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Abstract

Given a single feasible solution XF and a single infeasible solution xI of a mathematical

program, we provide an upper bound to the optimal dual value. We assume that xF satisfies a

weakened form of the Slater condition. We apply the bound to convex programs and we discuss

its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian

[Man97] on the distance of a point to a convex set specified by inequalities.
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1. Introduction

1. INTRODUCTION

We consider the problem

minimize f(x)

subject to xE X, gj(x) < 0, ., r,

where X is a nonempty subset of Rn, and f : Rn a ), gj, : Rn X -: are given functions. We

denote by g(x) the vector of constraint functions

g(x) = (g(), .. gr.

and we write the constraints gj(x) < 0 compactly as g(x) < 0. In our notation, all vectors are

column vectors and a prime denotes transposition.

Let f* and q* be the optimal primal and dual value, respectively:

f*= inf f(x), (2)
xEX

gj(x)_<O,-- j =....r

q* = sup q(/), (3)
/Ž>0

where q: Rr F-, [-oc, +oo) is the dual function given by

q(t) = inf {f(x) + p'g(x)}. (4)

Throughout the paper, we assume the following:

Assumption 1: We have two vectors XF and xi from X such that:

(a) XF is feasible, i.e., 9(XF) < 0.

(b) xi is infeasible, i.e., gj(xI) > 0 for at least one j. Furthermore, its cost f(xi) is strictly

smaller than the cost f(xF) of XF.

We note that by weak duality, we have q* < f(XF). We will show that the value f(xi) can

be used to improve this upper bound. In particular, we prove the following result in Section 3:

Proposition 1: Under Assumption 1, there holds

q* - f(xzi) F
(5)

f(XF) f(XI) -F +-(5)

where

F = inf{y > 0 I 9(XI) < -yg(xF)}. (6)
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1. Introduction

If r = oc because there is no -y > 0 such that g(xi) < -- g(XF), the bound in Eq. (5)

reduces to the trivial bound q* < f(XF).

Note that we have r < oc if the Slater condition

gj(XF) < 0, V j = 1, ... , ', (7)

holds. More generally, we have r < oo if and only if the following weakened form of the Slater

condition holds:

gj(xI) < 0 for all j with gj(XF) = 0. (8)

If the above condition holds, we have

r = max g (XI) (9)
{j19j(gF)<O} -gj(xF)

Figure 1 illustrates the idea underlying the bound (5), (6). In the case of a single constraint

(r = 1) the bound reduces to

q* - f(xi) f - f(xZ) g(xI)
-:-j ( (10)

f(XF) - f(Z) -f(X) - f(XI) g(XI) - g(X'F)'

where f is the point of intersection of the vertical axis of 32 with the line segment connecting

the vectors (g(XF), f(xF)) and (g(xi), f(xi)). When there are multiple constraints, this line

segment can be projected on the 2-dimensional subspace spanned by the vertical axis (0, 1) of

3Rr+l and the vector (g(xi), 0). The inequality (10) can then be applied on this subspace in a

suitably modified form (see the proof in the next section).

Figure 1 also suggests the following slightly stronger version of our bound:

f - f(xi) F
f(XF) - f(xI) - + 1)

where

f = inf{w I (z,w) C Conv(A)}, (12)

the subset A of R2 is given by

A = {(z,w) I there exists x C X such that g(x) < z, f(z) < w},

and Conv(A) denotes its convex hull. Indeed, we prove this bound in Section 3, and we also

prove that

f <f*.

Furthermore, in the case where X is convex, and f and gj are convex over X, we have f f .

We state the corresponding bound as a proposition:
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A = {(z, vw I there is an x in Xsuch that g(x) < z, f(x) < w}

W
{(g(x),1x)) I xe x}

(g(XF),f(XF))

(O,f)

(g(xP, f(xl)) z

Figure 1: Geometrical interpretation of the bound (8) in the case where there

is only one constraint. We consider the convex hull of the subset A of R2 given

by

A {(z,w) I there exists x G X such that g(x) < z, f(x) < t}.

Let f be the point of intersection of the vertical axis of R2 with the line segment

connecting the vectors (g(xF), f(F)) and (g(xz), f(xi)). The vector (0, f) be-

longs to Conv(A). Also, by Euclidean geometry, we have

f - f(xi) g(xi)

f(xF) - f(xz) g(xI) - g(XF)'

and by the definition of q* we have

q* <I <f *,

where

f = inf{wU I (z,w) G Conv(A)}.

Combining these two relations, the bound (5), (6) follows.

