MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.04
Spring Term 2003

PROBLEM SET 10

Reading: French \& Taylor, 9.10 and 5.1 - 5.7. Liboff, 10.1 - 10.2.

1. Alpha decay of heavy elements. (20 points)

Following the WKB approximation and Gamow theory of alpha decay discussed in lecture, calculate the lifetimes of the U^{238} and Po^{212} nuclei.

Hints: Since the density of nuclear matter is relatively constant (i.e., the same for all nuclei), you may assume the empirical relation $R_{\text {nucleus }} \approx A^{1 / 3} \mathrm{fm}$, where $1 \mathrm{fm}=10^{-13} \mathrm{~cm}$ and A is the atomic weight (the number of protons plus neutrons). The energy of the emitted alpha particle is given by Einstein's formula $E=m c^{2}$:

$$
E=m_{p} c^{2}-m_{d} c^{2}-m_{\alpha} c^{2},
$$

where m_{p} is the mass of the parent nucleus, m_{d} is the mass of the daughter nucleus, and m_{α} is the mass of the alpha particle (that is, the He^{4} nucleus). A few recommended atomic masses are (http://csnwww.in2p3.fr/AMDC/web/masseval.html):

$$
\begin{aligned}
& \text { mass of } \mathrm{He}^{4}=4.00260325 \mathrm{amu} \\
& \text { mass of } \mathrm{Pb}^{208}=207.9766359 \mathrm{amu} \\
& \text { mass of } \mathrm{Po}^{212}=211.9888518 \mathrm{amu} \\
& \text { mass of } \mathrm{Th}^{234}=234.0435955 \mathrm{amu} \\
& \text { mass of } \mathrm{U}^{238}=238.0507826 \mathrm{amu}
\end{aligned}
$$

To estimate the effective velocity v of the alpha particle inside the nucleus, use $E=(1 / 2) m_{\alpha} v^{2}$. This ignores the (negative) potential inside the nucleus and underestimates v, but is a reasonable first approximation nonetheless. For comparison, the experimentally determined lifetimes are $4.5 \times 10^{9} \mathrm{yr}$ and $3.0 \times 10^{-7} \mathrm{~s}$, respectively (http://nucleardata.nuclear.lu.se/NuclearData/ toi/perchart.htm).
2. Center of mass and relative coordinates. (20 points)

An isolated system consists of two particles which interact via a force represented by a potential that depends only on the distance between them. In three-dimensions, the Hamiltonian is

$$
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+V\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2}+V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
$$

(a) Perform a change of variables to center-of-mass and relative coordinates

$$
\vec{R}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \quad, \quad \vec{r}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}
$$

and show that the Hamiltonian may be written as

$$
H=-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+V(r),
$$

where the total mass $M=m_{1}+m_{2}$ and the reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$. Calculate the reduced mass of a system consisting of a proton and an electron (in MeV / c^{2}).
(b) Show that solutions of

$$
H \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)
$$

may be found with the form

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\phi(\vec{R}) \psi(\vec{r})
$$

by using the separation of variables technique. Show that you get the Schrodinger equation for a free particle in the variable \vec{R} and solve it.
3. Energy degeneracy in a cubical box. (20 points)

French \& Taylor, Problem 5-4
4. Spherical step-well. (20 points)

French \& Taylor, Problem 5-7
5. Inadequacies in the Bohr theory of hydrogen. (20 points)

French \& Taylor, Problem 5-9

