess capacity must be purchased. Factory capital cost is therefore
inversely related to TPT; TPT decreases as gaps are increased and capital cost increases.
Excess capacity requirements need to be driven by TPT targets. Currently, 10/15/20 is
simply used and the resulting TPT is accepted. Managers do not appear aware of their
ability to influence TPT by capital spending. Furthermore, it is very difficult to quantify
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the value of faster TPTs in ATM factories. Future efforts in quantify the value of TPT
and arrive at TPT targets that make business sense are necessary to optimize any excess
capacity strategy.

Figure 2.2: Example Factory Results: TPT vs MU Tradeoff

Tool Bagging: TPT vs MU Tradeoff
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Figure 2.3: MU vs TPT General Relationship
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2.3.3.2. Factory Variability Management
The Gap policy of 10/15/20 begs the question of why the gaps are different for
constraints, near-constraints, and non-constraints. The answer to this question is revealed
upon examination of the components of factory variability.

Remember, three conditions must be met in order to utilize a tool:
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* The tool must be available
* WIP be must present at the tool
* An MT must be present to run the WIP

As previously discussed, variation exists in each of these necessary conditions.

Constraint Gap

In theory, the constraint gap is lower than the near and non-constraint gaps because it is
only subject to one source of variation. A WIP buffer is maintained in front of the
constraint to ensure that it always has WIP available to process. This WIP buffer
eliminates variation in WIP at the constraint. Ideally, the constraint does not have
variation in operator availability either. Manufacturing should focus its efforts on the
constraint tool so that WIP is immediately processed on available tools to maximize
factory output. This resource focus should eliminate variation in labor, although in
practice this variation cannot be completely eliminated. None the less, the only real
source of variability the constraint faces is variation in tool availability.

Non-Constraint Gap
Non-constraint tools are subject to variation in tool availability. However, non-
constraints are also subject to variation in WIP and operators which necessitates a larger
gap to defend against more sources of variation. Manufacturing resources are not as
plentiful at non-constraint operations creating variation in the amount of time it takes
operators to load lots on available tools (on the constraint, lots should loaded immediately
without any delay). Since a WIP buffer is not maintained in front of non-constraints
(doing so would unnecessarily increase TPTs), non-constraints are often starved for WIP.
This leads to variation in WIP availability. Unlike the constraint, non-constraints are
subject to variation in all three of the conditions necessary to utilize a tool. This increase
in variation leads to an increased gap to effectively manage the variation. The larger gap
allows the non-constraint toolsets to efficiently process material which leads to
predictable factory output and reduced TPTs.

Near-Constraint Gap
Near-constraints are similar to non-constraints because they are also subject to variability
in tool, WIP, and operator availability. The difference is that near-constraints are not
subject to the same degree of variation in WIP and operator availability. By definition,
near-constraints are closer in capacity to the constraint than non-constraints. The natural
dynamics of the factory result in WIP being present at near-constraints a majority of time
which leads to lower WIP variation at the near-constraints. Manufacturing also focuses
more resources on near-constraints than non-constraints which effectively reduces the
variation in operator availability. Therefore, the near-constraint gap is larger than the
constraint gap because it is subject to variation in all three tool utilization conditions.
However, the amount of variation in WIP and labor is lower at a near-constraints than at
a non-constraint which leads to a smaller gap at the near constraint.
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2.3.4. Constraint Gap Determination
Variation at the constraint is dominated by variation in tool availability (constraint
management dictates that WIP and operators should always be available at the constraint)
The strong influence of tool variability on overall constraint variability allows for the gap
to be determined from the toolset availability variation. Figure 2.4 shows a control chart
for weekly toolset availability. The upper and lower control limits (UCL and LCL) are
set at two standard deviations; in other words, the toolset availability should fall within
the control limits 95% of the time (assuming the toolset availability is normally
distributed).

In this spirit, the gap should be set at the difference between the average toolset
availability and the lower control limit. In this example, the gap would be 4.2%. By
setting the gap at 4.2%, the factory would be able to produce the output associated with
an 81.8% constraint utilization 95% of the time. If control limits were set at three
standard deviations (the corresponding LCL is 78.7% which gives a gap of 7.3%), the
factory would be confident that it could produce the output associated with a 78.7% MU
99.5% of the time.

Figure 2.4: Weekly Toolset Availability Control Chart
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Ideally, the constraint is always staffed with operators and WIP is always present. In
reality, the constraint occasionally suffers from operator availability. The gap determined
by the control chart method should also include a small buffer to account for unplanned
idle time. Labor studies in ATM factories are needed to comprehend the magnitude of
this additional constraint buffer.

The gap at the constraint serves to give the factory a stated capacity to which it can
confidently commit. As constraint cost increases, the gap can be reduced which reduces
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total capital expenditure (i.e. the control limit sigma is reduced). However, as the gap is
reduced, the factory becomes less confident in its ability to consistently achieve the
output associated with the gap.

2.3.5. Line Design
Intel employs 10/15/20 in planning capacity for ATM factories. Ideally, the constraint
should be the first factory operation (Goldratt, 1992). In most ATM processes, this is not
possible. Test is the most expensive operation which mandates that test be the constraint.
Testing occurs about 3/4 of the way through the entire assembly and test process.

Figure 2.5 shows the design of a typical line at Intel. Run rate (Section 2.1.4)
incorporates gap. Remember, MU= Availability - Gap. In this manner, Intel plans
capacity to achieve a balanced line in terms of planned run rate. This does not mean the
line is balanced since the available capacity of the operations is not balanced. The larger
gaps at non-constraint operations lead to higher expected idle time at these operations.

Figure 2.5: ATM Line Design
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2.3.6. Advantages and Deficiencies of Gap
The blanket capacity policy known as gap allows Intel to easily implement excess
capacity at non-constraint operations without requiring complex modeling for each new
process. The implementation of this blanket policy is relatively straightforward, although
excess capacity amounts are likely to be sub-optimal.

While the Gap was a great starting place for cutting-edge ToC implementation, it falls
short in three main areas.

1. Gap does not scale with Availability and leads to non-intuitive amounts of excess
capacity.
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2. A blanket Gap policy of 10/15/20 neglects the variation of availability for each
toolset.

3. It neglects to specifically consider the cost differences between toolsets.

These deficiencies are addressed by a new concept, equipment Protective Capacity (PC).

2.4. Protective Capacity (PC)
In many respects, PC is simply a computational change of gap. Like gap, PC states the
amount of excess capacity at an operation. The gap concept has not been well understood
in ATM factories. A major role of PC is to clarify and to further develop the use of
excess capacity in ATM. Without this re-branding of gap, it would be very difficult to
introduce the paradigm shift associated with optimizing excess capacity levels.

2.4.1. An Accurate Measure of Excess Capacity
Recall that the formula for Gap is A-MU. A blanket gap policy in the face of different
availabilities yields different amounts of excess capacity. The solution to this problem is
to normalize the Gap formula. Protective Capacity in its simplest form is normalized gap
as shown in the following equation. It allows accurate representation of excess capacity,
whereas gap does not. This is more easily seen in Figure 2.6.

PC = A-U (Eq. 2.4)
U

In both examples, a 10% gap is applied to tools with different availabilities. However,
since gap is not normalized, the resulting amount of excess capacity is greater than 10%.
PC allows for the accurate statement of excess capacity and is a much more intuitive -
parameter.

Figure 2.6: Gap-PC Comparison
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The example shows that as availability decreases (while gap remains constant), the
amount of actual excess capacity increases. This relation is shown in Figure 2.7. As
availability decreases, the amount of excess capacity increases. This highlights one of
the fundamental issues with gap. For a non-constraint tool with a low availability of
70%, the actual amount of excess capacity purchased when using a 20% gap is 40%.
Because gap is not normalized, Intel could be buying twice the required capacity of
certain tool sets in a worse case scenario.

Figure 2.7: Excess Capacity as a Function of Availability and Gap
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2.4.2. Treatment of Individual Toolset Availability Variation
As discussed in Section 2.3.3.2, gap serves to buffer the factory against variation.
Variation appears in three main areas: tool availability, technician availability, and WIP
availability. For the constraint, tool availability is the main component of variation. It is
reasonable to state that variation in tool availability is the main source of variability in the
factory. Each toolset has a different amount of variation in availability. For example, a
certain tool such as a burn-in oven may be very stable while a highly mechanical
operation such as epoxy deposition may be highly unstable.

Since tool variability is the largest component of total variation, a blanket excess capacity
policy such as 10/15/20 is likely to be sub-optimal. Instead, a policy that considers each
toolset's availability variation would lead to more optimal capacity planning. With the
current gap policy, a stable non-constraint with an availability of 70% would have actual
excess capacity of 40%. In all likelihood, 40% excess capacity is too much for all but the
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most unstable operations. In this light, blanket capacity policies sub-optimize factory
performance.

One of the premises of PC implementation is that each toolset will have its own PC level
(as opposed to a blanket policy). Determination of PC levels based on availability
variation could have been performed under the traditional gap policy. However, it is
organizationally difficult to attach new meaning to familiar terms. As a result, PC was
rolled out in an attempt to help make this paradigm shift.

While the theory behind PC is sound and it makes sense to have PC levels for each
toolset, determination of these levels is extremely difficult and is the main driver behind
the work in this thesis. Discrete event simulation was utilized in an effort to optimize PC
levels for each toolset - this work is described in detail in the following chapters.
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CHAPTER 3. Current Factory Capacity Planning Systems and
Operational Policies

3.1. Indicators and Factory Goals
Factories operate in a manner consistent with optimizing the indicators by which they are
judged. This makes the proper choice of indicators paramount in achieving outstanding
factory performance. A close look at the operations of the ATM OLGA factories
highlights this point.

Before entering this discussion, the point should be made that only manufacturing-line
related metrics will be examined. When asked, any Intel factory manager will respond
that their most important metric is safety. In this discussion, it is assumed that employee
safety is the most important metric and will not be further discussed.

3.1.1. Behaviors Driven by Indicators
After extensive conversations with ATM managers in several different organizational
areas, it was evident that three indicators are paramount in importance. Consequently,
managers pursue actions to achieve the best possible numbers for these indicators:

* Output (units)
" MU (Machine Utilization)
" Ku (thousand units)/direct labor head/week

Secondary indicators that are often reported (but receive less focus) are tool availability
and TPT.

Output is obviously a very important measurement of factory performance. If a factory
fails to meet commitments, Intel's bottom line is impacted. Output is such a concern that
factories are rewarded if they are able to exceed commits. Although formal recognition
may not exist, factory managers help establish credible reputations by being able to come
through at the last minute to meet upside demand requests. The end result of this
informal incentive system are factories that may have excess capacity at constraint
operations to help ensure the ability to meet upside potentials.

MU is a very interesting indicator. First of all, MU is not measured directly. Instead, it is
back calculated using the following equation. MU is calculated for each toolset in the
factory.
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MU = units produced per week
# of tools in toolset * uph * 168 hours/week

Upon examination of the MU equation, it becomes readily apparent that MU does not
reflect factory performance. MU is easily manipulated either by increasing the units
processed by a toolset or by reducing the number of tools in the toolset. The drive to
increase MU leads to interesting behaviors; the MU indicator will be discussed further in
the following sections.

The labor efficiency metric, ku/direct/week, is designed to ensure that headcount does not
get out of hand. If this indicator is optimized without regard to the others, the result will
be a factory without any operators. This is an extreme example, but serves to illustrate
the potential problem with this indicator. As the number of operators is reduced, the
amount of factory variability caused by the variation in the time it takes operators to load
WIP on tools increases. Given the lack of any type of dynamic labor model, optimization
of this metric may lead to sub-optimization of factory performance. In ATM, the largest
factory cost is equipment depreciation. While labor costs are significant, enough
operators should be employed to ensure maximum return on capital through short delays
in WIP loading times. Reduction of ku/direct/week risks large delays in equipment
repairs and the time it takes to load waiting WIP onto available tools. The targets for this
metric are largely driven by cost pressures and likely lead to sub-optimized factory
performance. The findings of this thesis show large gaps in tool availability that may be
partially attributed to low staffing levels. Data need to be gathered to determine the
applicability and proper targets for this metric (see Section 3.5.2.1 for data collection
recommendations).

3.1.1.1. Equipment Hotbagging
MU's power as an indicator has driven equipment hotbagging in the factories.
Hotbagging is simply the practice of preventing WIP from flowing through a tool for a
week. The tool remains installed on the floor and turned on, but manufacturing does not
allow any WIP to flow through the tool. When weekly demand is low (and low MUs
would subsequently be calculated), a few tools in each toolset will be hotbagged for the
week. The tools are left on and PMs are still performed, but no WIP is processed through
the tools. The rational given for hotbagging is to keep the manufacturing organization
sharp by demonstrating high tool utilizations.

As shown in Figure 2.3, as MU increases, TPT also increases. Rational reasons do exist
for bagging tools. Examples include cost savings through reduced PMs and repairs and
the ability to train technicians in other areas. However, PMs are still performed on
bagged tools and no financial analysis has been performed to assess the operating cost
impact of reducing PMs.

Unfortunately, tool bagging most readily occurs at constraint and near-constraint
operations. ATM senior management is most concerned about the utilization of the
expensive tools, the hotbagging naturally occurs at the constraints. In the OLGA
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factories, the most pressure is applied to the testers (constraint) and the epoxy module
(near constraint). These areas naturally experience high volumes of WIP in queue and
bagging tools in these areas only leads to longer factory TPTs.

While the rational behind bagging tools needs further examination, rational reasons do
exist for using MU as an indicator. When the senior managers authorize capital
spending, they look primarily at the MU for each tool to determine if they are receiving a
fair return on their investment. For example, if a tool has an 80% MU, that is generally
acceptable because Intel will be able to receive benefit from its expenditure 80% of the
time. If the MU of a tool is only 40%, it is deemed a poor investment because Intel
would have to buy twice as many tools compared with a similar tool having an MU of
80%.

Somewhere the notion was born that a high MU in the factory would lead to less capital
expenditure. It is easiest to see the flaws in this logic by examining the steps taken to
calculate the MU presented to the senior management.

1. The average Availability of a tool is calculated by factoring in expected PM times,
failure rates, assist rates, etc.

2. The appropriate gap is subtracted from the calculated average availability.
3. MU = calculated availability - gap

Unfortunately, the planned MU that is used when judging capital expenditure proposals is
often confused with the weekly MU that is back-calculated from factory output. While
the intentions of measuring factory MU are good, the wrong metric is being measured. If
the goal is to improve equipment efficiencies and decrease future capital expenditures,
the factories should be measuring equipment availability. As shown in the above MU
calculation sequence, an increase in tool availability will actually lead to higher planned
MUs and lower capital expenditures.

Ironically, in several weekly reports, TPT is listed in directly below tool MU reports.
This is somewhat surprising given the MU-TPT tradeoff. TPT does not seem to be of
much concern as long as TPTs are not 'excessively long.' The benefits of fast TPTs are
not well understood in the factories. Even though factory demand commonly changes
mid-week and results in unwanted products in process (inventory obsolescence), TPT
reduction is not a primary focus. In 1999, the theme of Intel's corporate-wide
manufacturing conference was 'manufacturing agility.' While the concept is great, it is
difficult to understand the meaning of the concept in daily ATM operations. A
reasonable definition of agility might be fast TPTs to allow factories to quickly and
accurately meet demand.

