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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

Physics 8.04 Spring Term 2003 
PROBLEM SET 6

Reading: French & Taylor, Chapter 3. Liboff, Chapter 4 and 5.

1. Practice with delta functions (10 points). The Dirac delta function may be defined as

0 x �= 0 ∞
δ(x) = such that δ(x)f(x) = f(0),∞ x = 0, −∞

for any function f(x). Evaluate the following integrals:
∫ 1(a) −3(x

3 − 3x2 + 2x − 1)δ(x + 2)dx,

(b) 0
∞[cos(3x) + 2]δ(x − π)dx,∫ 1(c) −1 exp(|x| + 3)δ(x − 2)dx.

2. Ehrenfest’s theorem (15 points).

Using the time-dependent Schrödinger equation and starting with the integral expression
derived in lecture for the expectation value of p,

d〈x〉 ∞ ∂Ψ〈p〉 = m = −i� dx,
dt ∂x−∞

show that 〈 〉
d〈p〉 ∂V

= − .
dt ∂x

This is known as Ehrenfest’s theorem. It tells us that the quantum mechanical expectation
values of momentum and potential energy obey Newton’s second law.

3. Properties of solutions to the time-independent Schrödinger equation. (25 points).

Prove the following theorems regarding solutions to time-independent Schrödinger equation:

(a) In order for a “stationary state” solution to the Schrödinger equation,

Ψ(x, t) = ψ(x)e−iEt/�,

to be normalizable, the eigenvalue E must be real. Hint: Write E as E0 + iΓ (with E0

and Γ real), and show that for the normalization condition to be satisfied for all t, Γ
must be zero.
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(b) The spatial wave function ψ(x) can always be taken to be real (unlike the total wave
function Ψ(x, t), which is necessarily complex). Note: This does not mean that every
solution to the time-independent Schrödinger equation is real; instead, it says that if
you have a solution that is not real, it can always be written as a linear combination of
solutions (with the same energy) that are real.

(Hint: If ψ(x) satisfies the time-independent Schrödinger equation for a given energy
E, what can be said about its complex conjugate, ψ∗(x)? Find linear combinations of
solutions that are necessarily real (by construction).)

(c) If V (x) is an even function [V (−x) = V (x)], then ψ(x) can always be taken to be either
even or odd. 

(Hint: Find a linear combination of solutions that is explicitly even and one that is 
explicitly odd.) 

4. Minimum energy solutions to the time-indep. Schrödinger equation (15 points).

(a) Show that E must exceed the minimum value of V (x) for every normalizable solution
to the time-independent Schrödinger equation. What is the classical analog to this
statement? Hint: Rewrite the time-independent Schrödinger equation as

2ψd 2m
= 

�2
[V (x) − E]ψ(x);

2dx

if E < Vmin, then ψ and its second derivative always have the same sign. Argue that
such a function cannot be normalized.

(b) Show explicitly that there is no acceptable solution to the time-independent Schrödinger
equation for the infinite square well with E = 0 or E < 0. This is a special case of the
general theorem in part (a), but this time do it by explicitly solving the Schrödinger
equation and showing that you cannot meet the boundary conditions.

5. Infinite square well revisited (15 points).

Solve the time-independent Schrödinger equation with appropriate boundary conditions for
an infinite square well of width a centered at a/2,

0 0 < x < a
V (x) = ∞ elsewhere.

Check that the allowed energies are consistent with those derived in lecture for an infinite
well of width a centered at the origin. Confirm that the wave functions ψn(x) can be obtained
from those found in lecture if one uses the substitution x → x + a/2.
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6. Measurement and the infinite square well (20 points).

Consider a particle in the infinite square well potential of the preceding problem. Suppose
that at t = 0, the particle is described by the following wave function:

1 1 1
ΨA(x, 0) = ψ1(x) + ψ2(x) + ψ3(x)

6 3 2

where ψ1(x), ψ2(x), and ψ3(x) are the normalized eigenfunctions corresponding to the sta-
tionary states with energy eigenvalues E1, E2(= 4E1), and E3(= 9E1), respectively. Note:
Each part of this problem requires relatively little computation, but rather addresses the
concepts covered so far.

(a) How does ΨA(x, 0) evolve with time? That is, write down the expression for ΨA(x, t).

(b) Calculate the expectation value of the energy, 〈E〉, for the particle described by ΨA(x, t).
Write your answer in terms of E1. Does this quantity change with time?

(c) What is the probability of measuring the energy to equal 〈E〉 as a result of a single
measurement at t = 0? At a later time t = t1?

(d) What energy values will be observed as a result of a single measurement at t = 0 and
with what probabilities? How do these probabilities change with time?

(e) The energy of the particle is found to be E3 as a result of a single measurement at t = t1.
Write down the wave function Ψ(x, t) which describes the state of the particle for t > t1.
What energy values will be observed and with what probabilities at a time t2 > t1?

(f) Construct another normalized wave function ΨB(x, 0) which is linearly independent of
ΨA(x, 0), but yields the same value of 〈E〉 as well as the same set of measured energies
with the same probabilities.

(g) Construct another normalized wave function ΨC(x, 0) which is linearly independent of
ΨA(x, 0), yields the same value of 〈E〉, but gives a different set of measured energies
(let’s say that only two different energies are measured).

(h) How would you experimentally determine whether the particle is in a state described by
ΨA, ΨB, or ΨC?


