MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.04

PROBLEM SET 5

Spring Term 2003

Reading: French & Taylor, Chapter 3.

1. Gaussian quantum wave function (25 points).

A particle of mass m is in the state

$$\Psi(x,t) = Ae^{-a[(mx^2/\hbar)+it]},$$

where A and a are positive real constants.

- (a) Find A.
- (b) Find the potential energy function V(x) for which Ψ satisfies the Schrödinger equation. What is this potential called?
- (c) Calculate the expectation values of x, x^2 , p, and p^2 . Find σ_x and σ_p . Is their product consistent with the Heisenberg uncertainty principle, $\sigma_x \sigma_p \geq \frac{\hbar}{2}$? Comment on what this says about Gaussian wave functions.

[*Hint*: $\int_{-\infty}^{\infty} e^{\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$, and applying $\frac{d}{d\alpha}$ leads to another useful relation.]

2. **Probability current** (25 points).

A particle is in a state described by the wavefunction $\Psi(x,t)$. Let $P_{ab}(t)$ be the probability of finding the particle in the range (a < x < b) at time t. Show that

$$\frac{dP_{ab}}{dt} = J(a,t) - J(b,t),$$

where

$$J(x,t) \equiv \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right).$$

[*Hint:* Calculate $\frac{\partial}{\partial t} |\Psi|^2$.]

What are the units of J(x,t)?

J is called the *probability current*, because it tells you the rate at which probability is "flowing" past the point x. If $P_{ab}(t)$ is increasing, then more probability is flowing into the region at one end than flows out at the other.