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Abstract

A feedback interconnection of neutrally stable linear time-invariant
system and a nonlinearity with 0 < x¢(x) < kx2 is called critical since
the worst case linearization is at best neutrally stable. This makes the
stability analysis of such systems particularly hard. It will be shown that
an integrator and a sector bounded nonlinearity can be encapsulated in
a bounded operator that satisfies several useful integral quadratic con-
straints. This gives powerful tools for stability analysis of critically stable
systems.
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Figure 1: PI control with a deadzone actuator.

1 Introduction

Integral quadratic constraints (IQC) gives a unifying framework for problems in
modern robust control. Modern robust control works with bounded operators
and this allow us to consider L2 -gains and infinite dimensional state spaces.
For example, delay operators can easily be considered, which is not the case
when standard Lyapunov techniques are used to investigate assymptotic sta-
bility. However, the use of bounded operators implies loss of important cases
when one or several operators in the system are unbounded. For example, hys-
tersis phenomena such as backlash defines operators that are unbounded on
L2. Another important case is the integrator in a PI controler, which is not
L2-bounded.

An important step was taken in [7, 5], where it was shown that it sometimes
is possible to encapsulate an unbounded operator in an artificial feedback loop,
which defines a bounded operator. Stability analysis can then be performed in
the usual IQC framework, [6].

The purpose of this paper is to further expand the encapsulation technique
to treat a general class of systems with integrators, nonlinearities, and possibly
other perturbations.

Let us illustrate the idea with a simple example. The control system in
Figure 1 consists of a stable plant that is regulated by a PI controller with
transfer function

GPI(s) = k + k (1)

The actuator is assumed to be of deadzone type. The injected signal f can either
be viewed as a disturbance or a signal that generates the initial conditions of the
plant and the PI controller. Figure 2 shows the system in Figure 1 transformed
to the standard form for robust control. The transfer function G = -GpIP is
unbounded due to the integrator pole at the origin.

In order to apply the usual IQC framework for stability analysis we need
to somehow hide the unbounded part of G. A partial fraction expansion gives
G(s) = k(Go(s) - l/s), where k = -k 2P(O). We can now transform the system
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Figure 2: Transformation of the control system in Figure 1 into the standard
form for robustness analysis. Note that G(s) = -Gpr(s)P(s) is unbounded.

as in Figure 3 where Go is bounded, and

k(x-1), x > l,
cp(x) = 0, IxI <1,

k(x+ l), x < -1.

The important point is that we have encapsulated the integrator in an operator
defined by

w = (v) { , (O) = (2)
- W = (V - Z),

which is bounded if (and only if) k > 0, see the next section. Furthermore,
we will derive several useful IQCs for the operator A, that can be used for the
stability analysis. Note that the method is not restricted to stability analysis
of simple systems as in Figure 1. In fact, it is possible to consider systems
consisting of encapsulated integrators together with various uncertainties and a
nominal linear time invariant plant.

2 Preliminaries

We say that c E sector[O, k] if W(0) = 0 and if 0 _< ,(x)x < kx 2, for all x. The
stronger assumption cp E slope[O, k] means that cv(0) = 0 and that the slope is
restricted to the interval [0, k], i.e.,

0 < (P(Yl) - P(Y2) < k, Vyl / Y2.
Y1 - Y2

We will sometimes make the further assumption that cp is odd, i.e., T(-x) =

-W(x) .
We let LI [0, oo) denote the vector space of square integrable RI valued
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Figure 3: Encapsulation of the integrator.

functions. The inner product and norm on Lm[O0, oo) are defined as

(fi,g) = (t)Tg(t)dt,

1ifil = (f f)1/2

The bi-infinite space Lm (-o, o) is defined accordingly. The truncation opera-
tor PT is defined by PTf(t) = f(t) when t < T and PTf(t) = 0 when t > T. The
extended space L2e[0, co) consists of all functions satisfying PTf E L' [0, co) for
all T > 0.

