MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.04

PROBLEM SET 6

Reading: French & Taylor, Chapter 3. Liboff, Chapter 4 and 5.

1. Practice with delta functions (10 points). The Dirac delta function may be defined as

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0, \end{cases} \quad \text{ such that } \int_{-\infty}^{\infty} \delta(x) f(x) = f(0),$$

for any function f(x). Evaluate the following integrals:

(a) $\int_{-3}^{1} (x^3 - 3x^2 + 2x - 1)\delta(x + 2)dx$, (b) $\int_{0}^{\infty} [\cos(3x) + 2]\delta(x - \pi)dx$, (c) $\int_{-1}^{1} \exp(|x| + 3)\delta(x - 2)dx$.

2. Ehrenfest's theorem (15 points).

Using the time-dependent Schrödinger equation and starting with the integral expression derived in lecture for the expectation value of p,

$$\langle p \rangle = m \frac{d \langle x \rangle}{dt} = -i \hbar \int_{-\infty}^{\infty} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) dx,$$

show that

$$\frac{d\langle p\rangle}{dt} = \left\langle -\frac{\partial V}{\partial x} \right\rangle$$

This is known as *Ehrenfest's theorem*. It tells us that the quantum mechanical *expectation* values of momentum and potential energy obey Newton's second law.

3. Properties of solutions to the time-independent Schrödinger equation. (25 points).

Prove the following theorems regarding solutions to time-independent Schrödinger equation:

(a) In order for a "stationary state" solution to the Schrödinger equation,

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar},$$

to be normalizable, the eigenvalue E must be real. *Hint:* Write E as $E_0 + i\Gamma$ (with E_0 and Γ real), and show that for the normalization condition to be satisfied for all t, Γ must be zero.

Spring Term 2003

(b) The spatial wave function $\psi(x)$ can always be taken to be *real* (unlike the total wave function $\Psi(x,t)$, which is necessarily complex). *Note:* This does not mean that every solution to the time-independent Schrödinger equation *is* real; instead, it says that if you have a solution that is *not* real, it can always be written as a linear combination of solutions (with the same energy) that *are* real.

(*Hint*: If $\psi(x)$ satisfies the time-independent Schrödinger equation for a given energy E, what can be said about its complex conjugate, $\psi^*(x)$? Find linear combinations of solutions that are necessarily real (by construction).)

(c) If V(x) is an even function [V(-x) = V(x)], then $\psi(x)$ can always be taken to be either even or odd.

(*Hint:* Find a linear combination of solutions that is explicitly even and one that is explicitly odd.)

4. Minimum energy solutions to the time-indep. Schrödinger equation (15 points).

(a) Show that E must exceed the minimum value of V(x) for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? *Hint:* Rewrite the time-independent Schrödinger equation as

$$\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} [V(x) - E]\psi(x);$$

if $E < V_{min}$, then ψ and its second derivative always have the same sign. Argue that such a function cannot be normalized.

(b) Show explicitly that there is no acceptable solution to the time-independent Schrödinger equation for the infinite square well with E = 0 or E < 0. This is a special case of the general theorem in part (a), but this time do it by explicitly solving the Schrödinger equation and showing that you cannot meet the boundary conditions.

5. Infinite square well revisited (15 points).

Solve the time-independent Schrödinger equation with appropriate boundary conditions for an infinite square well of width a centered at a/2,

$$V(x) = \begin{cases} 0 & 0 < x < a \\ \infty & \text{elsewhere.} \end{cases}$$

Check that the allowed energies are consistent with those derived in lecture for an infinite well of width a centered at the origin. Confirm that the wave functions $\psi_n(x)$ can be obtained from those found in lecture if one uses the substitution $x \to x + a/2$.

6. Measurement and the infinite square well (20 points).

Consider a particle in the infinite square well potential of the preceding problem. Suppose that at t = 0, the particle is described by the following wave function:

$$\Psi_A(x,0) = \sqrt{\frac{1}{6}}\psi_1(x) + \sqrt{\frac{1}{3}}\psi_2(x) + \sqrt{\frac{1}{2}}\psi_3(x)$$

where $\psi_1(x)$, $\psi_2(x)$, and $\psi_3(x)$ are the normalized eigenfunctions corresponding to the stationary states with energy eigenvalues E_1 , $E_2(=4E_1)$, and $E_3(=9E_1)$, respectively. Note: Each part of this problem requires relatively little computation, but rather addresses the concepts covered so far.

- (a) How does $\Psi_A(x,0)$ evolve with time? That is, write down the expression for $\Psi_A(x,t)$.
- (b) Calculate the expectation value of the energy, $\langle E \rangle$, for the particle described by $\Psi_A(x,t)$. Write your answer in terms of E_1 . Does this quantity change with time?
- (c) What is the probability of measuring the energy to equal $\langle E \rangle$ as a result of a single measurement at t = 0? At a later time $t = t_1$?
- (d) What energy values will be observed as a result of a single measurement at t = 0 and with what probabilities? How do these probabilities change with time?
- (e) The energy of the particle is found to be E_3 as a result of a single measurement at $t = t_1$. Write down the wave function $\Psi(x, t)$ which describes the state of the particle for $t > t_1$. What energy values will be observed and with what probabilities at a time $t_2 > t_1$?
- (f) Construct another normalized wave function $\Psi_B(x,0)$ which is linearly independent of $\Psi_A(x,0)$, but yields the same value of $\langle E \rangle$ as well as the same set of measured energies with the same probabilities.
- (g) Construct another normalized wave function $\Psi_C(x,0)$ which is linearly independent of $\Psi_A(x,0)$, yields the same value of $\langle E \rangle$, but gives a different set of measured energies (let's say that only two different energies are measured).
- (h) How would you experimentally determine whether the particle is in a state described by Ψ_A , Ψ_B , or Ψ_C ?