3.2. The OLGA Process
Before exploring factory operations, an introduction to the OLGA process is needed.
Intel uses the Organic Land Grid Array (OLGA) as the main assembly process for
Pentium* II/III desktop market processors. This assembly process serves to provide a
connector between the processor die and a printed circuit board. The OLGA package
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consists of multiple layers of copper interconnects and insulating material. The finished
OLGA package has tin/lead solder bumps to connect to a PC board.

Intel uses the C4 process (Controlled Collapse Chip Connect) as a die-to-package
interconnection technology. C4 is used in place of interconnection technologies such as
wirebonding or TAB (Tape Automated Bonding). Unlike traditional die to package
bonding technologies, C4 bond pads are not limited to the outer die perimeter, but can be
placed anywhere on the die surface. This results in higher interconnect density, and
higher performance devices.

A cross-section of the OLGA package is shown in Figure 3.1.

Figure 3.1: Cross-section of OLGA Package

Following the OLGA assembly process is a comprehensive device testing process. In
this portion of the process, devices are subjected to a bum-in operation to accelerate
device failures. After bum-in, all devices are 100% electrically tested before being
shipped to the customer. A process flow with brief descriptions follows and the process
flow is graphically shown in Figure 3.2.

3.2.1.1. Assembly Process Flow
Bump Reflow: Entire wafers from the fabs are placed in high temperature ovens to
reflow the C4 solder bumps on the die. The bumps need to be reflowed to remove any
oxides that have grown since bump deposition and to re-shape the bumps in the form of
sphere to improve contact later in the process.

Wafer Mount: The entire wafer is adhered to a piece of thick plastic. The adhesive
material serves to hold the wafer together during subsequent saw and wash operations.

Wafer Saw/Wash: The die are individually cut-out using a saw that cuts in both the x and
y directions. After sawing, the die are washed to remove any debris. At this point, all of
the die are held together in the original shape of the wafer by the tape applied in the
Wafer Mount operation.

Die Plate: Good die are removed and placed in tape and reel. This medium is used to
hold the die for the subsequent operation. Assembly and test lots consist of 1000 units,
although this amount decreases through the process as units are yielded out.

34



APL: The Auto Package Loader (APL) operation is used to transfer the OLGA substrates
from the vendor packaging to the trays used for processing during the assembly process.
The OLGA substrates contain the circuitry and layers necessary to connect the die with a
PC board. Each APL carrier holds 8 substrates. This is a parallel operation and is not
part of the main process flow.

SCAM: The Smema Chip Attach Module attaches the die to the substrates (one die per
substrate). The operation consists of three main steps: flux application, die placement,
and die attach. The tape and reels and APL carriers are inputs to this operation. The
APL carrier trays are used to hold the bonded die and substrate when the operation is
finished.

Deflux: Affectionately referred to as a large, expensive dishwasher, this operation
removes any remaining flux residue from the product. The APL carriers (which hold 8
units) are used to process the units through the operation. A single conveyor belt moves
units through the operation.

Epoxy: Epoxy underfill is dispensed between the die and the package (around the
connected solder bumps) to relieve stress between the die and package. The epoxy is
dispensed by three different dispensers. Units are processed in the APL carrier trays.
Again, trays are serially conveyed through the operation.

Epoxy Cure: The units are subjected to high temperatures to solidify and cure the epoxy.
Again, units are processed in the APL trays. This is a continuos flow operation with a
conveyor belt that moves trays through the oven.

CTL: Carrier Tray Load. Units are transferred from the stainless-steel APL carrier trays
to trays made from a different material for back end processing. CTL trays also hold 8
units.

3.2.1.2. Test Process Flow
Burn-In Load (BIL): Units are removed from the CTL trays and placed in the bum-in-
boards (BIBs). Each BIB holds 15 units. BIB contain electrical connections to the
products.

Burn-In Ovens (BIO): High voltages and elevated temperatures are applied to the
devices for a prolonged period of time to accelerate product failures. BIBs are manually
loaded into the ovens which each hold 70 BIBs. As products mature, bum-in times
decrease. Each oven holds a single lot (up to 1000 units).

Burn-In-Unload (BIU): Units are removed from the BIBs and returned to the CTL
carrier trays. The same tools are used for BIL and BIU.

Post Burn-In Check (PBIC): Devices are individually 100% tested. As products mature,
test times decrease. Additional tests are performed before BIO and after PBIC early in a
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product's maturity. All electrical tests use the same equipment. The largest yield hit of a
few percent occurs at this operation. Products are grouped into speed (mHz) bins by the
tester. If a product fails, it either re-tested 2-3 times (to see if it will eventually pass) or
re-worked starting at the bum-in operation.

Semi-Finished Goods Inventory (SFGI): Since the units come from PBIC grouped by
speed, speed bins are combined from several lots to create new lot sizes. The maximum
allowed lot size (determined by quality and reliability) leaving SFGI is 2100 units.

FQA: Final Quality Assurance test. Intel's conservative approach to quality assurance is
the driver behind this seemingly redundant test. It is performed on the same testers as
PBIC. 250 units from 1 out of every 10 lots coming from SFGI are tested at FQA.

Laser Mark: Each unit is marked for traceability purposes.

Ball Attach: Solder balls are attached to the OLGA package to allow for easy connection
to a PC board.

Ball Attach Inspect (BAI): A three-dimensional laser scan is used to inspect to quality of
the solder balls.

Pack: After a final visual inspection, the units are packaged from shipment to the
downstream customer.
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Figure 3.2: OLGA Process Flow
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3.3. Factory Operations
ATM OLGA factories are operated by relatively few rigid rules. Manufacturing
managers have great flexibility to manage factories as they see fit. Intel's semiconductor
fabrication policy of Copy Exactly!, a factory design philosophy where the tool recipes
and configurations are identical at all of the different factories, is not as prevalent in
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operations in the ATM world. As discussed in Section 3.1.1, indicators drive the
behaviors of the factories and thus the operational policies. Since MU is the key
indicator, policies are designed to maximize MU at the expense of other parameters such
as TPT. Following are descriptions of the general policies used to run ATM factories.

Table 4.3 shows the planned availability and uph for the OLGA tools. Cost data and
typical tool counts are shown in Table 5.6 and Table 4.1, respectively.

3.3.1. CONWIP Policy
As opposed to the pure drum-buffer-rope (Goldratt, 1992) system preached by The Goal,
OLGA factories employ a Constant WIP System, or CONWIP system (Hopp and
Spearman, 1996). The logic behind a CONWIP system is that in most factory settings,
the 'rope' is unreasonably long. If factory starts are based on a constraint buffer size 16
operations into a line, ample opportunity exists for WIP buildup before the constraint.
The supposition is that WIP levels will be erratic at the constraint (and throughout the
entire line up to the constraint) and constraint starvation is likely occurrence.

Hopp and Spearman advocate simply controlling the entire amount of WIP between the
start of the line and the constraint. By only making starts when the CONWIP level falls
below a specified level, the total amount of WIP is the factory is controlled and TPTs
stay relatively constant. As with the drum-buffer-rope approach, optimization of the -
CONWIP level is important to factory performance. If the CONWIP limit is too low, the
constraint will sometimes starve (assuming the factory is fully loaded). Alternatively, if
the limit is too high, TPTs become unnecessarily long. When used correctly, a CONWIP
limit is optimized to ensure a fed constraint while minimizing factory TPT.

OLGA factories face the probability of a shifting constraint between test and epoxy. Intel
has cleverly modified the basic CONWIP principle to accommodate these shifting
constraints. OLGA factories are divided into three blocks which give rise to multiple
CONWIP limits within the factory:

" Block 1: Reflow to Epoxy
" Block 2: Epoxy Cure to Test (PBIC)
" Block 3: Lasermark to EOL

OLGA factories follow a 2-2-1 policy. Ideally, 2 days of WIP are in Block 1, 2 days in
Block 2, and 1 day in Block 3.

One day of WIP is defined as the weekly production output goal of the factory divided by
7. ATM factories face the challenge of constraints shifting over time due to process
maturity issues. As processes mature, test times significantly decrease. This
dramatically impacts tester capacity and often results in the constraint shifting to the
epoxy module. To address this issue, Intel has attempted to institute a dynamic CONWIP
policy to account for the possibility of shifting constraints. The logic of the policy is as
follows:
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If Block I is full, do not make any new starts

If Block 1 is not full, look at (Block 1 + Block 2)

If (Block 1 + Block 2) > 4 days of inventory, do not make any new starts

If (Block 1 + Block 2) < 4 days of inventory, make new starts

Starts are made in the factory approximately every 6 hours (assuming WIP limits are not
exceeded). In theory, this policy allows for the constraint to shift from Test (end of block
2) to Epoxy (end of block 1). In reality, this policy was only loosely followed. On
several occasions, 5+ days of inventory were observed in the first two blocks.

It is also worth noting that Block 3 is essentially meaningless. Block three is after both
potential constraints. Following the rules of ToC, time lost at these non-constraints is an
illusion and can be made up for. Accordingly, the manufacturing organizations do not
pay attention to WIP levels in that portion of the line.

3.3.2. Conversions and Setups
It is widely known that conversions and setups negatively impact a tool's availability.
However, because the availability indicator receives less focus than other indicators, the
impact of conversions and setups are readily apparent. It is difficult to measure
availability given the lack of automated data systems in the factory, but this inability can
be attributed to the lack of emphasis on this indicator.

Setups are generally negligible at most operations. Most operations are continuous flow,
so a new lot can be loaded on a tool right behind a preceding lot. Operations such as
epoxy, SCAM, deflux, and cure all have conveyor belts in the tool making it possible to
eliminate setup times completely (assuming an operator is present to load the WIP).
Most other operations can batch multiple lots making setups negligible. Only two tools
have significant setup times: Test and Laser Mark. The laser mark tool runs at an
incredibly high uph, but requires at least 30-45 minute setup per lot. Surprisingly, the
module engineers and the IEs did not know the exact setup time. This implies sub-
optimization of capacity due to a lack of focus on significant setup times.

Testers require about 15-18 minutes between lots to store the acquired data and load a
fresh program for the oncoming lot. Again, none of the engineers or IEs actively
measured this number for the purposes of continuous improvement. Through
conversations it was discovered that the impact of setup time on the capacity of constraint
tools was not understood. Additionally, the testers require at least 45 minutes to convert
between products and/or tests. The IX tester performs both the PBIC (post bum-in
check) test and the FQA (final quality assurance) test on the same product. It takes at
least 45 minutes to prepare the tester for a different test. Surprisingly, no one knew the
exact time it took to covert a tester. This was very disturbing given that testers are the
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constraints - again, the relation between tester capacity and conversions was not
comprehended.

This ignorance of capacity impacts was evident in the lack of defined WIP policies in the
test area. Each factory had different rules of thumb, although it appeared that shift
supervisors simply converted testers as they saw fit. Unfortunately, data are not readily
accessible that show the number of conversions for each tester.

The Costa Rica factory would let the FQA queue size build to 5000 units before
converting a tester to FQA. The origin of this number was unclear. In summary, setups
and conversions are major consumers of tester capacity and little effort has been placed
on optimizing policies in this area. The only focus seems to be MU.

3.3.3. Lot Sizing Issues
An interesting opportunity exists for lot sizing at the SFGI operation. After units are
tested, they are placed in new lots according to their speed bins. For example, all of the
600 MHz processors are grouped together, the 500 MHz processors grouped together,
etc. The percentage of die that fall into a given speed category is referred to as the bin
split. The official specification for the operation states that lots leaving SFGI may be as
large as 2100 units. Additionally, the FQA specification only requires that 250 units per
lot be tested (regardless of lot size). In other words, the larger the lot size coming out of
FQA, the fewer the lots that need to be tested using the FQA test. Since tester capacity is
at a premium, it would make sense that SFGI lot sizes should be maximized. The only
potential downside to making all lots 2100 units is that some bin splits are rare (i.e. the
bin split for the fastest speed processor may be approximately 10%), meaning that
waiting for a full lot of 2100 would impact the TPT of those units. Examination of the
SFGI lot size data reveal that this issue is not comprehended. Figure 3.3 shows a
histogram of the SFGI lot sizing data for each product in Costa Rica.

Figure 3.3: SFGI Lot Sizes for Costa Rica WW26
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The histograms show the SFGI lot size is usually below 1000 units. This impacts tester
capacity and laser mark capacity due to high conversion and setup times, respectively.
By simply ensuring that only large lots leave SFGI, the laser mark setup times could be
cut in half along with the time the testers spend converting to FQA.

Additionally, the lot size of 1000 units is maintained from Die Plate to the end of line.
Testers are the most expensive tools in the factory and have relatively long setup times of
15-20 minutes per lot. Two lots could be merged at test which would effectively cut the
number of setups in half, thus increasing tester availability. There do not appear to be
insurmountable quality and reliability issues from merging lots, but there is a lot of
momentum behind the traditional way of doing things. Simulation experiments showed
that a tester with an average relatively long test time and a setup time of 17 minutes
spends 11% of its time in setup per week. It lots were merged, the number of setups
could be cut in half and approximately 5% tester availability could be gained.

3.4. Capacity Planning
Capacity planning in ATM has been a major focus area over the past two years. Copy
Exactly!, while heavily used in the fab world, is a relatively new concept to ATM. The
fact that over 5,000 different capacity models existed for the ATM factory network
demonstrates this point. Even factories running the same process used different models.
The ATM IE (Industrial Engineering) group has spearheaded the move to a standardized
capacity planning system known as CAPS (Capacity Analysis Parameter System).

The goal of CAPS is standardize the capacity planning process. On the most basic level,
it provides a central database for tool parameter storage. All factories will agree upon
and use the number located in the central database as opposed to each factory using their
own numbers. Furthermore, a standardized capacity model is being developed that all
factories will use.

Capacity planning is done using static models (both the new standardized system and
previous models use this approach). By definition, static models do not have the ability
to deal with the dynamics of a manufacturing system. Instead of attempting to capture
variation in a parameter, they simply use an average number. For example, while a tool's
actual availability may be distributed between 70% and 90% with an average of 85%, the
static models simply treat the tool as having an availability of 85%. It is hard to imagine
a parameter within the models that does not have an associated distribution. None the
less, static models only consider the average of each distribution. Examples of
distributed parameters where only averages are considered are MTBF, MTTR, MTBA,
MTTA, PM time, setup time, and the time it takes to change consumables. The
cumulative affect of this variation is ignored by only considering the averages and leads
to inaccurate capacity models. Furthermore, static models do not have the ability to
properly account for conversions. Instead, the number of average conversions is used -
the origin of this number is an educated guess at best.
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The CAPS project has established the first version of a common database for tool
parameter data. While it currently feeds static models, the hope is that it can one day be
modified to store parameter distribution data and feed dynamic simulations.

3.4.1. Methodologies
As one can image, it is terribly difficult to model a highly dynamic system using a static
model. The results of these attempts are incredibly complex Excel spreadsheets that
demand data which will never be measured. Testers are the most operationally-complex
tools in the factory due to long setup and conversion times, varying test times and sample
rates, and highly variable re-test rates. Tester models are incredibly complex due to their
attempt to capture factory dynamics. However, crucial parameters such as conversion
frequency are simply estimated. This makes planning capacity at the expensive
constraint tool and arduous and inaccurate task.

Capacity IEs plug factory loading data into these massive spreadsheets and observe the
final output of number of tools required. If the factory is being planned, they will round
the tool requirement up to a whole number and order that amount of tools. If the factory
is running, the model output will determine how many excess tools are on the floor for
bagging purposes.