Proposition 2: In addition to Assumption 1, assume that X is convex, and f and gj are

convex over X. Then, there holds

f* - f(xI) <
K_.~ < ~~~~~~(13)

f(XF) - f(XI) - F -+l

14141 1~--· 111"-··C)^-- 1_ _I_-CI~~1_--_ 4



2. Relations to Existing Bounds

2. RELATIONS TO EXISTING BOUNDS

There are several analytical and algorithmic contexts where both feasible and infeasible

solutions are known in optimization problems (e.g., in primal-dual algorithms), and in which our

bound may prove useful. As an illustration of one such context, let us derive an error bound for

the Euclidean distance of a point to a convex set specified by inequality constraints. A similar

error bound for this projection problem was derived by Mangasarian [Allan97] using different

methods, and was the inspiration for the present paper. In particular, let y E . n be a given

vector and consider the following projection problem

minimize IIY- xlI

subject to x EX, gyj(x) < 0, j ,...,

where II II denotes the standard Euclidean norm (IxII = , x). Let us assume that X is a

convex set and gj are convex functions. Furthermore, let us assume the following two conditions:

(a) y E X and gj(y) > 0 for at least one j.

(b) There exists a vector XF E X such that

gj(XF) < O0, v .. ,,

gj(y) < 0 for all j with gj(XF) = 0.

Then we can apply the error bound (13) with f(x) = Ily - x1l, f* equal to the distance d(y) of y

from the convex set X n O{x I gj(x) < 0, j = 1,...,}, xi = y, and f(xi) = 0, f (XF) = [Y -x FI

We have

d(y) < IIY1 -XFII, (14)

where F is given by Eq. (9). It is easily seen that r < I, where

maX{lg9j(XF)<0o gj(I) (15)

min{jlgj (F)<0 -gj (XF)'

and the inequality (14) yields

d(y) < liY - XF I , (16)

or equivalently

d(y) < max{jlgj(xF)<o} gj(I) (17)

max{jigj(xF)<0} gj (xi) + min{jgj (XF)<O} -gj(XF)



2. Relations to Existing Bounds

This bound coincides with the relative error bound derived by Mangasarian ([M/an97], Theorem

2.2) under the assumption that X = Rn and 9j(XF) < 0 for all j. Note, however, that using F

from Eq. (9) in place of f as in Eq. (16) yields a stronger bound.

For a generalization of the bound (14), let us consider replacing the distance IIY - xl] with

a more general metric. In particular, consider the problem

minimize f(x, y)

subject to x G X, gj(x) <0, j= ,...,,

where X is a convex set, gj is a convex function, and f(-, y) is a convex function satisfying

f(Y, y) = 0, f(XF, Y) > 0.

Then, if f* (y) is the optimal cost of this problem, the preceding analysis can be used to show

that [cf. Eq. (14)]

f*(Y) < r f ( XF, Y),

where r is given by

r = max g ()
jlIgj(XF)<O} -gj(XF)'

In Mangasarian's paper [Man97], the bound (17) was used to derive an extension to Hoff-

man's error bound for the approximate solution of convex systems of inequalities. Hoffman's

bound [Hof52] and its extensions have been the subject of intensive investigation recently (see

e.g., [BuT96], [K1L97], [LeP98], [Li97], [LuL94], [LuT92a], [LuT92b], [Man97], [PaL96], [Pan97],

which give many additional references). It is thus interesting to inquire about the relation of our

bound of Section 1 with Hoffman-like bounds. It turns out that the bound of Section 1 is funda-

mentally different. To see this, we note that Props. 1 and 2 do not explicitly require the existence

of a Lagrange multiplier for problem (1). By contrast, we will show shortly that Hoffman-like

bounds essentially amount to assertions on the uniform boundedness of the Lagrange multipliers

of some parametric convex program as the parameter vector ranges over some set. This con-

nection, which is based on the theory of exact penalty functions, has apparently not been made

explicit earlier and leads to slightly stronger versions of Hoffman's bound for convex systems

of inequalities than some of those available in the literature (e.g., Mangasarian's Hoffman-like

bound of [Man97]).

Indeed let Y be a subset of Rn, let y be a parameter vector taking values in Y, and consider

the parametric program

minimize f (x, y)
(18)

subject to x E X, gj(x,y) < 0 j 1,...,
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2. Relations to Existing Bounds

where X is a convex subset of Rn, and for each y E Y, f (, y) and gj (, y) are convex functions. ¥re

assume that for each y E Y, this program has at least one feasible solution, and that its optimal

value, denoted f*(y), is finite. Furthermore, we assume that when the constraints gj (x, y) < 0

are dualized, there is no duality gap; that is, the optimal value q*(y) of the dual problem

maximize q(/, y)

subject to a >Ž 0

is equal to f*(y), where q(t, y) is the dual function

q(y, y) = inf {f(x, y) + 'g(x, y)}.
xCX

Consider a penalty function p ·Rr ~- JR3 that is convex and satisfies

P(u) = 0, V u < 0,

P(u) > 0, if uj > 0 for some j = 1,...,r.