An operator A : Lfe[0, oo) -+ L'e[0, oo) is causal if PTA = PTAPT for all
T > 0. A causal operator is bounded if there exists c > 0 such that IA(v)ll <
cllvii, for all v E Ll[0, co). The smallest such constant is called the gain of A.

IQC Theory

In this paper we denote time-invariant quadratic forms on Ll+m[0, co) by a. A
bounded and causal operator A : Le [0, c) -+ Lm[0, cc) is said to satisfy the
IQC defined by a (A E IQC(o)) if

a(v,A (v)) > 0, Vv E Ll[0, o).

We can usually let the quadratic form be defined in terms of a bounded and
self-adjoint operator II, i.e.,

aln( ,A(v)) = K([t v ' [(V)] ) -

for all v e L2 [0, co). We will not always write out II explicitly in this paper.
We consider systems consisting of several perturbations A 1 ,... ,AN inter-

connected through linear transfer functions. We assume that we have parametriza-
tions, Aji, of the pertubations that satisfy
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Figure 4: A system for IQC analysis.

(i) Ali = Ai,

(ii) A-i-i e[O ,O) -- Lei [0, o) is bounded and causal for w C [0, 1],2el2e

(iii) there exists y > 0 such that

iA,,-(V)_ - A2,(V)ll < •Y1r - 7-21 -fIvt,

for all v E L2[O0, oo) and 7r1,72 E [0, 1].

The parametrized system equation can be written'

Wi A= ai(Vi),
Vi G (3)

Vi= E N= Gijwj + fi,

where Gij E RHi Xmi, and fi E Le [0, 0o). Figure 4 gives a simple example.

Definition 1. Let vT = (vT,... , T ) and define w and g similarly. The sys-
tem in (3) is well-posed if it defines a causal map L [0, oo) 3 f (w, v) E
L+m[0, oo). Furthemore, the system is said to be L2 -stable if there exists a
positive constant c such that IIPTwlI + IIPTvll < cllPTfll for all T > 0, and
f E L/e [0, oo). We call c the gain of the system.

The main result of [6, 7] can be formulated as

Theorem 1. Assume that the system in (3) is stable when r = 0 and well posed
for r E [0, 1]. Under these conditions, if

1 Note that stability of the system in (3) also implies stability of

Wi = Ari(vi) + gi,

Vi = jN=I Gijwj + fi,

(see Definition 1 for a definition of stability). This follows since Gijgi E Le [0, co) whenever

gi i [0, oo) and Gij is bounded. We can thus include Gijgi in fi
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(i) for r E [0, 1, A i E IQC(oi),

(ii) there exists e > 0 such that

N N

O'i(Z Gijwj, wi) < -- Iwl112 , Vw E L2m[0, o),
i=1 j=1

then the system (3) is L2 -stable for all r E [0, 1].

Remark 1. The second condition can be formulated as a frequency domain con-
dition. Assume ri = onri, where Hi E RL(+mi)X(li+mi) and let

Gi = [Gil,... ,GiN] ,

Ei = [0°mix m-lm, m Im mixnGmNk]

Then (ii) in Theorem 1 can be formulated as

E [G(Jw)] iH(jw)[Gi( w)E <0, Vw C [0, oo].

3 IQCs for the Encapsulation

We will in this section derive several useful IQCs for the encapsulation, A.,
defined in (2). However, we first prove the boundedness of A,.

Lemma 1. Let p E sector[O, k], where k > O. Then A, is bounded on L 2[0, oo)
with gain not greater than k.

Remark 2. The proof of the lemma also shows that Iz(T)l •< v/IIPTvII for all
T > 0.

Remark 3. It follows from (4) in the proof that Ap satisfies the IQC defined by

Ocirc(V, W) = (V, W) - !11wll2

when k > 0. This IQC corresponds to a circle criterion.