The internal calculations primarily lead to a tool's average availability. Once the average
availability is calculated, the appropriate gap (10/15/20) is subtracted to arrive at the
expected utilization (MU). This MU is multiplied by the uph to arrive at a the run rate
(Section 2.1.4).

These static capacity models supercede any real time analysis in the factories. For
example, constraint are determined by simply looking at the capacity model and seeing
which toolset has the lowest predicted capacity. An active approach of monitoring WIP
levels in the factory to identify constraints is not used. Given the static model's inability
to capture any type of variation, it is a good idea to actively identify constraints by
looking for large WIP buildups in the factories. Active WIP level monitoring helps
determine the actual constraints of the factory.

Figure 3.4 shows the average queue times for all the factory operations over a five week
period. This type of graph was new to the factory organizations, but provides valuable
insight into actual factory performance. The IE models predicted that PBIC test would be
the factory constraint. The longest queue is time observed at this location and validates
the capacity model. However, the static models then predicted that epoxy was the near-
constraint of the factory. In fact, several operations had more WIP than epoxy indicating
that several other toolsets constrained the factory more than epoxy. This simply
underscores the inherent inaccuracy of the static models and the need to collect real-time
factory data.
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Figure 3.4: Queue Times by Operation for the Philippines Factory
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3.4.2. Systematic View of Capacity Planning
The newfound focus on ATM capacity planning has lead to a much needed systematic
view of capacity planning. Coordination and standardization on activities such as capital
purchasing, ATM capacity buffers and standardized capacity models is rapidly improving
the performance and effectiveness of the ATM IE organizations. The creation of
systematic processes in all of these areas is necessary to effectively manage the business.
However, these processes will be sub-optimal until ATM factories understand how their
capacity is actually performing. In other words, capacity planning systems will need to
be jointly developed with systems that accurately measure tool performance in order to
maximize their usefulness. Without a basic understanding of how capacity actually
performs, capacity planning systems will continue to be sub-optimal. Improved data
collection systems are the next necessary step in the continuous development and
improvement of ATM capacity planning.

3.4.3. Factory Output Estimation
The final result of the static capacity planning models is the prediction of factory output
capability. Since static models are unable to capture variation, factory output is shown as
a single number. In reality, factory output approximates a normal distribution. After all,
if variation is present in every operation in the factory, why would the output contain no
variability? This type of thinking needs to be changed in order to maximize the
effectiveness of the factories. The current gap policy is designed to cushion the
variability in the factory; the resulting output estimations from this policy are extremely
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conservative. With such large gaps (a.k.a. idle times) planned at all operations, the
factory is extremely likely to be able to meet the stated capacity of the factory.

It appears that the stated factory capacity is actually about the 95% confidence of the
normal distribution. Factories should almost be able to meet these commitments. It is
not understood that factories are simply taking advantage of the factory's ability to
produce at levels higher than the 95% confidence level. The mindset that a factory's
output is a fixed number leads to the loss of the upside potential of the factory. It would
be more useful to state output confidence intervals for each factory.

3.5. Problems Common to Both Static and Dynamic Models
Whether in reference to a static or dynamic model, the old saying 'garbage in, garbage
out' applies equally to both models. In short, manufacturing performance cannot be
improved unless current performance can be accurately measured. Both models are
dependent on tool performance data; primarily tool availability data and run rate data.
This project highlighted the degree of data inaccuracy from these systems (Section 4.3.4).
In essence, the development of improved capacity planning models must be undertaken
in parallel with the development of improved data collection systems.

3.5.1. ATM Data Collection Systems
ATM factories only measure two manufacturing performance parameters accurately:
output and TPT data. These parameters are stored in the WIP tracking system call
WorkStream. Each time a lot is ready to start an operation, it is 'proc'd' in by an
operator. The time and operation are recorded. Similarly, when a lot finishes an
operation, it is 'proc'd' out by an operator. This leads to reasonably accurate
measurement of total TPT, processing time for each operation by lot, and queue time at
each operation by lot. Also, the number of units entering and leaving the factory is
accurately counted. A web-based data filter/extraction interface called EATS has been
built and allows for easy and customized data extraction from WorkStream. This project
required extensive extraction of queue times for each operation for very specific time
periods - the interface proved robust for this type of extraction. It should be mentioned
that yield and re-work rates are also measured accurately, but these parameters are quite
healthy and do not severely impact factory performance. These values are also stored in
WorkStream.

Unfortunately, all tool related performance parameters rely on manual logging systems
for measurement. The predominant system is known as CEPT. CEPT relies on the
operator to log all tool activity. If a tool is down, it is up to the operator to notice that the
tool is down, log it down in CEPT, and give the reason why it is down (PM, repair, etc.).
As one can imagine, it is very difficult to obtain accurate data from such a system. First
of all, an operator runs several tool simultaneously and may not notice that a tool is down
for 10-15 minutes. Operators are extremely busy and may not log short failures and/or
assists. Finally, factory management does not emphasize the need for accurate CEPT
data, so operators do not have an incentive to make it accurate. If they did, they might
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also overstate availabilities for fear of looking bad if tools are down for long periods of
time.

All of these factors lead to distrust in CEPT data accruacy. While interviewing people
from several functions in the factory (engineering, manufacturing, and industrial
engineering), not one person stated that they trusted CEPT data. In fact, no one thought it
was accurate within 10%. This leads to the obvious question of why CEPT is even used,
but this issue was not discussed during the project.

The IE's have realized the need for better data at the constraint operations (test and
epoxy) and have created manual logging systems for the operators (in addition to CEPT).
These are either paper sheets or spreadsheets on the computer; these systems are called
'MU studies.' IE's train the operators to record tool events (downtime and cause, idle
time, utilization, etc.) on the sheets. More emphasis is placed on the need for accuracy
and it is likely that these methods provide better results than CEPT. However, the issue
of busy operators not having time to log all events and the fear of looking bad if too much
downtime is observed still exists. One other discovery that emphasized the weakness of
this system: in one of the factories, the IE's were concerned with capturing the idle time
of the epoxy tools. The IE's called this 'Gap' on their tracking logs. It was later
discovered that operators were logging 'Gap' events whenever there was an empty slot
(not occupied by a tray of product) in the epoxy oven. While this is a logical
interpretation of gap, it demonstrates that ineffective training and emphasis of such tools.
The results suffer a tremendous loss of credibility from such situations.

3.5.2. Proposed data collection system
Clearly, the opportunity exists for better data collection systems. Until more accurate
factory data are collected, the improvement of capacity planning systems and operational
procedures will be limited. This is a major effort that would require coordination across
several organizations and layers of management. An attempt is made to give a brief
outline for an improved data collection system.

3.5.2.1. What needs to be measured
Before even thinking about how to collect better data, the type of necessary data must be
identified. Millions of unmanageable data points could be collected from a running
factory and easily overwhelm all potential users of the data. It is therefore very important
to create system that collects a manageable and useful set of data.

In order to improve the factory's performance and optimize capacity planning, four tool
states need to be measured:

* The tool is utilized - it is actively processing WIP
" The tool is idle because of lack of WIP - the tool is available and ready to run WIP,

but none is available
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" The tool is idle because of lack of an operator - WIP is present in the area and the
tool is available, but no operator is present to run the WIP

e The tool is unavailable - it is down due to PM, repair, assist, setup, or conversion.

An argument can be made that the factory can be optimized using these four basic
parameters. WIP loadings and CONWIP limits can be judged by measuring utilization
and idle time due to lack of WIP. Staffing levels and efficiencies can be measured by
looking at how often a tool is available but not utilized because an operator is
unavailable. Overall availability can be easily computed by taking 100% less the
unavailable percentage.

Tools with excessive downtimes can be easily identified and appropriate attention given
to them. An enormous benefit would be the ability to understand staffing levels and
operator efficiencies. At this time, ATM does not have a solid understanding of how
much of a tool's availability is wasted because an operator is not present to load WIP on
the tool.

3.5.2.2. How to measure it

It was often suggested to simply have an IE monitor a toolset 24 hours a day for a certain
period of time in order to measure tool performance. On the surface, this sounds like a
good idea and may provide a badly needed picture of where true tool performance lies.
In the short term, this may be reasonable on a constraint tool. However, this solution is
infeasible in the long term. First of all, it will be difficult to find (and justify the cost for)
a group of people to do nothing except sit in the factory and record tool performance.
More importantly, operator performance will likely be impacted by the presence of an
observer. The idea of IE monitoring introduces a disturbance to the system that cannot be
properly accounted for, especially when the goal is to record actual tool and operator
performance.

Manual logging systems that rely on operators have already proven their inadequacy.
Even if emphasis was placed on data accuracy by management, it is unreasonable to
expect that an operator can accurately log events for several tools in an area. The IE-
initiated MU studies have demonstrated this.

Therefore, automated data collection systems need to be employed to collect these data.
In theory, the data should be easy to collect. A program would monitor a tool's state - a
tool is either utilized, available and idle, or down to production. If the tool is available,
the program would look at WorkStream and see if WIP is available in the area and then
log the appropriate type of idle state (without WIP or without operator).

The first parameter that needs to be established is the time scale for data reporting.
Factories currently are judged on weekly performance and that seems like a reasonable
time scale to use. At some point, the time scale becomes so short that the variation
becomes ridiculously large. Conversely, a time period that is too long does not allow for
proper reaction to issues or the effectiveness of new policies. Lastly, since the factories
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are already used to weekly metrics, it makes sense to try to minimize the necessary
paradigm shift and leave a few things alone. However, if TPTs are reduced to less than a
week, it would make sense to shorten the time scale to something less than 1 week.

Secondly, the amount of data to be collected needs to be determined. For example, when
a tool is down, should the system try to capture why the tool is down (repair, PM, etc.)?
Initially it seems reasonable to keep the system as simple (and robust) as possible.
Downtime pareto charts would be quite helpful to engineering and manufacturing, but
simply capturing accurate downtimes would be extremely helpful. A seemingly infinite
number of tool parameters could potentially be captured by such a system, but successful
implementation would require maintaining an achievable scope that would provide
immediate returns. Minimizing the scope to the parameters listed above would allow for
such goals to be met.

After observing the factories, it is likely that simply providing accurate downtimes, idle
times (and their causes), and utilizations would lead to several months worth of factory
improvement projects.

The cost and time required to implement such a system are large and need to be
considered. With such large capital cost differences between toolsets, the highest returns
on production optimization obviously come from improving the most expensive tools. In
this spirit, data collection systems should be installed on the 3-4 most expensive tools in
the factory - test, epoxy, SCAM, and ball attach, respectively (Table 5.6). This would
allow the system to be piloted on a relatively small scale (as opposed to factory-wide
implementation) and to prove the system by demonstrating improvements on factory
constraints.

The exact details of how such a system would work are yet to be determined. Intel has
skills in factory data collection systems from the fabs and this should be leveraged as
much as possible. Such a project would entail the collaboration of toolset engineers, tool
vendors, fab automation engineers, and representatives from manufacturing, engineering,
and IE. ATM factories will continue 'driving blind' until such a system is installed.

Availability data would allow the engineers to monitor tool performance metrics that they
can actually control (currently, some engineering groups are judged by the MU of their
toolsets - they do not have any control over MU since it is solely dependent on WIP
levels). Engineering could employ availability control charts such as the example chart
shown for the SCAM module in Figure 3.5. The goal of the engineering organization
should be to increase the average availability of their toolset while concurrently reducing
the variation in availability. Weekly control charts could be plotted for each tool along
with a composite chart for the entire module and would provide engineering with a clear
picture of the health of their tools. The definition of availability in this paper includes
setup and conversion times, so engineering would have to work to reduce both of these.
This would result in a more agile factory (currently, there are not any groups working to
reduce setup and conversion durations).
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The data provided on the amount of idle time caused by the lack of an operator would be
invaluable in allowing manufacturing to efficiently staff the factory. They could easily
monitor this metric for each area and add/remove operators until the amount of idle time
caused by not having an operator present is essentially 0. A pareto chart of ATM factory
costs reveals that equipment depreciation is the largest cost in the factory with labor costs
trailing as a distant second. Therefore, the goal should be to have the factory adequately
staffed to achieve the highest return on invested capital. Current incentives are reduce
labor content by a set percentage each year. A data collection system that provides actual
data about operator performance in each area would allow staffing levels to be optimized
instead of simply minimized.

Figure 3.5: Tool Availability Control Chart
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ATM factories need to have a thorough understanding of what actually happens on the
factory floor before significant improvements in factory performance are possible. A
data collection system that measures the parameters detailed in this section would provide
dramatic insights into actual factory performance and most likely lead to several easy
solutions that would improve factory performance and agility. The difficulties of
installing such a system are primarily creating the paradigm shift from the old, inadequate
system and indicators to a newer, simpler method of operating factories. While this
sounds simple and efficient in theory, the organizational and leadership skills needed to
create such a change are the largest challenge associated with such a project. Skill is
required to educate and convince managers that they need a new system without insulting
the way factories have been operated for the past 15 years. The technical issues
associated with how to collect the data are relatively easy compared to the organizational
difficulties.

An ongoing automated data collection project (AEPT) is active in ATM. The project has
recently become a higher priority and is slated for installation on most toolsets in future
processes. Coordination with the AEPT project to incorporate the data collection ideas
proposed in this thesis would help to achieve a meaningful system that helps improve
factory performance.
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CHAPTER 4. PROPOSED SYSTEM: DISCRETE EVENT
SIMULATION

4.1. Overview of DES
Factories are inherently filled with variation. Variation is present in the three conditions
required to process WIP (tool must be available, WIP must be present, and an operator
must be available to run the WIP on the available tool). As shown in previous chapters,
static models cannot capture the dynamics of a manufacturing system. Mathematical
approaches using detailed statistical methods (Gershiwn, 1994) can adequately describe
simple manufacturing environments involving only a few tools. However, as the number
of tools and products increase, the mathematical approach is quickly bogged down by the
complex calculations and the method becomes unfeasible.

The elimination of static and mathematical models as viable approaches for
understanding and predicting factory dynamics logically leads to discrete event
simulation (DES) as the tool of choice. DES utilizes underlying statistical distributions to
predict the behavior of a system over a given period of time. DES models the factory
over time because it is dynamic. Tool availabilities are generated from statistical
distributions, WIP flows between operations and are processed dynamically, and the TPT
and output of the factory are predicted.

It is important to realize the inputs and outputs of DES. For the purposes of this project,
labor was not explicitly modeled due to the lack of any data on labor performance. Tool
variation was suspected of being the major component of factory variation and therefore
composed the entire initial model. Inputs to DES are as follows:

DES Inputs
e Tool availability distributions: The distributions are calculated from the following

underlying distributions (all of these input parameters were assumed to vary): PM
duration and frequency, failure occurrences, repair duration, assist occurrences, assist
duration, and consumable change duration and frequency.

" Tool performance data: Processing time by product for each operation, tool capacity,
number of tools per operation, setup time per run, and conversion time between
products.

" Factory loadings: Weekly loading by product. Yield by operation is also needed.
* WIP Policies: For this project, Block Limit rules were coded in along with

conversion/dedication strategies. Lot sizes are also included.
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DES Outputs
* Tool utilizations
e Total output by product
* Total TPT by lot
* Queue times for each operation

Simply the creation of a DES does not solve all of a factory's problems. Managers must
understand the inputs of any outputs of a model (and thus the factory). Optimization of a
factory using DES is a tedious and time-consuming process. For the OLGA process, 15
weeks of simulation took approximately 20 minutes to run and an additional 40-60
minutes to analyze the output.