Let c > 0 denote a penalty parameter. It is shown in [Ber95] [Prop. 5.4.1(a)]I that we have

f*(y) = inf {f(x, y) + cP(g(x, y)) }, V y E X, (19)
xCX

if and only if

u/l*(y) < cP(u), V u C SR, V y c X,

for some dual optimal solution /*(y) [an optimal solution of the dual problem (14), which is also

referred to as a Lagrange multiplier].

It is seen that Eq. (19) is equivalent to the bound

f*(y) < f(x,y) + cP(g(, y)), V x C X, y G Y, (20)

so this bound holds if and only if there exists a uniform bounding constant c > 0 such that

U//'*(y) < CP(u), V U RI, y C Y. (21)

For the above relation to hold, it is essential that the penalty function P be nondifferentiable, such

as for example the Euclidean norm of the vector u+ that has components max{O, uj }, j = 1,..., r,

P(u) = Ilu+1l,

1 Note that Prop. 5.4.1(a) of [Ber95] includes a compactness assumption on the set X, but

this assumption is unnecessary as long as finiteness of the optimal value f*(y) is assumed; see

the discussion of p. 473 of [Ber95].
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or the corresponding 11 or loo norm

P(u) = 11u+111, P(u) = 1lu+ll1.

Given any of these choices, it is seen that Eq. (21), and the equivalent bound (20), hold if and

only if for every y C Y, it is possible to select a Lagrange multiplier /*(y) of the parametric

problem (18) such that the set {f*(y) I y E Y} is bounded.

Let us now specialize the preceding discussion to the parametric program

minimize f(x, y)= Iy - xll
(22)

subject to x c X, gj(x) < 0, j = 1,.. ,II,

where 1. ] is the Euclidean norm, X is a convex subset of Wn, and gj are convex functions. This

is the projection problem considered in the beginning of this section. Let us take Y = X. If c

satisfies Eq. (21), the bound (20) becomes

d(y) < IIY - xIl + cP(g(x)), V x E x, y C X,

and (by taking x = y) implies the bound

d(y) < cP(g(y)), V y c X. (23)

Thus, the Hoffman-like bound (23) holds if a Lagrange multiplier /* (y) of the projection problem

(22) can be found such that Eq. (21) holds. In the case where P is given by

P(u) = 11+11,

(or P is given by any one of a variety of other nondifferentiable functions of u) boundedness of

the set {f/*(y) I y E X} is equivalent to the condition (21), and implies the Hoffman-like bound

(23). It turns out that the reverse assertion also holds, as shown in the following proposition:

Proposition 3: Let d(y) be the optimal value of the projection problem

minimize Iy - xll
(24)

subject to x E X, gj(x) < 0, j 1,...

where X is a convex subset of Rn, and the functions gj are convex. The Hoffman-like bound

d(y) < cdl(g(y))+fl, V y c X, (25)

holds for some constant c if and only if the projection problem (24) has a Lagrange multiplier

f,*(y) such that the set {f*(y) I y C X} is bounded.

8



2. Relations to Existing Bounds

Proof: The preceding discussion showed that the boundedness condition on the Lagrange mul-

tipliers implies the Hoffman-like bound (25), so there remains to prove the reverse assertion.

Indeed, assume that Eq. (25) holds for some c, and to arrive at a contradiction, assume that

there exist x E X and y C Y such that

d(y) > IlY - xtl + c1l(9(x))+l.

Then, using Eq. (25), we obtain

d(y) > Ily - xl + d(x).

From this relation and the triangle inequality, it follows that

inf Ily - zll > Ily - xl + inf Ix - z1
zEX, g(z)<O zEX, g(z)<O

inf (lOy- xl + 11x - ll}
zEX, g(z)<O

> inf IY -zl,
zGX, g(z)<O

which is a contradiction. Thus Eq. (25) implies that we have

d(y) < IIY - xl + c|| (g(x))+l, x e , y C X.

Using Prop. 5.4.1(a) of [Ber95], this implies that there exists a Lagrange multiplier ft*(y) such

that

u'/,*(Y) < cllu+11, V U e r, y E X.

This in turn implies the boundedness of the set {p*(y) I y c X}. Q.E.D.

