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Reading: French and Taylor, Chapter 2.

1. Time delay in the photo-electric effect (20 points).

A beam of ultraviolet light of intensity 107 eV s−1 is turned on suddenly and falls on a metal
surface, ejecting electrons through the photo-electric effect. The beam has a cross-sectional
area of 1 cm2, and the wavelength corresponds to a photon energy of 10 eV. The work function
of the metal is 5 eV. How soon after the beam is turned on might one expect photo-electric
emission to occur?

(a) Classically, one can estimate this as the time needed for the work-function energy (5 eV)
to be accumulated over the area of one atom (radius ≈ 1Å). Calculate how long this
would be, assuming the energy of the light beam to be uniformly distributed over its
cross-section.

(b) Actually (as shown by Lord Rayleigh in 1916), the estimate from part (a) is too pes-
simistic. An atom can present an effective area of about λ2 to light of wavelength λ

corresponding to its resonant frequency (i.e. Rayleigh scattering!). Calculate a classical
delay time on this basis.

(c) Under the quantum picture of the process, it is possible for photo-electric emission
to begin immediately – as soon as the first photon strikes the emitting surface. But
to obtain a time that may be compared to the classical estimates, calculate the average
time interval between arrival of successive 10 eV photons. This would also be the average
time delay between switching on the beam and getting the first photo-electron.

2. Determination of Planck’s constant (20 points).

The clean surface of sodium metal (in a vacuum) is illuminated with monochromatic light. In
a series of measurements, various wavelengths are used and the retarding potentials required
to stop the most energetic photo-electrons are observed as follows:



( )

Wavelength Retarding Potential
(Å) (V)

2536 2.60
2830 2.11
3039 1.81
3302 1.47
3663 1.10
4358 0.57

Plot these data in such a way as to show that they lie (approximately) along a straight line as
predicted by the photo-electric equation, and obtain a numerical value for Planck’s constant
h.

3. Compton scattering. (25 points).

(a) Show that it is impossible for a free electron to absorb all of the energy of a single photon
which collides with it.

(b) Derive the Compton wavelength shift for a photon scattered from a free, initially sta-
tionary electron,

∆λ = λ1 − λ0 =
h

mec
(1 − cos θ), 

where θ is the photon scattering angle.

(c) The Compton shift in wavelength, ∆λ, is independent of the incident photon energy
E0 = hν0 = hc/λ0. However, the Compton shift in energy, ∆E = E1 − E0, is strongly
dependent on E0. Find the expression for the Compton energy shift ∆E. (Be careful
to get the sign right – does the photon gain or lose energy in the collision?) Compute
the numerical value of the fractional shift in energy for a 10 keV photon and a 10 MeV
photon, assuming θ = 90◦.

(d) Why is it much more difficult to observe the Compton effect in the scattering of visible
light than in the scattering of X-rays?

(e) Show that the relation between the directions of motion of the scattered photon and the
recoil electron is

cot 
θ

2
= 

hν01 +
mec2

tan φ, 

where φ is the angle for the recoil electron.

4. The De Broglie wavelengths of visible particles (15 points).

If, as De Broglie says, a wavelength can be associated with every moving particle, then why
are we not forcibly made aware of this property in our everyday experience? In answering,
calculate the de Broglie wavelength of each of the following “particles”:



(a) an automobile of mass 2 metric tons (2000 kg) traveling at a speed of 50 mph (22 m/sec),

(b) a marble of mass 10 g moving with a speed of 10 cm/sec,

(c) a smoke particle of diameter 10−5 cm (and a density of, say, 2 g/cm3) being jostled
about by air molecules at room temperature (27◦C = 300 K). Assume that the particle has
the same translational kinetic energy as the thermal average of the air molecules:

p2 3kT
= ,

2m 2

with k = Boltzmann’s constant = 1.38 × 10−16 erg/degree K.

5. Double-slit interference of electrons (20 points).

(a) Electrons of momentum p fall normally on a pair of slits separated by a distance d. What
is the distance between adjacent maxima of the interference fringe pattern formed on a
screen a distance D beyond the slits?

(b) In the actual experiment performed by Jönsson (see Section 2–6 of French & Taylor), the
electrons were accelerated through a 50 kV potential, the slit separation d was 2× 10−4

cm, and D was 35 cm. Calculate λ and the fringe spacing. You will then appreciate why
subsequent magnification using an electron microscope was required!

(c) What would be the corresponding values of d, D, and the fringe spacing if Jönsson’s ap-
paratus were simply scaled up for use with visible light (all dimensions simply multiplied
by the ratio of wavelengths)?