DES allows for factory optimization based on capital cost requirements, required cycle
time, tolerable variation in output, and several other things that are discussed in detail
later in this chapter. In the past, an iterative approach has been used to optimize
factories. If capacity planning at minimum capital cost to achieve a given minimum
output were the goal of the simulation, a toolset would be chosen and the simulation
would be run. Tools would be iteratively added/removed until an 'optimal' toolset was
chosen. It is obvious that one must be careful of sub-optimal minimums in such a
process. One of the goals of this project was to find more precise methods of optimizing
capacity requirements using DES.

DES is powerful because it can model factory variation and allow users to see how
variation affects their factory. Variation can be classified into two broad categories:
independent and dependent. Independent variation occurs regardless of other factory
dynamics. The best example of this is tool availability. Tool A may fail and need a
repair; this failure does not impact the availability of Tool B. In other words, tool
availabilities are independent of each other. Because the simulations are time based,
DES can easily accommodate these random factory events.

A good example of dependent variation is WIP flow through the factory. If tool A is
upstream of Tool B and Tool A fails, Tool B may become starved for WIP. In this
instance, the variability of Tool A impacts the WIP availability of Tool B. DES shows
the impact of related factory variation and allows for the prediction of parameters such as
total cycle time. Further uses of DES are explored in the remainder of this chapter.

While DES is a powerful tool, it does require much more effort than traditional static
models. For this project, a program called AutoSched produced by AutoSimulations was
used. Thousands of lines of underlying code are required to run the simulation. Excel
spreadsheets were used as input and output modes for the simulation program.

4.2. Literature Survey of Semiconductor Factory Simulations
As previously mentioned, Intel appears to be on the cutting edge of optimizing excess
capacity at non-constraint operations to manage TPT and output variability. Few
references exist for such a topic, especially in the context of semiconductor
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manufacturing. A common theme running throughout the simulation literature is the lack
of accurate factory performance data.

Kotcher and Chance (1999) recommend that any given tool in semiconductor
manufacturing should not be loaded to more than 85% of its capacity. In the terms of this
thesis, the authors recommend that utilization/availability should always be less than
85%. They observe that any tool loaded too close to 100% results in a significant cycle
time penalty. Kotcher is simply making an observation from the fundamental utilization-
TPT relationship shown in Figure 2.3. His paper does demonstrate the lack of
documented research into excess capacity optimization.

Grewal et. al. (1998) touched on the issue of using excess capacity to manage cycle
times, although it was in reference to fab maufacturing. They referred to the fact that
most static models in semiconductor manufacturing use excess capacities of 10-30%
across all operations to meet cycle time requirements. They then state that this is a 'brute
force' method that leads high costs. They suggest a more cost effective method is to plan
a factory with a small amount of buffer capacity at all operations, then to purchase excess
capacity at operations with high cycle times in order to manage overall cycle times.
While this strategy may work for fabrication facilities where costs are relatively equal
across toolsets, it clearly does not apply for A/T factories which have such large cost
differences between toolsets. Grewal does adhere to the principle that the maximum
allowable U/A is 85%. No data were given showing the relationship between excess
capacity and cycle times.

Domaschke et. al. (1998) address the issue of cycle time reduction in assembly and test
factories, although the idea using excess capacity to manage TPTs is not discussed.
They did suggest a batching policy at bum-in that lead to MUs of 96% and higher. They
commented that MUs higher than 96% caused cycle time to degrade, although no MU vs
queue size data are shown. They are demonstrating the relationship shown in Figure 2.3.
The group used a commercially available software package to model their A/T factory.
They were able to match actual factory performance within 10%. The model also
attempted to concurrently model factory operators. Their main use of the simulation was
to examine WIP policy changes such as bum-in batching techniques and tester
dedication. Several potential scenarios were explored using the simulation, although
details were not given about the success (or lack) of implementing the findings from the
model. In general, the paper was sparse on model details and validation, but did highlight
several potential uses for an A/T factory model.

Chance et. al. (1996) wrote about the basic role of simulation in manufacturing. They
quickly identify that while spreadsheets are simple to use, they are deterministic and
cannot predict cycle times or WIP flows. They generally describe the fact that simulation
can model almost any detail of a manufacturing process, but that identification of a
feasible scope is the most important part of creating a successful simulation. The lack of
data was sighted as a common cause of failure for simulations. Unnecessary complexity
of the models was given as a common cause for the data issues.
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In a separate paper, Grewal et. al. (1998) addressed the issues of validating cycle times in
their simulation. Initially, the cycle times predicted by the simulation were significantly
shorter than actual factory cycle times. The lack of labor efficiency (staffing levels and
cross-training) and equipment dedication rules in the model were identified as major
causes of the under-predicted cycle times. Data were not readily available for these
topics and adjustments were made to the model so it would match actual factory cycle
times.

Kurz (1995) explored line design in the face of differing factory settings. For factories
with expensive bottleneck operations and relatively inexpensive non-bottlenecks, he
advocates purchasing enough buffer capacity at non-constraint operations to ensure that
the constraint is always fed with WIP. The methodology proposed by Kurz is applicable
to the ATM factory setting. The next step is to optimize the level of excess capacity at
non-constraint operations to ensure high constraint utilization and to meet factory
throughput time goals.

4.3. OLGA Factory Simulation
The OLGA factory simulation was originally intended to optimize PC levels in the
OLGA factories. After the model was build and validated, it became obvious that PC
level optimization was only one of the many potential uses of the model. The underlying
learning from the project was the enormous potential of simulation models to address a
wide variety of factory issues without risking actual factory production.

The Costa Rica (CR) OLGA factory was chosen for modeling purposes. There were
three primary reasons for this choice:

1. Product Mix
2. Data Availability
3. Factory Accessibility

During the summer of 1999, the CR factory ran two products in the Pentium® family of
processors: Product A and Product B. Both of these products were fairly mature at the
time which meant the yields were stabilized and extra testing was at a minimum.
Furthermore, both products were manufactured in significant volumes.

Although data quality was generally poor, Costa Rica did appear to have more accurate
MU studies for the test and epoxy modules. (the issue of data quality is discussed in
Section 3.5.1).

The geographical location of the Costa Rica factory made communication much easier
than with the Asian factories. Costa Rica is only one time zone ahead of Arizona making
daily phone calls a reality. The work days of the Asian factories only overlap with
Arizona for 1-2 hours making communication more challenging. The ability to pick up
the phone and get a quick answer to a simple questions was invaluable. Additionally, the
Costa Rica management was very helpful in providing information and contacts.
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Work weeks (WW) 28-34 (excluding WW32) were chosen for the initial study. The
goal was to validate the model using WW28-30 and then see how accurate it was at
predicting WW31, 33-34 (WW32 was not used due to unusual power failures that
disrupted production that week). Accurate prediction of actual performance in these
three weeks would add immense credibility to the model. During this entire time period,
reliable data existed for the number of operation tools per area, factory loadings by WW,
and product TPT for each lot. Furthermore, two other factors made these weeks ideal
choices:

1. Only two products were being run - Products A and B. These products were very
similar and most tools did not require conversion to switch products. The modeling
of multiple products would add credibility to the model, but a variety of product
mixes would have added unnecessary complexity to the model at this stage of
development. During this time period, a variety of mix and volumes were run
between the two products.

2. All of the IX testing units were using SDH handling units. In other factories, testers
were being converted to Summit handlers. Handlers are the tools that transfer
product from the loading trays to the tester. Summit handlers operated faster, but
were new to the factories making data collection even more difficult.

The number of operational tools by WW is shown in Table 4.1 (the tool quantities have
been disguised and do not necessarily agree with some of the statements made in the
thesis). As discussed in Section 3.1.1.1, tool bagging is a popular activity. The factory
was still in a ramp during WW28-34, so more tools were installed than were needed at
certain times. The pressure to demonstrate high MUs is really only applied to the
expensive tools. Epoxy and SCAM tools were bagged when the capacity models
predicted excess tools. The quantity of bagged tools are also shown in the figure.

Table 4.1: Tool Counts by Work Week
I oolset WW2B Bagged Qty WW29 Bagged Qty WW30 Bagged Qty WW31 Bagged Qty WW33 Bagged Qty WW34 Bagged Qty
Retlow 10 10 10 10 10 10
Mount 10 10 10 10 10 10
Saw 25 25 25 25 25 25
APL 20 20 25 20 21st up for 2 days 25 25
Die Plate 15 15 15 15 15 15
SCAM 40 8 40 8 40 8 40 8 40 4 40 4
Deflux 15 15 15 15 15 15
Epoxy 40 4 40 4 40 4 40 4 for 3.5 days 40 4 40 4 for 100 hrs
Cure 25 25 25 25 25 25
CTL 20 20 20 20 20 25
BLU 70 70 75 75 70 70
BI Oven 70 70 70 70 70 75
IX Testers 40 40 40 45 45 45
Laser Mark 15 15 15 15 15 15
Ball Attach 15 15 15 15 15 15
Ball Attach Inspect 15 15 15 15 15 15

The overall factory performance data are shown in Table 4.2 (starts data are disguised
and do not reflect actual values). Starts and output by product along with TPTs are given.
TPT has a high variation due to queue time variation, so TPTs are represented by two
statistics: the average and 9 0" percentile values. The reason for choosing these variables
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is simply because they are easily provided by the database. The target WIP level for the
factory is 5 days and the theoretical TPT of the process is about 1.6 days which leads to
an expected TPT of 6.5 days. In most cases, the average TPT is around 5 days. In
reality, the third block is ignored since it is after the constraint (test) and product usually
spends less than 1 day in block 3. It is also worth noting that with a total TPT of 5 days,
each lot is spending an average of 3.4 days in a queue. Note that the starts data and all
factory output data in this thesis have been disguised and are not necessarily consistent
with each other.

Table 4.2: Factory Performance Data
WW28 WW29 WW30 WW31 WW33 WW34

Product A
Starts (ku/wk) 401.0 333.6 436.5 529.0 536.3 299.8

Average TPT (days) 5.1 5.0 4.8 4.2 4.8 4.6
p90 TPT (days) 6.9 6.7 7.0 5.4 6.3 7.6

Product B3
Starts (ku/wk) 306.6 392.3 345.5 246.8 378.8 517.0

Average TPT (days) 5.1 5.2 4.9 5.4 5.1 4.2
p90 TPT (days) 6.2 7.6 7.0 7.3 6.8 5.4

TOTAL LOADING 725.9 781.9 775.8 915.1 816.8

4.3.1. Data Collection for the Model
First, the appropriate time horizon for the data had to be determined. Factory and tool
performance data are commonly reported in weekly units, so it was decided that the
project would be unnecessarily complicated by attempting to change the time units.

The primary input to the model was tool performance and availability data.
Unfortunately, accurate data collection turned out to be nearly impossible to find. Very
few automated data collection systems exist in ATM factories. In fact, conscious
decisions were made by the Assembly and Test Development (ATD) group to eliminate
common data communication ports on most tools for cost savings. Two types of data
needed to be collected for all of the tools in the factory:

1. Availability parameters
2. Performance parameters

Data were collected from the Philippines in addition to the Costa Rica factory. It was
initially believed that the Philippines factory had the most accurate data, but this belief
was dispelled after spending a week in the factory interviewing personnel. Where
possible, Costa Rica data were used for the model. Costa Rica did not have data for
SCAM or ball attach inspect, so data from the Philippines factory was. The Copy
Exactly! policy for tool use made this a reasonable substitution.
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4.3.1.1. Tool Availability Parameters
As discussed in Section 3.5.1, availability data come from CEPT, a system which is
provides inherently inaccurate data. The engineers extract availability data from CEPT,
although their definition of availability is simply 100% - (percentage of time the tools
spends in repair plus the percentage of time the tool spends in PMs). By computing
downtime in this manner, they have effectively stated that setup times, conversion times,
and change consumable times belong to manufacturing. This lack of understanding of
the importance of availability is also demonstrated by the absence of cross-collaboration
between engineering and manufacturing on important issues such as setup time and
conversion. Additionally, all of the engineers agree that the CEPT data are inaccurate,
but go to great lengths to record the data and compare performance between the factories.
Unfortunately, this was the primary source for availability data. Data are stored weekly
by tool. These data were collected and IE estimates of setup and conversion time (a fixed
number per week) were subtracted from the engineering availabilities. The resulting
availabilities were used for most of the toolsets.

A few toolsets did not have availability data at all: cure, ball attach, die plate, reflow and
mount. In the case of reflow and mount, two tools of each type exists in each factory and
are redundant. Presumably the tools are quite stable and the large amount of excess
capacity at these operations does not lead to the need for availability data - this seems
like a reasonable assumption. Ball attach actually attempted to use CEPT data, but it was
so inaccurate they did not even record it (or make an attempt to improve it. The answer
was to ask IE to do a comprehensive MU study). During almost each interview with an
engineer, they were quite eager to provide their availability data and demonstrate how
much work had been put into it. After asking a few questions, it was obvious that no one
trusted the data. It makes sense to simply stop collecting inaccurate data, although no
one ever mentioned this idea to me. It appeared more that the data were collected to give
the engineers something to do. MTTR and MTBF were calculated for each tool from the
CEPT data. Perhaps the engineering organization could focus on data quality and be
significant players in the automated data collection effort.

PM data, change consumable data, setup time, and conversion time were obtained
through interviews with engineering and manufacturing. No definite times were
recorded, so time ranges were gathered from the interviews and used for the model. It
should be noted that over 50 hours were spent simply interviewing manufacturing and
engineering personnel to obtain these data.

IE-initiated MU studies were conducted on a few toolsets: test, epoxy, SCAM, and ball
attach. The SCAM and ball attach studies failed due to poor operator training/logging
discipline and were abandoned. The test and epoxy studies required operators to log
major tool events (PM, repair, change consumable, idle time) on a piece of paper or enter
the data into a spreadsheet. The lEs compiled these data on a weekly basis for each tool.
While these data appeared to be more trustworthy, no one had complete confidence in
them. Availability data from the MU studies were used for the epoxy and test modules.
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In the case of ball attach, die plate, reflow, and mount, data were taken from the IE
capacity planning spreadsheets to create the availability distributions. These data were
provided by the vendor and the process development group and consisted of MTTR,
MTBF, PM schedule, MTTA, MTBA, and change consumable times. Single number
averages were provided for all of these quantities.

4.3.1.2. Tool Performance Parameters

Tool perfonnance parameters were much easier to collect because they are much easier to
measure. Processing times are generally expressed as run rates (units/hour or uph). This
is simply the inverse of processing time. This parameter can be easily and accurately
measured by an IE with a stopwatch. Processing times were assumed to have no
variation since the operations were automated. While the processing time may slightly
vary in actuality, the variation is minor compared to the availability variation and was
therefore neglected.

The tool performance parameters are shown in Table 4.3. The mount and saw rates vary
by product because the die are different sizes which leads to a different number of die on
each wafer. In this case, Product B die are smaller than Product A. For the tester, the
Product B test times are longer than Product A primarily because it's a more complicated
device with more transistors. Laser mark runs extremely fast, but requires long setups.