Let us give two conditions under which the boundedness condition of Prop. 3 is satisfied

and a Hoffman-like bound of the form (25) holds:

(a) X = Rn and gj are linear (this is the original Hoffman's bound [Hof52]). For a simple way

to prove this, let gj(x) = ajx - bj, where aj is a vector in Wn and bj is a scalar. Then,

because of the linearity of the constraints, the projection problem (24) has at least one

Lagrange multiplier b*(y) (see e.g. [Ber95], p. 437). This Lagrange multiplier satisfies

Vxf(y, y)= -Y -Jl E *j(y)aj,IY -QII S
jEJ(y)

where Q is the unique projection of y, and J(y) is a subset of indices such that the set of

vectors {aj I j c J(y)} is linearly independent. (WVe assume here that y = A, which is the

case of interest.) Since the vector ZjEJ(1U) j(y)aj has norm 1, it follows that ,/*(y) can be

selected so that the set {(*(y) I y c Rn) is bounded.

9



2. Relations to Existing Bounds

(b) For each y c X, a Slater condition holds; that is there exists a vector .T(y) c X such that

gj (T(y)) < 0 for all j -1,... ,r. Furthermore, there is a constant y such that

Iy-(y)-d(y) < , V y E X. (26)
minj=...,r {-gj(T(y))} -

Mangasarian [Man97] used these two conditions (together with the additional condition

X = Rn) to obtain a Hoffman-like bound of the form (25). For an alternative proof of this

result, note that the Slater condition implies (see e.g., [Ber95], p. 450 or [HiL93], p. 313)

that for each y E X there exists a Lagrange multiplier AL*(y) with

r 1y)< IY- T(y) II -d(y)
j= i mini=,....{-gj( T(y))}'

Thus, Eq. (26) implies the boundedness condition of Prop. 3.

10
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3. PROOF OF PROPOSITIONS 1 AND 2

We consider the subset of r+l1

A = {(z,w) there exists x E X such that g(x) < z, f(x) < wu},

and its convex hull Conv(A). The vectors (g(XF),f(XF)) and (g(xi),f(xi)) belong to A. In

addition, the vector (0, f), where

f = inf{w I (z,w) E Conv(A)),

is in the closure of Conv(A). Let us now show that q* < f, as indicated by Fig. 1.

Indeed, for each (z, w) c Conv(A), there exist J1 > 0 and 12 > 0 with $I + 2 = 1, and

xi C X, x2 c X such that

l1g(Xl) + g2g(x2) < z,,

&lf(Xl) + J2f(X2) < w.

Furthermore, by the definition of the dual function q, we have for all I/ E G r,

q(L) < f(xi) + y'g(xi),

q(pt) < f(x2) + /1'g(x2).

Combining the preceding four inequalities, we obtain

q(l) < w + l'z, V (z, w) E Conv(A), p > 0.

The above inequality holds also for all (z, w) that are in the closure of Conv(A), and in particular,

for (z,w) = (0, f). It follows that

q(/) <f, < V/ >_ 0,

from which, by taking the maximum over p_ > 0, we obtain q* < f.

Let /y be any nonnegative scalar such that g(xI) < --yg(xF), and consider the vector

A = -- /g(F) - g(XI).

Since A > 0, it follows that the vector

(-yg(xF), f(xi)) = (g(XI) + A, f(xi))

11



3. Proof of Propositions 1 and 2

also belongs to the set A. Thus the three vectors

(g(XF), f(XF)), (0, ), (-9(XF), f(XI))

belong to the closure of Conv(A), and form a triangle in the plane spanned by the "vertical"

vector (0, 1) and the "horizontal" vector (g(XF), 0).

Let (0, 1) be the intersection of the vertical axis with the line segment connecting the vectors

(g(xF), f(xF)) and (-yg(xF), f(xI)) (there is a point of intersection because y > 0). We have

by Euclidean triangle geometry (cf. Fig. 1)

f-f(xi) a (27)

f(XF) - f(XI) + 1

Since the vectors (g(xF), f(xF)) and (--yg(xF), f(xi)) both belong to Conv(A), we also have

(0, f) C Conv(A). Therefore, there exist vectors Xl,..., x, E X and nonnegative scalars

1,.. ,m with i/=l i = 1, satisfying

m m
,ig(xi) < °, if(xi) < z

i=l i=l1

Thus, if f < f, we must have im__ if(xi) < f, contradicting the definition of f. It follows that

f < f and since q* < f, as shown earlier, from Eq. (27) we obtain

q* - f(xzi) < f -f(x) < _/

f(XF) - f(xI) f(XF) - f(XI) -Y (28)

Taking the infimum over y > 0, the error bound (5), (6) follows.

Assume now that X is convex, and f and gj are convex over X. Then the set A is known to

be convex under these assumptions (see e.g., [Ber95], Prop. 5.3.1, p. 446), and we have f = f*.

Prop. 2 then follows from Eq. (28). Q.E.D.
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