MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.04

PROBLEM SET 10

Spring Term 2003

Reading: French & Taylor, 9.10 and 5.1 - 5.7. Liboff, 10.1 - 10.2.

1. Alpha decay of heavy elements. (20 points)

Following the WKB approximation and Gamow theory of alpha decay discussed in lecture, calculate the lifetimes of the U^{238} and Po^{212} nuclei.

Hints: Since the density of nuclear matter is relatively constant (i.e., the same for all nuclei), you may assume the empirical relation $R_{\text{nucleus}} \approx A^{1/3}$ fm, where 1 fm = 10^{-13} cm and A is the atomic weight (the number of protons plus neutrons). The energy of the emitted alpha particle is given by Einstein's formula $E = mc^2$:

$$E = m_p c^2 - m_d c^2 - m_\alpha c^2,$$

where m_p is the mass of the parent nucleus, m_d is the mass of the daughter nucleus, and m_{α} is the mass of the alpha particle (that is, the He⁴ nucleus). A few recommended atomic masses are (http://csnwww.in2p3.fr/AMDC/web/masseval.html):

mass of $\text{He}^4 = 4.00260325$ amu mass of $\text{Pb}^{208} = 207.9766359$ amu mass of $\text{Po}^{212} = 211.9888518$ amu mass of $\text{Th}^{234} = 234.0435955$ amu mass of $\text{U}^{238} = 238.0507826$ amu

To estimate the effective velocity v of the alpha particle inside the nucleus, use $E = (1/2)m_{\alpha}v^2$. This ignores the (negative) potential inside the nucleus and underestimates v, but is a reasonable first approximation nonetheless. For comparison, the experimentally determined lifetimes are 4.5×10^9 yr and 3.0×10^{-7} s, respectively (http://nucleardata.nuclear.lu.se/NuclearData/toi/perchart.htm).

2. Center of mass and relative coordinates. (20 points)

An isolated system consists of two particles which interact via a force represented by a potential that depends only on the distance between them. In three-dimensions, the Hamiltonian is

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V(\vec{r_1}, \vec{r_2}) = -\frac{\hbar^2}{2m_1} \nabla_1^2 - \frac{\hbar^2}{2m_2} \nabla_2^2 + V(|\vec{r_1} - \vec{r_2}|)$$

(a) Perform a change of variables to center-of-mass and relative coordinates

$$\vec{R} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}$$
, $\vec{r} = \vec{r_1} - \vec{r_2}$

and show that the Hamiltonian may be written as

$$H = -\frac{\hbar^2}{2M}\nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2\mu}\nabla_{\mathbf{r}}^2 + V(r),$$

where the total mass $M = m_1 + m_2$ and the reduced mass $\mu = m_1 m_2 / (m_1 + m_2)$. Calculate the reduced mass of a system consisting of a proton and an electron (in MeV/ c^2).

(b) Show that solutions of

$$H\Psi(\vec{r}_1, \vec{r}_2) = E\Psi(\vec{r}_1, \vec{r}_2)$$

may be found with the form

$$\Psi(\vec{r}_1, \vec{r}_2) = \phi(\vec{R})\psi(\vec{r})$$

by using the separation of variables technique. Show that you get the Schrödinger equation for a free particle in the variable \vec{R} and solve it.

3. Energy degeneracy in a cubical box. (20 points)

French & Taylor, Problem 5-4

4. Spherical step-well. (20 points)

French & Taylor, Problem 5-7

5. Inadequacies in the Bohr theory of hydrogen. (20 points)

French & Taylor, Problem 5-9