Table 4.3: Tool Performance Parameters

Planned
Tool Avg. Availability Comments

Reflow Ovens 93%
Mount 90% actually processes a single wafer at a time
Saw 84%
Die Plate 85%
APL 77%
SCAM 85%
Deflux 90%
Epoxy 75%
Cure 80%
CTL 85%
BLU 87% each burn-in-board holds 15 units; boards are placed in oven
Burn-In Oven 98% each oven holds 1 lot (1000 units)
Tester 85% 15-20 per lot setup, 45 min conversion time between products
Laser 90% 45 min. setup per lot
Ball Attach 85%
Ball Attach Inspect 93%

4.3.2. Models CR OLGA WW28-34
While the details of the actual modeling code are not necessary for the purposes of this
thesis, insight into the mechanics of the model are useful. An attempt to capture all of the
variation in the factory would lead to a terribly complex model, so assumptions were
made in order to manage the model's complexity. First of all, actual factories experience
lots that go on hold to await engineering disposition (typically less than 8%) and
engineering lots (usually less than 2% of total volume). While the presence of these two
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factors impacts factory performance, the ROI for modeling these events is low. Hold lots
add variation to the overall TPT and this was accounted for by only considering the 90h
percentile for the TPT data. This statistic is questionable, but it routinely given in output
reports and was judged appropriate for this model. The impact of engineering lots was
assumed to be small compared to the variation in toolset availability.

The initial operations actually use lots containing 25 wafers (reflow, mount, saw). The
model simply used larger lots at these initial operations to represent the average number
of working die per wafer lot. After the saw operation, the lots were divided into 1,000
unit lots. Yield data for each operation were averaged over WW28-34 at the Costa Rica
factory. The model yielded this average percentage of units at each operation and
resulted in lots of less than 1,000 moving through the factory.

The testing operation is the most complex in the factory and required some simplification
and assumptions. After extensive interviewing, I concluded that tester conversions
occurred at the discretion of the supervisors. To approximate the real performance, each
tester ran a single product on the PBIC test until the queue of a product was empty. Once
this happened, a tester was converted to another product for the PBIC test.

In Costa Rica, testers were converted to FQA test once the total SFGI queue reached
5,000 units. Only 250 units of each lot were tested at FQA and the 5,000 units represents
the total units in queue, although only a fraction of those units will be tested (depending
on the number of lots). The model only ran FQA on a single tester and converted it once
the queue reached 5,000 units. Once the FQA test finished, the tester was converted back
to PBIC.

After passing the PBIC test, units are divided into new lots at the SFGI operation
according to their speed or bin split. The goal of this model was to improve capacity
planning, not to model the details of the testing operation. Therefore, bin splits were not
modeled since product speed does not impact factory performance at the remaining
operations after SFGI. Lot size does impact laser mark (long setup times for each lot)
and SFGI. The SFGI distributions shown in were approximated using a bimodal
distribution for Product A and a normal distribution for Product B.

Two types of rework exist at test: re-test and re-bum. Re-test simply involved re-testing
units at PBIC; a unit could be re-tested up to three times. Average percentages for the re-
test rates were calculated for WW28-34 in Costa Rica and were found to be fairly low for
both products. To model this, the test time required for each unit was increased by a
small percentage and the yield at test was adjusted appropriately.

A percentage of units fail PBIC in a certain fashion and required re-bum. Units in need
of re-bum are grouped together and sent back to the bum-in area where they are loaded
into ovens, re-bumed with the standard recipe, and the tested at PBIC again. The
percentage of units requiring this again is a very small percentage. In the model, a small
fraction of all lots at PBIC were sent on a re-bum route where they were inserted into the
BL load queue and processed normally through the rest of the line.
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It takes time to move lots from one operation to the next. A delay of 12 minutes was
given to each lot as it moved from one operation to another in an attempt to model this
transport time.

4.3.3. Warm-up period determination

Before validation could commence, the necessary warm-up period for the model had to
be determined. All simulations need a certain time period to stabilize before meaningful
results can be obtained. For each simulation, the factory started empty and it took time
for the WIP levels to reach a pseudo steady state. Figure 4.1 shows factory output as a
function of time for both products. The factory actually reached a stable level in the
relatively short period of 3 weeks.

Figure 4.1: Simulated Factory Output over Time

Figure 4.2 and Figure 4.3 show utilizations and queue sizes for tester and epoxy tools -
the results are similar. To be conservative, a warm-up time of 7 weeks for chosen for all
simulations. For all experiments, data for weeks 1-7 were omitted and results were only
reported for weeks 8 and higher. If an experiment was stated to have run for 10 weeks,
the simulation was actually run for 17 weeks, but the first 7 weeks of data were omitted.
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Figure 4.2: Epoxy and Test Utilization over Time
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4.3.4. Validation Process
Validation of the model was a two step process. First, the simulation availabilities
needed to be validated against the availability distributions from the factory data.
Although confidence in the accuracy of the factory data was low, this was a necessary
first step to highlight any obvious problems with the factory data.

Second, the simulation needed to be compared against the actual factory for WW28-30.
Factory output and queue times for each operation were used as the final validations for
the model. The choice of factory output is somewhat obvious; this is ultimately the most
important measurement of the factory which makes it crucial to validate against. The
queue times of each operation allow for total TPT comparison as well as providing details
on the accuracy of the model for each operation. Again, these comparisons would
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highlight any discrepancies between the model and reality and allow them to be
addressed before moving forward.

4.3.4.1. Comparison Between Factory Availabilities and Simulation Availabilities
based on Engineering Failure Data

The simulation was run for 10 weeks and weekly tool availabilities were recorded. The
resulting distributions were compared against the factory data obtained during the data
collection process. The results are compared using box and whisker plots in Appendix A
(availability data were not obtained for reflow, mount, or ball attach, so graphs are not
shown for these toolsets).

In all cases, the variability predicted by the model is much lower than the variability
shown in the factory data. Additionally, the range of model availabilities is generally
higher than actual data. Since there is not an automated data collection system, these
results are not surprising. There is not an emphasis placed on accurate failure, assist, and
PM data. Also, the operators probably reduce down times for fear of looking bad.

In conclusion, the failure, assist, and PM data gathered does not lead to availability
distributions consistent with factory availability data (which is also highly suspect). It is
hard to believe that there is less variation in the factory data than what is shown in the
factory availability distributions; rather, the opposite it likely to be true. As a result, the
availability component data (failure, pm, assist, etc.) were deemed inaccurate and the
decision was made to simply match the factory availability distributions.

4.3.4.2. Comparison Between Factory and Simulation Availabilities
The original intent of the model was to create tool availability distributions using repair,
PM, and conversion data. The large discrepancies between shown in the previous section
lead to the simple matching of the availability distributions for each tool. Triangular
distributions were used to model the actual tool availability distributions. A triangular
distribution consists of a peak value (mode) and minimum and maximum values. Figure
4.4 shows the tester weekly availability (for individual tools) for the Costa Rica factory.
The distribution has a long tail toward lower values and a relatively steep tail toward
higher values. This typifies most of the availability distributions for all the tools and is
expected. Given PM schedules and failure rates, a maximum availability of less than
100% is expected which leads to a shorter tail above the peak. The lower limit is 0% and
unusual downtimes serve to lengthen the lower tail. A normal distribution would not be
appropriate to model this behavior. Given the inherent inaccuracy of the data and the
non-symmetric nature of the distribution, a triangular distribution works well to
approximate the actual availability distributions. These distributions are best described
using a peak value (mode), a 10% quantile and a 90% quantile. These quantiles were
chosen to eliminate any unusual activity in the tails of the distributions. For the
distribution in Figure 4.4, the peak is 79.4, the 10% quantile is 69.5% and the 90%
quantile is 88.9%.
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Figure 4.4: Costa Rica Tester Weekly Availability Histogram
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The simulation was modified so that each availability distribution was modeled as a
simple triangular distribution. The attempt to create the availabilities using the reported
PM schedules and failure data was abandoned. Setups, conversions, and change
consumables remained in the model.

Table 4.4 shows the actual factory distribution statistics and compares them with the
model distribution statistics (the model was run for 12 weeks to generate the
distributions). In most cases, the model matches the data provided by the factory
engineers within a few percent. Given the large amount of variation in the factory, this
accuracy in distribution matching seemed adequate.

Table 4.4: Factory and Model Tool Availability Distribution Statistics
Factory Data Simulation Data Difference % (Actual-Model)

Tool Peak 10% 90% Peak 10% 90% Peak 10% 90%
Reflow n/a n/a n/a 91.6 86.9 93.5
Mount n/a n/a n/a 97.8 95.5 97.9
Saw 79.6 63.7 85.1 76.2 62.3 87.0 4.3% 2.2% -2.2%
Die Plate 94.1 91.6 97.3 92.6 91.4 96.1 1.6% 0.2% 1.2%
APL 84.6 73.5 86.8 86.2 72.6 88.3 -1.9% 1.2% -1.7%
SCAM 90.7 74.5 92.9 89.3 71.6 94.0 1.5% 3.9% -1.2%
Deflux 90.4 73.3 91.0 88.1 74.8 93.5 2.5% -2.0% -2.7%
Epoxy 76.2 65.6 83.4 78.4 68.4 83.4 -2.9% -4.3% 0.0%
Cure n/a n/a n/a 95.1 86 96.7
CTL 91.9 87.7 94.8 92.1 89.1 96.4 -0.2% -1.6% -1.7%
BLU 92.6 81.2 95.3 91.4 83.5 92.5 1.3% -2.8% 2.9%
Burn-In Oven 93.9 85.1 100.0 92.6 86.4 98.0 1.4% -1.5% 2.0%
Tester 79.4 69.5 88.9 82.1 70.1 85.7 -3.4% -0.9% 3.6%
Laser 81.8 75.7 83.3 83.4 75.7 83.8 -2.0% 0.0% -0.6%
Ball Attach n/a n/a n/a 84.7 80.3 85.0
Ball Attach Inspect 93.8 87.7 94.1 94.7 89.9 96.1 -1.0% -2.5% -2.1%

4.3.4.3. Results of WW28-30 Validation
After the availabilities were corrected as described in the previous section, the model was
loaded with the factory data (loading by product and tool count) for each of work weeks
28, 29, and 30. The model was run for 15 weeks and the model output compared to the
actual factory output and queue times for each operation. For all three weeks, the initial
runs over-predicted output by at least 25% and under predicted queue times by an even
larger margin. Clearly, there was more variation in the factory than the model was
capturing.
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The additional variation in the factory had two sources:

* Inaccurate tool availability data: It is highly likely that the availability data is inflated
and has lower variation than reality due to the inaccurate manual collection system.

" Contribution of labor to variation: The model assumes that if a tool is available and
WIP is available at that operation, the WIP is immediately loaded on the tool and
processed. In reality, this may not be a good assumption. A tool may sit idle for
some period of time while waiting for an operator to load a new lot. This
contribution was initially assumed to be small, but may in fact be quite significant.

In order to improve the model's accuracy, a 'Wait for Operator State' was implemented.
A delay was created each time a lot was loaded onto a tool. This delay was normally
distributed and adjusted until the model unit output and queue times approximated the
actual performance data for WW28-30. In essence, the Wait for Operator state simply
reduced a tool's availability. A typical wait for operator state had a mean of 12 minutes
and standard deviation of 3 minutes.

As mentioned above, the Wait for Operator state encompasses both inaccuracies in tool
availability data and labor delays. Until more accurate data collection systems are
introduced into ATM, it will be impossible to measure the contribution of each of these
two factors.

Obtaining correct Wait for Operator factors proved to be a very time consuming and
iterative process. If nothing else, it demonstrated how slight changes in tool availabilities
affect WIP dynamics. Wait operator states were adjusted until queue times for each
operation and total factory output approximated actual factory performance for WW28-
30.

Early on it was discovered that the bum-in area had some anomalies that could not be
compensated for by simply adjusting the wait for operator state. The actual factory data
showed that the queue time for bum-in board load (BL) was substantially longer than the
bum-in board unload (BU) queue time (see the Bum In Load and Unload graphs in
Appendix B - the difference was often greater than 10 hours). This area is thought to
often be constrained by the total number of bum-in boards in the factory. The model was
modified to account for the bum-in boards (BIBs - Costa Rica provided an inventory
estimate), but the queue times still did not approximate actual performance. Lastly,
operations reported that bum-in was a poorly run area and that labor inefficiencies may
be extremely high. In light of all these variables, the decision was made not to validate
against BL and BU queue times.

Appendix B shows the queue times for each operation for each of WW28-30. The actual
factory performance is shown for both products, while the model prediction is shown as a
single value. Because conversions were not needed at all operations (except for test), the
model did not have a reason to produce significantly different queue times for each
product. Thus, it did not add value to display queue times for both products. The actual
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average queue times were reported along with the 90t" percentile queue times for each
product. For the model, average queue times and the maximum queue time were
reported. Since the model did not place lots on hold, the 9 0 th percentile actual queue
times were compared to the model's max queue time. While less than 10% of the actual
factory lots were on hold at any given time, this seemed like a reasonable way to compare
the amounts of variability between the two and allow for a reasonable wait for operator
standard deviation to be used. While this prevented a rigid statistical comparison
between the two numbers, the factory did contain more variability than the model could
capture through hold lots, engineering lots, and other delays in the system. For the test
operation, the decision was made not to differentiate the queue times by product because
they were essentially identical (<1%) in all cases.

We do not understand why the actual queue times vary so much by product. For
example, SCAM shows equal queue times for the two products in WW28, while epoxy
shows differences of more than 8 hours for WW28-29. It can only be concluded that this
resulted from an emphasis to push a certain product through the constraint faster,
although the 'hot product' appears to change weekly. Since setup times are essentially
non-existent at most operations, the model processed material in a FIFO manner
(regardless of product type) which resulted in the queue times being nearly identical for
the different products.

The goal was to predict the average queue time for the two products while coming close
to approximating the variability which was captured through the max queue time
comparison. The comparisons are shown graphically in Appendix B. A comparison
between the average queue times is shown in Table 4.5. The average actual queue times
are a weighted average based on production starts for each product in a given week. The
tabular comparison highlights the near randomness of factory performance. In one week,
the queue time will be under-predicted, only to be over-predicted the following week. It
is not reasonable to expect the model to match perfectly on this level of detail, but rather
to simply 'come close' to actual factory performance. It is more important that the model
accurately predict output and total TPT while providing general insights to queue times at
each operation. The comparison between maximum predicted queue times and actual
90% queue times is graphically presented in Appendix B. Table 4.5 clearly shows the
reason the BL and BU operations were omitted from the model - the errors are huge.

The Wait for Operator states used to obtain the results in Table 4.5 are shown in Table
4.6. This table shows the weekly average and standard deviation of the availabilities,
utilizations, and wait for operator states for 8 weeks of model runs (Costa Rica WW30).
Only the saw data provided by engineering encompassed the variability seen in the
factory data and did not require the wait for operator delay. The prominent lesson from
this table is that the availability data are much too optimistic. In most cases, a wait for
operator delay that was greater than 20% was needed to approximate the observed queue
times. This indicates that tool availabilities are much lower than the factories believe
they are. Remember that the wait for operator delay encompasses both inaccurate
availability data and operator delays and that it is impossible to distinguish between the
two. However, that does not detract from the fact that tools are available about 20% less
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of the time than anticipated. This fact alone warrants a better data collection system to
determine the cause of this availability loss. The model utilizations were compared to the
reported factory utilizations for test and epoxy and matched within 1%. The need to
determine to cause of the loss of availability cannot be overemphasized.