Proof. Multiplying the differential equation in (2) by i gives the inequality

92 = Z9(V - Z) < kz(v - z)

Integration gives

j i2/dt < k oT vdt + k (Z(0)2 _ Z(T)2 )

< k j vdt (4)

<k~T j i2 dt v 2dt,
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since z(O) = 0. We get Ilwll = IilI < kilvll, as T -4 oo. This proves the
lemma. [1

If we can assume that the input v to the encapsulated operator is differ-
entiable, then it is possible to derive Popov IQCs for A,. The Popov IQCs
corresponds to unbounded quadratic forms on L2 (since differentiability of the
input v is required). However, the standard IQC theory can easily be extended
to treat this case, see [6, 3].

Lemma 2. Assume that W E sector[O, k] is continuous. Then Al satisfies the
IQC defined by

apop(v, w) = A (w, i - w),

where A > O. If cp E slope[O, k] then we can take A E R.

Proof. See the appendix. []

Remark 4. We obtain a useful IQC by combining the sector IQC in Remark 3
with the Popov IQC above. We get an = acirc + apop, where

(jw) 1-j wA±
( jw) = + jwX -k2 2A

The next theorem, which is the main result of this paper, provides a set
of IQCs for A, that corresponds to Zames and Falbs IQC for slope restricted
nonlinearities, [9].

Theorem 2. Let so E slope[O, k]. Then A, satisfies the IQC defined by

UzF(v,w) = w, (I - H)(v - w)) + (w,Fw),

where

F H(s) - H(O)

and where H(s) = fOO h(t)e-*tdt for some h: R -X R with

(i) h(t) > 0 for all t C R,

(ii) Ilh[ll = fAl Ih(t)Idt < 1.

Furthermore, if s is odd then we only need to impose the second constraint (ii).

Proof. See the appendix. [1

Remark 5. Note that CzF = an, where

0 I - H(jw)*
lI(jw) = 1 - H(jw) - -Re(1 -H(j )-kF(jw))]

This is a bounded operator since the singularity of F(s) is removable.
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4 Parametrization of A,

An important issue in the application of Theorem 1 is to find a suitable parametriza-
tion of AI,. The parametrization A,, = rA can be used when p E sector[0, k],
i.e., when the IQC from Remark 4 is used with A > 0. This does not work
if we want to use the full power of the IQCs in Lemma 2 and Theorem 2 for
the case when cp E slope[O, k]. The reson is that the lower right corner of the
corresponding II may not be negative semidefinite and we have to impose the
additional assumptions A > 0 and

1 - Re(H(jw) + kF(jw)) > 0, Vw

in order to satisfy condition (i) in Theorem 1. Indeed, this additional constraint
on the IQCs would make the analysis more conservative.

The next theorem gives an alternative parametrization such that we avoid
these additional constraints on the IQCs.

Lemma 3. Assume that po E slope[O, k], where k > O. The parametrized opera-
tor defined by

w = A,(v) { =w, z(0) = 0 (5)
w = r(V - z)

satisfies the following properties:

(i) A0BO = 0 and Al, = a,,

(ii) A,, L2 e[0, 00) - L2e[0, 00) is bounded and causal for r E [0, 1],

(iii) AT, E IQC(cZF), for 7 E [0, 1],

(iv) A,, E IQC(apop), for r E [0, 1], A E R,

(v) there exists y > 0 such that

IlA-,1 (v) - A/r2 (v)ll < 7'r1x - T21 IlvII (6)

for all v E 21[0, oo) and r, T2 E [0, 1].

Proof. See the appendix. D

Remark 6. An interesting detail of the proof is that it is obtained by using a non-
quadratic Lyapunov function. It appears that quadratic Lyapunov functions fail
to prove the statement.

5 Applications

Let us consider the introductory example again, see Figure 1.

Proposition 1. Let G(s) = -Gpi(s)P(s), where P is assumed to be proper and
stable and the PI controller is defined in (1). We assume that f E L2[0, oc). If
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(i) lim,,o sG(s) < 0

(ii) there exists E > 0 such that

Re(1 - H(jw))(G(jw) + 1) < -e, