MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

PROBLEM SET 5

Reading: French \& Taylor, Chapter 3.

1. Gaussian quantum wave function (25 points).

A particle of mass m is in the state

$$
\Psi(x, t)=A e^{-a\left[\left(m x^{2} / \hbar\right)+i t\right]}
$$

where A and a are positive real constants.
(a) Find A.
(b) Find the potential energy function $V(x)$ for which Ψ satisfies the Schrödinger equation. What is this potential called?
(c) Calculate the expectation values of x, x^{2}, p, and p^{2}. Find σ_{x} and σ_{p}. Is their product consistent with the Heisenberg uncertainty principle, $\sigma_{x} \sigma_{p} \geq \frac{\hbar}{2}$? Comment on what this says about Gaussian wave functions.
[Hint: $\int_{-\infty}^{\infty} e^{\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}$, and applying $\frac{d}{d \alpha}$ leads to another useful relation.]
2. Probability current (25 points).

A particle is in a state described by the wavefunction $\Psi(x, t)$. Let $P_{a b}(t)$ be the probability of finding the particle in the range $(a<x<b)$ at time t. Show that

$$
\frac{d P_{a b}}{d t}=J(a, t)-J(b, t)
$$

where

$$
J(x, t) \equiv \frac{i \hbar}{2 m}\left(\Psi \frac{\partial \Psi^{*}}{\partial x}-\Psi^{*} \frac{\partial \Psi}{\partial x}\right) .
$$

[Hint: Calculate $\frac{\partial}{\partial t}|\Psi|^{2}$.]
What are the units of $J(x, t)$?
J is called the probability current, because it tells you the rate at which probability is "flowing" past the point x. If $P_{a b}(t)$ is increasing, then more probability is flowing into the region at one end than flows out at the other.