Table 4.5: Comparison of Actual and Predicted Queue Times
WW28 Queue Tmes (hours) WW29 Queue Times (hours) WW29 Queue imes (hours)

Operation Actual Average Model Average Difference Actual Average Model Average Difference Actual Average Model Average Difference
Reflow 0.4 0.3 0.1 0.4 0.3 0.1 0.3 0.3 0.0
Mount 0.5 0.4 0.1 0.5 0.3 0.1 0.2 0.4 -0.1
Saw 0.4 0.3 0.0 0.2 0.3 -0.1 0.4 0.4 0.0
Die Plate 0.9 1.0 -0.2 1.3 0.8 0.5 1.0 1.0 -0.1
APL 1.4 2.0 -0.5 2.6 1.0 1.6 1.9 3.7 -1.7
SCAM 4.1 3.7 0.4 2.7 2.5 0.2 2.6 3.3 -0.7
Deflux 0.9 0.9 -0.1 0.7 0.9 -0.1 1.1 1.0 0.1
Epoxy 9.9 15.0 -5.1 10.0 7.3 2.7 11.3 8.1 3.2
Cure 1.1 0.8 0.3 0.6 0.7 -0.1 0.6 1.1 -0.4
CTL 2.7 2.4 0.3 1.2 1.8 -0.6 2.5 2.3 0.3
Bi Load 10.1 0.0 10.1 3.5 0.0 3.5 1.8 0.1 1.7
Burn In 1.2 1.4 -0.2 1.0 0.7 0.2 1.0 1.2 -0.2
BI Un-load 1.3 0.0 1.3 1.1 0.0 1.1 0.9 0.1 0.8
PBIC 23.5 8.6 14.9 28.5 30.7 -2.2 30.3 32.2 -1.8
Laser Mark 2.5 1.5 1.0 1.0 1.6 -0.7 0.9 1.6 -0.6
FQA 4.9 7.6 -2.8 8.0 8.3 -0.2 7.7 8.6 -0.8
Ball Attach 2.1 1.6 0.5 1.6 2.0 -0.4 1.5 2.2 -0.7
RVSI 0.8 1.2 -0.4 1.3 1.1 0.2 0.3 1.2 -0.9

Table 4.6: Availability, Utilization, and Wait for Operator States for WW30
- Availability % Utilization % Wait Operator %
average std dev average std dev average std dev

Ref low 90.0 2.8 166 06 3.5 0.
Mount 94.5 1.4 9.8 0.3 19.9 1.0
Saw 74.6 4.4 35.4 1.2 0.0 0.0
Die Plate 89.0 2.4 37.1 1.3 34.1 1.2
APL 78.5 2.3 50.9 2.2 22.8 1.0
SCAM 82.0 2.5 49.5 2.7 27.4 1.5
Deflux 75.9 3.0 29.9 1.6 28.6 1.6
Epoxy 73.1 2.4 55.5 3.1 17.1 1.0
Cure 88.1 6.8 42.6 2.6 23.1 1.4
CTL 82.9 1.7 46.7 3.4 29.7 2.1
BLU 79.9 1.2 52.0 4.0 9.5 0.7
Burn In Oven 91.8 1.4 64.6 5.1 19.0 1.4
S9k 78.2 2.3 65.2 5.2 12.0 0.9
Laser Mark 79.5 3.4 24.8 2.1 39.0 3.3
Ball Attach 83.0 3.0 49.5 4.2 25.7 2.2
RVSI 85.8 2.5 54.0 4.8 22.8 2.0

As previously mentioned, a better measure of model accuracy is its ability to predict
factory output and TPT since it is unreasonable to expect any model to capture the near
random behaviors at each operation week after week. The model product output results
are compared with the actual factory output results in Table 4.7. Since factory output
varies, the model output was averaged over 8 weeks to arrive at the reported value. As
shown, the model matched actual factory output within approximately 5% for the three
weeks. This fact that output was accurately predicted for three weeks with different
product loadings and tool counts adds a great deal of credibility to the model.
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Table 4.7: Comparison of Model and Factory Unit Outputs for WW28-30

WW28 WW29 WW30
Product A Product B Product A Product B Product A Product B

Average Model Output (units) 420309 312983 334833 390688 414482 322938
Actual Factory Output (units) 397800 304000 330866 389194 432960 342688

Difference (Model-Factory) 5.7% 3.0% 1.2% 0.4% -4.3% -5.8%

Since no attempt was made to accurately model the BL and BU operations, TPT
estimates were not expected to closely match actual values. As shown in Appendix B,
the BL and BU queue times are unusually high compared to the model (especially in
WW28), so a TPT adjustment factor was needed to match the model and actual TPTs.
Table 4.8 shows the predicted and actual TPTs for WW28-30. A constant factor of 0.7
days was added to the model for each week. This factor captures delays not incorporated
in the model along with the unusually high BL and BU queue times for these weeks. The
model did a reasonable job of predicting TPT and was within 10% for all cases.

Table 4.8: Comparison of Model and Factory TPTs for WW28-30

WW28 WW29 WW30
Product A Product B Product A Product B Product A Product B

Actual TPT (days) 5.08 5.0/ 4.99 5.2 4.77 4.89
Model Average TPT (days) 4.64 4.68 5.02 5.01 5.24 5.31
Difference -8.7% -7.6% 0.5% -3.6% 9.8% 8.5%

4.3.4.4. Results of WW31, 33-34 Simulation Prediction

Validation of the model for WW28-30 was a precursor to further tests of the robustness
of the model. Factory data (product starts and tool counts) were loaded into the model
for WW31, 33-34. The model was run for 8 weeks and the output was averaged over the
entire 8 weeks. The model TPT and output results are compared to actual factory values
in Table 4.9. The output values match within 10% which again seems quite reasonable.
TPTs are over-predicted by approximately 30% using the constant factor of 0.7 days
added to the model TPTs. If this factor is removed, TPT prediction becomes more
accurate and is within approximately 20% for all cases. Removal of the TPT factor may
be warranted because BL and BU load queue times are much lower (see Appendix C) for
these time periods than for WW28-30. If the main component was compensation for the
high BL and BU queue times, it is reasonable to remove the factor.

Appendix C shows graphs comparing the actual and model average queue times for all
operations along with a comparison of the maximum and p90 values. A summary of the
results is shown in Table 4.10. In general, the difference between the predicted and
actual queue times were highly erratic. Differences between the two values were often
quite large, although the simulation would under-predict one week and then over-predict
the following week. The BL/BU continue to baffle the model. There did not appear to
be a consistent theme in the model error, although overall prediction of factory
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performance was worse than for WW28-30. These results underscore the need for better
data in order to accurately predict factory performance. The error in availability data
combined with the uncertainty of labor staffing and efficiencies, tool dedication
strategies, and BL/BU management policies are simply too great to generate an accurate
model. Before ATM procedures can be improved through the use of simulation, data
quality must improve. However, the failure of this model to accurately replicate factory
performance (even after the addition of significant adjustment factors) does not preclude
its usefulness for running experiments that demonstrate the tactical and strategic uses of
DES in the ATM environment.

Table 4.9: Comparison of Model and Factory Output and TPT for WW31, 33-34
WW31 WW33 WW34

Product A Product B Product A Product B Product A Product B
Average Model Output (units) 514035 237467 482956 336535 298422 500187
Actual Factory Output (units) 524800 244800 532000 375800 297400 513000
% Difference -2.1% -3.0% -9.2% -10.4% 0.3% -2.5%

with constant 0.7 day factor
Average Model TPT (days) 5.1 5.2 6.7 6.8 5.7 5.8
Actual Factory TPT (days) 4.2 5.4 4.8 5.1 4.6 4.2
% Difference 21.0% -3.8% 40.8% 33.1% 25.5% 36.3%

without constant 0.7 day factor
Average Model TPT (days) 4.4 4.5 6.0 6.1 5.0 5.1
Actual Factory TPT (days) 4.2 5.4 4.8 5.1 4.6 4.2
% Difference 4.4% -16.7% 26.1% 19.3% 10.2% 19.8%

Table 4.10: Comparison of Model and Factory Queue Times for WW31, 33-34
WW31 Queue Times (hours) WW33 Queue Times (hours) WW34 Queue Times (hours)

Actual Average Model Average Difference Actual Average Model Average Difference Actual Average Model Average Difference
Redow U.b 0.4 0.1 0.5 0.3 0.2 0.9 0.4 0.6
Mount 0.4 0.4 0.0 0.5 0.4 0.1 0.2 0.4 -0.2
Saw 0.5 0.5 0.0 0.5 0.4 0.1 0.6 0.3 0.3
Die Plate 1.1 2.7 -1.6 0.8 1.0 -0.3 1.4 2.1 -0.6
APL 4.9 0.2 4.7 4.3 0.9 3.4 2.2 0.2 2.0
SCAM 4.2 1.3 2.9 3.6 3.6 0.0 1.8 1.1 0.7
Deflux 1.0 1.9 -0.9 1.6 0.5 1.1 1.1 1.8 -0.7
Epoxy 3.7 14.8 -11.1 9.3 5.9 3.4 7.0 6.6 0.4
Cure 0.6 3.2 -2.7 1.8 1.0 0.7 1.0 1.6 -0.6
CTL 3.7 0.4 3.3 3.8 3.4 0.4 4.7 0.3 4.4
BI Load 2.3 0.0 2.3 3.7 0.1 3.6 1.8 0.0 1.7
Bum in 0.8 15.9 -15.1 1.0 1.5 -0.5 1.0 3.8 -2.8
B1 Un-load 1.2 0.0 1.2 1.4 0.0 1.3 0.8 0.0 0.8
PBIC 22.3 8.1 14.1 7.0 32.9 -25.9 9.6 27.5 -17.9
Laser Mark 1.2 3.6 -2.4 3.5 1.4 2.2 1.9 4.3 -2.3
FQA 10.4 9.5 0.9 13.7 8.4 5.3 9.8 9.5 0.3
Ball Attach 2.4 16.8 -14.5 6.8 2.3 4.5 2.6 9.1 -6.5
Ball Attach Inspect 0.5 15.6 -15.1 0.5 1.5 -1.0 1.3 8.0 -6.7
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CHAPTER 5. TACTICAL AND STRATEGIC USES OF DISCRETE
EVENT SIMULATION

Discrete event simulation is useful for understanding a wide variety of tactical and
strategic issues that face a factory. Although the simulation used in this project had to be
heavily modified to approximate actual factory performance, that does not preclude
experiments to demonstrate the usefulness of the tool. Extremely poor data quality lead
to validation difficulties and this issue must be addressed before DES can be employed as
a factory tool. The simulation did a good job of replicating data in WW28-30, so those
operating conditions will be used to demonstrate the tool for the following experiments.

5.1. Tactical
Operations managers face tactical challenges daily. The lack of a tool that can accurately
assess the impact of tactical operational decisions leads to operations managers relying on
past experience and instinct to make these decisions. DES would enable managers to
address issues using a data-driven approach. This requires a factory to have competency
in DES and a dedicated staff to make sure the model is kept up to date. The need for
these resources may initially seem unreasonable, so the following sections aim to
demonstrate the usefulness of such a tool. It should be noted that after the completion of
this thesis, a factory scheduling tool that utilizes DES is being implemented in several of
the ATM factories. In addition to the suggestions presented in the following sections,
future Intel projects may benefit from incorporating the learnings from this thesis into the
factory scheduling software and process.

5.1.1. TPT Prediction
A simple and obvious use of DES is to predict factory TPT for a variety of loadings and
product mixes. TPT is closely related to the CONWIP limits and TPT prediction must
done in parallel with CONWIP block limit optimization. In a capacity constrained
situation, DES could be used to predict factory TPT. A high-confidence delivery date
could then be passed along to the customer.

Currently, Intel does not have any systems that allow TPT prediction. A new A/T
process, known as Interposer 2 (INT2), will be deployed in the fall of 2000. This process
involves several new toolsets and has more operations than any previous A/T process.
The theoretical TPT of the process is approximately 4.0 days, compared to 1.6 days for
OLGA. The methodology used by the IEs to estimate actual TPT is to take the
theoretical TPT and multiply it by 3 or 4; this results in a 12-16 day TPT for INT2.
Furthennore, the manufacturing systems organization is trying to establish kanban sizes
for each operation. Besides the obvious conflict of incorporating a kanban system with a

67



CONWIP system, this is underscores the lack of fundamental understanding of
manufacturing systems. The process for doing this simply involves guessing at how
much WIP should be at each station. As this project has shown, the amount of WIP
buffer necessary at an operation is largely dependent on the variability of the toolset.
This is not even considered in estimating TPT.

A 16 day TPT will likely be unacceptable to ATM management, but the factories will not
have a tool to aid in the reduction of TPT. If a DES were used for the process, the factory
would have a much better chance of reducing TPT without risking output. This one
example clearly demonstrates the necessity for DES in estimating TPT.

5.1.2. WIP policy optimization
As mentioned in the previous section, TPT prediction/improvement is closely related to
CONWIP block size optimization. The OLGA factories run with block limits of 2-2-1
(days) and it did not appear that any attempt had been made to reduce these limits. The
issue of reducing block limits is confounded by the obsession to bag tools. As tools in
constraint toolsets are bagged, the ability to reduce block limits diminishes. DES
provides a method to test lower block limits without risking actual production. The
benefits of lower block limits are faster TPTs, which makes the factories more agile.

5.1.2.1. Block Size Optimization for Costa Rica WW28-30
A series of experiments were run to examine the effects of reducing the block 1 and block
2 limits of the OLGA line during WW29 operating conditions. The block 3 limit was
ignored since block 3 is after the constraint (test) and does not significantly affect TPT.
The goal was to reduce the block 1 and 2 limits as much as possible until the tester idle
time became statistically greater than 0% and output was subsequently decreased. Table
5.1 shows the preliminary results from the block size optimization screening experiment.
2, 2 (block 1 limit, block 2 limit) was used as the baseline condition. Each set of block
limits was run for 8 weeks and the TPT for both products and the tester idle time were
averaged for all 8 weeks and presented in the table. Experiments were run diagonally up
the table grid from 2,2 until tester idle time exceeded 0.0% (a tester idle time greater than
0.0% meant the tester was partially starved at some point and output was sacrificed
because the WIP buffer in front of test was not large enough).

As shown, 1.75, 1.75 and 1.50, 1.50 both had 0.0% tester idle time and the decrease in
TPT was as expected. For example, the 1.50, 1.50 simulation should have decreased TPT
by approximately 1.0 day from the 2.0, 2.0 simulation because the system contained 1
less day of WIP. At 1.25, 1.25 the tester idle time was greater than 2.0%, so the
combination of block limits between 1.25, 1.25 and 1.50, 1.50 were explored. 1.25, 1.75
and 1.75, 1.25 gave similar results, although the extremes of 2.0, 1.0 and 1.0, 2.0 resulted
in significant tester idle times. This indicates the need for balanced WIP in the system
and demonstrates the effectiveness of positioning blocks between constraints and near-
constraints. As a final test, the output for each product under the 1.50, 1.50 limits was
statistically compared to the output for the 2.0, 2.0 limits (Appendix D). The output for
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both cases is statistically equivalent while the TPTs for the two experiments are not
equal. In summary, the block size reduction to 1.5,1.5 would lead to a 20% reduction in
factory TPT without risking output. This was simply accomplished by using DES to
optimize the amount of WIP in the factory.

Table 5.1: Block Size Optimization Results

Block 1 Limit (days)
1.00 1.25 1.50 1.75 2.00

Block 2 1.00 0.4,4.03
Limit (days) 1.25 2.2,3.52 3.76 o.1,4. 0.0,4.27

1.50 2.5,3.39 0.9, .03
1.75 1.5,3.53 0.0,4.00 0.0,4.27 0,4.53
2.00 1.0, 3.62 0.0,_4.24 _0, 5.0

* (average tester idle time, average TPT)

The 1.5,1.5 limits were tested using the WW28 and WW30 conditions to help judge the
robustness of proposed block limit reductions. For both weeks, the simulation was run
for 13 weeks in order to improve the statistical conclusions from the data. For both
weeks, the factory output did not decrease using the 1.5, 1.5 block limits while the TPT
did decrease by an average of 20% (1 day).

When DES is not employed as a tool to optimize block limits, actual production is risked
as the factory slowly lowers the limits until output is impacted. When a factory is
demand constrained, such an exercise it too risky to undertake and factory continues to
run with sub-optimal CONWIP limits and TPTs are unnecessarily long. DES allows for
a scientific approach to TPT reduction without risking actual production output.

5.1.2.2. Results from drum-buffer-rope experiment
CONWIP limits are proposed to be more effective than a traditional drum-buffer-rope
policies (Hopp and Spearman, 1996). This idea was tested by converting the simulation
model to a drum-buffer-rope system in which new starts were determined by the test
buffer size. In other words, new starts were only made when the test buffer fell below a
certain level of WIP. This is in contrast to a CONWIP policy in which new starts are
made when the block limits fall below a certain WIP level. WW30 data were used for the
experiments.

The starting point for the experiments was 1.5 days of WIP in front of test. In other
words, new starts would only be made when the test buffer fell below 1.5 days of WIP.
The model was run and the output was highly erratic. The long delay between starts and
the actual test buffer led to frequent tester starvation and exceedingly long TPTs.
Logically this makes sense. The long delay does not allow the system to respond in real
time. Instead, as WIP builds up in the front of the line due to tool instability, the test
buffer size continues to decrease so more WIP is released into the line. The result is an
unstable system with large WIP bubbles and frequent tester starvation. This result
underscores the effectiveness of a CONWIP system in a manufacturing system where the

69



'rope' would prohibitively long due to feedback delays. An increase in the test buffer
size may dampen the variability, but it would also lead to an increase in the already long
TPT.

5.1.3. Expected Value Forecasting
As discussed in Section 3.4.3, factory output is not a single value (as stated by static
capacity models), but is a distribution that results from the combinatorial nature of
variation throughout the factory. A straightforward use of DES is to predict the output
distribution of a factory for a given set of input conditions. The simulation was run with
the WW29 product loadings and tool counts for 32 weeks and the output was observed.
As Figure 5.1 and Figure 5.2 show, the output does indeed vary. The probability plot
show that the output is nearly normal. If utilized correctly, this information would be
extremely valuable to the sales organization during times when capacity is constraining
the sales process. For example, the factory could confidently commit to producing
320ku/week of Product A (90% confidence) and could also give a 50% chance of
producing 340ku/week. This type of information would allow Intel to take full advantage
of its capacity. Customer demand is not a fixed number and also contains confidence
intervals. Accurate statistical information on factory output would allow the sales
organization to use factory variability to its advantage in dealing with customers. For
example, potential factory upside (50% confidence output) could be sold to customers
ahead of time with the understanding that the upside would only occur 50% of the time.

Figure 5.1: Variation in Product A Weekly Output for WW29
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Figure 5.2: Variation in Product B Weekly Output for WW29

5.2. Strategic Uses of DES

5.2.1. Capacity Planning Optimization
The most obvious use of DES for strategic purposes is the optimization of capital
investments in capacity. Factories are dynamic systems where WIP flows are determined
by the independent actions of the toolsets and operators. DES allows for these
complicated interactions to be anticipated. Additionally, the amount of excess capacity at
non-constraint operations helps to determine the factory TPT. When planning a factory,
a target TPT needs to be stated before capacity can be planned. This is in stark contrast
to current factory planning methods in ATM where only desired output is stated; TPT is
a result of the 10/15/20 policy. Using DES, output and TPT targets need to be stated
before a factory is planned.

Several experiments were performed using the validated simulation model to explore
potential capacity planning methodologies. Since the validation availabilities were much
lower than the planned availabilities that the IEs are currently using for each tool, the
validated availabilities (Table 5.2) were used for the experiments. Tool availability is
defined as (tool availability - wait for operator time). Since the wait for operator state
contained both inaccuracies in tool availability data and operator effectiveness factors,
subtracting this quantity from the tool availability results in the actual amount of time the
tool is available for production. After all, if a tool is up, but no operator is available to
run WIP, the tool is essentially down to production. The average availabilities used are
shown in Table 5.2.
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Table 5.2: Average Toolset Availabilities Used for Experiments

Toolset Average Availability
Saw 7b%
Die Plate 55%
APL 59%
SCAM 55%
Deflux 47%
Epoxy 57%
Cure 66%
CTL 53%
BI Oven 73%
Tester 66%
Laser 40%
Ball Attach 57%
Ball Attach Inspect 62%

Reflow and mount tools were not considered in the capacity optimization experiments
since each of them have such large capacities and are relatively inexpensive. One tool of
each is more than enough to satisfy the capacity of any OLGA factory, but a second
redundant tool is used in each factory to mitigate production loss risks. This policy of
redundant tools is core to Intel's planning policies and was not considered for this
project. Additionally, due to the large discrepancies found in the data from the BU and
BL operations, these tools were also eliminated from the experiments. Further data is
needed in this area before it can be properly modeled.

5.2.2. 10/15/20 Baseline Case
Before exploring new capacity planning methods, the current 10/15/20 policy was
examined. Since most operations in ATM factories only have 3-5 tools per toolset, the
gap targets are rarely met. For example, it the static capacity model shows the need for
3.2 saws, 4 saws will be purchased since incremental tools cannot be obtained. This is in
contrast to the fab where most toolsets have 20-40 tools which allows for the gap targets
to generally be met.

Incremental tools can be simulated in the model by inserting extra downtime on a given
tool. For example, if 0.5 saws are needed, a single saw tool will be shut down for 3.5
days/week. Since the simulation is run for several weeks, this does a reasonable job of
approximating how the factory would run if incremental tools could be installed.

Based in the availabilities shown in Table 5.2, the 10/15/20 gap policy was used to arrive
at the number of tools necessary to meet the production needs of WW29 (Table 5.3).
Using the standard capacity calculation methods used by the factory IEs, the gap was
subtracted from the average availability to arrive at the expected utilization (MU). The
resulting protective capacity (Eq. 2.4) was calculated for comparison purposes with other
experiments. The number of tools required was calculated using Equation 5.1. For
simplicity purposes, the uph for tester (the only tool where run rates vary by product) was
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calculated using a weighted average based on the production needs for WW29 (Table
4.2).

Tools Required Factory Output Required (Eq. 5.2)
MU * uph* 168(hours / week)

Table 5.3: Tool Requirements for 10/15/20 Gap Policy for WW29 Production

Toolset Average A Gap PC Expected MU Required Tools
Saw 7% 20% 36% 55% /.0
Die Plate 55% 20% 57% 35% 9.3
APL 59% 20% 52% 39% 14.9
SCAM 55% 20% 58% 35% 24.8
Deflux 47% 20% 74% 27% 9.5
Epoxy 57% 15% 36% 42% 27.1
Cure 66% 20% 44% 46% 13.6
CTL 53% 20% 61% 33% 16.6
BI Oven 73% 20% 38% 53% 49.3
Tester 66% 10% 18% 56% 26.4
Laser 40% 20% 102% 20% 11.3
Ball Attach 57% 20% 54% 37% 12.1
Ball Attach Inspect 62% 20% 47% 42% 11.5

The number of required tools was placed in the model and the model was run with
conservative block limits of 3-3-1. The results are shown in Table 5.4. The idle times for
SCAM, epoxy, and test (the most expensive tools in the factory) are surprisingly high.
Even more disturbing is the fact that the model fell well below the target output for both
products. The TPTs are high because block limits of 3-3-1 were used to try to ensure that
the constraints were fed at all times. As shown by the large idle time for the constraint
tools, even these large block limits could not keep the constraints fed. The results of this
experiment demonstrate the role of the variability in factory output.

In summary, these results suggest that if ATM factories could actually implement the
10/15/20 policy by installing 'incremental tools,' the inadequacy of this capacity policy
would quickly be seen. However, due to having to round up to the next integer tool
quantity for almost every toolset, the factories are spared this reality. In essence,
10/15/20 cannot be implemented correctly in ATM due to the small tool quantities in
each toolset. The organization is spared this reality because of the large amount of excess
capacity that is actually installed due to tool rounding. The actual amount of gap for the
tools in WW29 is shown in Table 5.5. As shown, the gap is often twice as large as
desired. For the expensive tools (test, SCAM, and epoxy), gaps are also above their
target levels indicating the potential for significant capital savings. These results
underscores the dramatic need for an improved capacity planning policy in ATM.
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Table 5.4 : 10/15/20 Simulation Results
SCAM Idle Time 30%
Epoxy Idle Time 24%
Test Idle Time 19%

Average Product AOutput 285667
Std Dev/Average Output 17%

Average Product B Output 369600
Std Dev/Average Output 13%

Average Product A TPT (days) 7.58
Average Product B TPT (days) 7.65

Table 5.5: Planned and Actual Gaps for WW29

5.2.3. Protective Capacity Optimization
The original goal of this project was to determine a better method of planning capacity if
the 10/15/20 gap policy was found to be inadequate. Ideally, Protective Capacity values
would be optimized for each toolset and universally applied to all factories. With this
goal in mind, a framework was created to optimize PC values. Although the 10/15/20
example showed that universal excess capacities lead to capital inefficiencies due to tool
rounding, PC values were still optimized to demonstrate the inadequacy of the excess
capacity levels stated by gap.

The first possible method of optimizing PC values was to iteratively add and remove
tools until cost and TPT targets were achieved. While this is possible, it's a very time
consuming process. The large disparity of capital costs between toolsets in ATM leads to
a logical method of minimizing cost during the PC optimization process. The large
difference in tool costs is shown in Table 5.6 (the tool costs have been normalized against
testers which is the most expensive tool). The planned availabilities for each tool are
shown. The purpose of the table is to provide a general sense of where the factory
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Toolset Planned Gap Actual Gap
Saw 20% 41%-
Die Plate 20% 31%
APL 20% 21%
SCAM 20% 31%
Deflux 20% 47%
Epoxy 15% 21%
Cure 20% 28%
CTL 20% 24%
BL/BU 20% 58%
BI Oven 15% 2%
Test 10% 23%
Laser Mark 20% 53%
Ball Attach 20% 35%
Ball Attach Inspect 20% 39%



expense lies. The tool purchase cost was divided by the weekly output to arrive at the
cost/unit of weekly output. This measure gives a more complete picture of unit costs than
simply showing the tool costs. As the data show, test is a much larger component of unit
cost than any other operation. Epoxy and SCAM are the next most expensive operations;
the rest of the tools are relatively cheap compared to these three.

Table 5.6: Tool Cost Comparison Table
Tool Planned Availability Cost/unit/week

(normalized)
Saw 84% $ 0.09
APL 85% $ 0.07
Die Plate 77% $ 0.14
SCAM 85% $ 0.54
Deflux 90% $ 0.06
Epoxy 75% $ 1.00
Cure 80% $ 0.21
CTL 85% $ 0.12
BLU 87% $ 0.18
BI Oven 98% $ 0.26
IX Testers 85% $ 3.11
Laser Mark 90% $ 0.03
Ball Attach 85% $ 0.29
Ball Attach Inspect 93% $ 0.09

These results highlight the need to minimize capital purchases at these three expensive
operations and to add excess capacity (to manage TPT and output variability) at the
remaining relatively inexpensive operations. In this spirit, the following methodology is
proposed for PC optimization for a factory with large disparities in tool costs. The tool
availability distributions were assumed to be roughly normal for the purposes of this
methodology. If actual tool availabilities significantly deviate from normality,
appropriate control charts should be employed.

1. Identify the tools that are the largest contributors to unit cost (2-3 tools). These tools
should become the constraint and near-constraints for the factory.

2. Plot weekly availability data for each of the tools identified in step 1 using a x-bar
control chart. Identify the 2.Oa and 2.5a LCLs for each of the charts.

3. Constraint PC = (Average Availability - 2.O LCL value)
2.O LCL value

4. Near Constraint PC = (Average Availability - 2.50- LCL value)
2.5c LCL value

5. Using simulation, add capacity as needed at non-constraint operations until output
and TPT goals are achieved. This is a highly iterative process. A good starting PC
for all non-constraints is the -3a PC value.
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The control charts are used to determine the minimum tool availability that is achievable
on a weekly basis. By choosing the 2.O LCL for the constraint and assuming the
constraint will always be staffed with an operator and a WIP will always be maintained, a
level of constraint output can be committed to with 95% confidence. In reality, the
constraint will be able to exceed this committed output in most weeks, but this provides
the factory with a level of output it can achieve 95% of the time. Since staffing and WIP
levels are slightly more erratic at near constraint operations, the 2.5a LCL is used. It is
important to remember that staffing effectiveness is built into the model availabilities
using the wait for operator state. If labor effectiveness factors are not built into tool
availabilities, the method will not be reliable because it will likely over predict tool
output.

The 2.0a and 2.5a control limits for the constraint and non-constraint operations
(respectively) are somewhat arbitrary and need to be determined on a case by case basis.
A balance between factory cost and constraint output confidence needs to be achieved.
In a factory setting where the constraint is extremely expensive in comparison to other
tools, the PC may be set at a value lower than 2.0a. While this will result in lower
factory costs, the likelihood of the constraint under-producing increases. This may be an
acceptable trade-off and is at the discretion of factory designers. However, this
methodology is proposed for a factory environment where 3-4 tools are much more
expensive than the rest of the tools. In this type of factory, the proposed guidelines
provide a reasonable design methodology. Factory planners do have the option of
adjusting the control limits (which in turn adjust the PC levels for the constraint and non-
constraint operations) depending on the risks associated with missed output and factory
costs.

The OLGA simulation was run for 47 weeks under fully loaded conditions (WW29) and
weekly toolset availability data were collected and plotted in x-bar control charts (
Figure 5.3).

PC levels for the constraint and near-constraints can be calculated from the control charts.
For example, the Tester PC is calculated as follows:

Tester PC = 66.2-61.3 =8%PC
61.3

Using the calculation, the SCAM PC = 7.9% and the Epoxy PC = 9.5%. This method of
calculating constraint and near-constraint PC makes intuitive sense because it allows the
factory to commit to output levels that it can confidently commit to, given the inherent
variability of the factory. The Goal (Goldratt, 1992) teaches that factory output will be
equal to constraint output. This method of determining PC for the constraints simply
takes Goldratt's ideas one step further by considering toolset variability and its effect on
factory output.
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Figure 5.3: Availability Control Charts for SCAM, Epoxy, and Test
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3y control charts were created for the rest of the tools in the factory (reflow, mount, and
BL/BU were excluded for reasons already discussed) and PCs were determined for each
toolset. APL was not considered because it is a parallel operation and is not impacted by
the dynamics of the rest of the line. APL capacity was always sufficient to ensure that
SCAM was not starved for material coming from APL. Running the simulation at 3ay PC
levels resulted in low, erratic output even with large block limits.

The initial goal was to create a factory that achieved the output for WW29 using a TPT
target of approximately 6 days (the block 1 and 2 limits were set to 3 days each).
Capacity was added at non-constraint operations in increments of 5% PC and the
simulation was run. Adjustments were based on WIP queue sizes and tool idle time. The
goal was to add enough capacity at non-constraint operations to ensure that test was the
constraint with SCAM and Epoxy remaining the near constraint.
Each simulation was run for 8 weeks and the output was statistically compared to the
output for the WW29 simulation (Table 4.7). A two-sided t-test with a=0.05 was used to
ensure that the hypothesis that the means of the two distributions were equal could not be
rejected. Capacity was added until the output at a given TPT target met this statistical
criteria.

Capacity was iteratively added in the same manner to meet TPT targets of 3 and 4 days
(Block 1 and 2 limits of 2.0 and 1.5 respectively). The results from this work are shown
in Table 5.7. Basically, as the target TPT is decreased, the amount of excess capacity at
non-constraint operations (PC) must be increased. This in-turn increases the amount of
idle time at the non-constraint operations. In all three cases, the constraint remained at
test as shown by the low idle time and large numbers of lots in its queue. SCAM and
epoxy also remain the near constraints as shown by the same characteristics. The only
exception is the 1.5-1.5-1 case for SCAM where it still have relatively low idle time, but
only a few lots in the average queue. This simply shows the need to reduce constraint
queue sizes in order to reduce overall TPTs; this can be accomplished by increasing
excess capacity at non-constraint operations.

Figure 5.4 shows the relation between overall TPT and average idle time at non-
constraint operations. As expected, idle time increases as overall TPT decreases. As
excess capacity is added, WIP queues decrease which results in decreased overall TPT. It
is also expected that this relation is non-linear; as the overall TPT approaches the
theoretical TPT, the amount of excess capacity required to eliminate WIP queues in the
face of factory variability increases. The amount of excess capacity required to reduce
TPT was added in an iterative process in an attempt to keep the constraints fed and
several combinations of non-constraint excess capacity would likely yield the same
overall TPT. Therefore, only the general trend should be observed in this graph.
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Table 5.7: Toolset PC Optimization Results
3-3-1 Block Limits 2-2-1 Block Limits 1.5-1.5-1 Block Limits

Average Average Average Average . Average Average
Toolset PC Idle Time Lots in Queue PC Idle Time Lots in Queue PC Idle Time Lots in Queue
Saw 49.4% 4.7% 5.3 59.4% 5.2% 5.0 74.1% 12.5% 0.2
Die Plate 16.6% 3.0% 5.8 26.6% 3.3% 5.6 51.7% 18.9% 0.3
SCAM 7.9% 0.9% 33.3 7.9% 2.8% 12.6 14.3% 6.4% 0.7
Deflux 31.1% 3.3% 11.4 41.1% 4.9% 9.7 63.9% 17.6% 0.6
Epoxy 9.5% 2.1% 32.2 9.5% 4.8% 22.2 20.5% 12.2% 6.2
Cure 18.0% 3.4% 16.1 28.0% 4.9% 8.8 27.3% 4.6% 2.8
CTL 9.1% 4.4% 5.4 14.1% 6.1% 5.0 16.1% 6.2% 3.9
81 Oven 14.2% 4.6% 5.1 14.2% 7.1% 4.3 17.6% 8.0% 2.3
Tester 8.0% 0.0% 85.6 8.0% 0.5% 24.5 7.2% 0.3% 28.0
Laser 47.5% 8.8% 6.1 47.5% 8.8% 6.4 59.9% 13.8% 1.5
Ball Attach 18.6% 6.9% 10.0 18.6% 6.9% 10.1 52.5% 28.0% 0.5
Ball Attach Inspect 17.5% 6.7% 5.3 17.5% 6.8% 5.3 53.2% 28.4% 0.3
Average Product A Output 330000 330000 332000
Average Product B Output 291000 290000 290000
Average TPT 6.3 4.3 3.4

Figure 5.4: Non-Constraint Idle Time as a Function of Overall TPT
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5.2.4. Factory Agility Curves
A use of DES that was not explicitly explored was factory agility curves. Factory agility
curves are complex graphs created to address what-if capacity scenarios. For example, if
the toolset is fixed, DES could be used to show the resulting output volumes for a variety
of product mix scenarios. These data sets could be expanded to include what-ifs for
product test times. ATM managers are in need of tools to help them assess capacity in
the face of uncertain and ever-changing demand. Although this particular use of DES is
not fully explored in this thesis, it would be a logical progression for future work with
DES in ATM.
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CHAPTER 6. Conclusions and Recommendations

6.1. Advantages of Discrete Event Simulation
Discrete event simulations have the inherent ability to consider dynamic events within the
factory. Although they are more complicated to build and maintain than static models,
their added value is apparent. Static models are unable to account for any type of
variation; this leads to their inability to predict TPTs and WIP distribution in a factory.
This is underscored by the graph shown in Figure 3.4. The static capacity models
predicted epoxy as the near constraint when in fact there were several toolsets that
constrained the factory more than epoxy. The simple reason for this is that the static
models cannot account for variation in tool availability or dynamic WIP flows.

DES offers tactical and strategic advantages. On the tactical front, managers can quickly
assess the impact of new product loadings, proposed process improvements, test time
variation, and WIP policy modifications. As an example of tactical uses of DES, this
thesis optimized CONWIP limits and lead to a conservative 20% reduction in TPT
simply by reducing the amount of WIP in the factory.

6.2. The Importance of Data Quality and Proper Indicators
While the simulation was successful in demonstrating the potential uses and advantages
of DES, the model could not replicate historical factory performance with a great deal of
accuracy. The inaccurate tool performance data provided by the factories necessitated
the use of a 'Wait for Operator State' to account for the poor tool data and potential
delays in loading WIP caused by operators. These adjustment factors were quite large
(>20% of a tool's available time in most cases) and raised the question of whether
staffing levels and/or operator efficiency are too low. These large operator states
question the fundamental assumption that labor effects can be ignored when modeling
ATM factories.

Without improvement in factory data quality, significant improvement in ATM factory
performance and capacity planning systems will be severely limited. The measurement
of four tool performance parameters is need to assess and improve performance:

* Tool utilization
* Tool idle time caused by lack of WIP
* Tool idle time caused by lack of an operator
* Unavailable tool time
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These four parameters will allow factories to accurately asses tool and labor
performances. Some type of automated data collection system is needed to measure these
parameters. The organizational difficulties of installing, using, and learning from such a
system are immense and require a coordinated effort across several organizations. In
order for the system to succeed, the scope needs to be narrowly defined and effectively
managed. Pilot implementation of the system on 3-4 of the most expensive toolsets in the
factory would help limit the scope as well as provide the greatest return on investment.
In fact, since test is the most expensive process in the factory and the most operationally
complex, it would be advisable to gather accurate data on this toolset first and work to
improve performance through WIP policy improvement and setup/conversion time
reduction. Basic issues such as SFGI and PBIC lot sizing and conversion guidelines
would likely lead to quick wins for the test area (and the effective use of DES as a factory
tool).

6.3. Capacity Planning in the ATM Environment
The current 10/15/20 gap policy was shown to be inadequate. If 10/15/20 could actually
be implemented, TPTs would be excessively long and factory output would be sacrificed.
The fact that most ATM factory toolsets contain only 3-6 tools lead to a large amount of
'tool rounding.' When the static capacity models show the need for 4.3 tools, the factory
buys 5. This policy leads to gaps much larger than 10/15/20 for all toolsets (Table 5.5).
The original intent of this thesis was to create universal PC values for all toolsets in the
factory. Unfortunately, capacity calculations based on universal PC values are subject to
the same tool rounding issues.

As a result of tool rounding, the capacity of each factory should be designed using
simulation. Use of a blanket capacity policy such as 10/15/20 or universal PC values will
lead to sub-optimal capital purchases. When designing a factory, the desired output and
TPT should be stated and the factory designed to meet these targets. This is in contrast to
the current method of simply stating desired output and the factory TPT being determined
by the 10/15/20 gap policy. ATM managers need to be made aware of their ability to
influence TPT and subsequently need to understand the implications of TPT on the
business.

Guidelines for determining PCs in a factory environment with large cost discrepancies
between tools were created. This method allows for factory design with minimized
capital spending while still allowing for a great deal of flexibility in managing TPT. The
proposed method is as follows:

1. Identify the tools that are the largest contributors to unit cost (2-3 tools). These tools
should become the constraint and near-constraints for the factory.

2. Plot weekly availability data for each of the tools identified in step 1 using a x-bar
control chart. Identify the 2.Oa and 2.5a LCLs for each of the charts.
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3. Constraint PC = (Average Availability - 2.0a LCL value)
2.0o- LCL value

4. Near Constraint PC= (Average Availability - 2.5- LCL value)
2.5- LCL value

5. Using simulation, add capacity as needed at non-constraint operations until output
and TPT goals are achieved. This is a highly iterative process. A good starting PC for all
non-constraints is the 3a PC value.

The lack of data quality in ATM makes the implementation of full-factory simulation a
difficult task given the large scope of the project. Since the test operation is the most
expensive in the factory (by a large margin) and is responsible for most of the variation in
factory capacity (due to product health and test times), initial focus should be on this
area. After a proper method of gathering the four types of necessary data (listed in the
section above) is created, a detailed tester simulation would allow for maximum capital
savings and effective demonstration of DES as a valuable factory tool. Once the test area
is modeled and optimized, the ROI on proliferation of the project throughout the factory
should be examined.
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Appendix A: Comparison of Factory and Simulated Weekly Tool
Availability Data
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Appendix D: Block Size Optimization Results

WW29 Screen Experiment Results

WW29 Simulation Baseline using Block 1 = Block 2 = 2 days. Note: the TPT
adjustment factor of 0.7 days was applied to all TPTs. Note that the output numbers have
been disguised.

2-2-1
Simulation Week Product A Output Product A TPT Product B Output Product B TPT

1 316628 4.2 378784 4.2
2 337998 4.3 400150 4.4
3 324398 4.5 380730 4.5
4 361286 4.0 407942 4.0
5 332170 4.3 374898 4.3
6 310788 4.8 361312 4.8
7 334094 4.5 417648 4.5
8 361302 4.0 404040 4.0

Average 334833 5.0 390688 5.0

WW29 Simulation data using Block 1= Block 2 = 1.5 days.

1.5-1.5-1
Simulation Week Product A Output Product A TPT Product B Output Product B TPT

1 324394 3.2 376846 3.3
2 347710 3.4 384610 3.4
3 334118 3.3 388488 3.4
4 338002 3.1 415688 3.2
5 345760 3.2 369078 3.3
6 314670 3.7 361318 3.8
7 324412 3.4 409850 3.5
8 363254 3.1 394314 3.1

Average 336540 3.3 387524 3.4
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Results of t-tests between the WW29 output of the 2,2 simulations and the 1.5,1.5
simulations. For both products with x=0.05, |t|<tcriticai, 2 sided, so the null hypothesis that
the means of the two samples are equal is not rejected.

1.5-1.5 to 2-2 t-test
Product A Output
t-Test: Two-Sample Assuming Equal Variances

Variable 1 Vanable 2
Mean 334832 336540
Variance 87017762.86 60868900.86
Observations 8 8
Pooled Variance 73943331.86
Hypothesized Mean Difference 0
df 14
t Stat -0.20
P(T<=t) one-tail 0.42
t Critical one-tail 1.76
P(T<=t) two-tail 0.85
t Critical two-tail 2.14

Product B Output
t-Test: Two-Sample Assuming Equal Variances

Vanable 1 Vanable 2
Mean 390688 387524
Variance 94481711 88864821
Observations 8 8
Pooled Variance 91673266
Hypothesized Mean Difference 0
df 14
t Stat 0.33
P(T<=t) one-tail 0.37
t Critical one-tail 1.76
P(T<=t) two-tail 0.75
t Critical two-tail 2.14

Results of the t-tests between the TPTs of the 2,2 and 1.5,1.5 simulations. For both
products with x=0.05, I t |>tcritical, 2 sided, so the null hypothesis that the means of the two
samples are equal is rejected; the TPT improvement is statistically meaningful.

Product A TPT (hours) t-test
t-Test: Two-Sample Assuming Equal Variances

Vanable 1 V aable 2
Mean 103.6 78.9
Variance 41.6 24.0
Observations 8 8
Pooled Variance 32.8
Hypothesized Mean Difference 0
df 14
t Stat 8.63
P(T<=t) one-tail 2.8E-07
t Critical one-tail 1.76
P(T<=t) two-tail 5.59E-07
t Critical two-tail 2.14

Product B TPT
(tlasi)Two-Sample Assuming Equal Variances

Vanable 1 Vanable 2
Mean 103.5 80.3
Variance 34.3 27.3
Observations 8 8
Pooled Variance 30.8
Hypothesized Mean Difference 0
df 14
t Stat 8.33
P(T<=t) one-tail 4.24E-07
t Critical one-tail 1.76
P(T<=t) two-tail 8.48E-07
t Critical two-tail 2.14
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WW28 Simulation Results

Results of t-tests between the WW28 output of the 2,2 simulations and the 1.5,1.5
simulations. For both products with a=0.05, I t I <tcritical, 2sided, so the null hypothesis that
the means of the two samples are equal is not rejected. A t-test to determine the
significance of the TPT differences was not performed because the similar experiment for
the WW29 screening data demonstrated how robust the TPT difference actually is.

t-test with 2-2-1 and 1.5-1.5-1
t-Test: Two-Sample Assuming Equal Variances
Product A Output

Varable 1 Variable 2
Mean 4192/6 416290
Variance 69606204.410 125016476.9
Observations 13.000 13
Pooled Variance 97311340.654
Hypothesized Mean Difference 0.000
df 24.000
t Stat 0.39
P(T<=t) one-tail 0.35
t Critical one-tail 1.71
P(T<=t) two-tail 0.70
t Critical two-tail 2.06

t-Test: Two-Sample Assuming Equal Variances
Product B Output

Vanable 1 Varnable 2
Mean 310800 315122
Variance 27802019.603 35300850
Observations 13.000 13
Pooled Variance 31551434.756
Hypothesized Mean Difference 0.000
df 24.000
t Stat 1.29
P(T<=t) one-tail 0.10
t Critical one-tail 1.71
P(T<=t) two-tail 0.21
t Critical two-tail 2.06

WW30 Simulation Results

Results of t-tests between the WW30 output of the 2,2 simulations and the 1.5,1.5
simulations. For both products with a=0.05, It I <tcritical, 2 sided, so the null hypothesis that
the means of the two samples are equal is not rejected.

t-Test: Two-Sample Assuming Equal Variances
Product A Output

Variable I Variable 2
Mean 408816 408074
Variance 59827354.41 83867089
Observations 13.00 13
Pooled Variance 71847221.55
Hypothesized Mean Difference 0.00
df 24.00
t Stat 0.11
P(T<=t) one-tail 0.46
t Critical one-tail 1.71
P(T<=t) two-tail 0.91
t Critical two-tail 2.06

t-Test: Two-Sample Assuming Equal Variances
Product B Output

Vanable 1 Variable 2
Mean 323950 322002
Variance 56794619.77 49236382.3
Observations 13.00 13
Pooled Variance 53015501.04
Hypothesized Mean Difference 0.00
df 24.00
t Stat 0.34
P(T<=t) one-tail 0.37
t Critical one-tail 1.71
P(T<=t) two-tail 0.74
t Critical two-tail 2.06
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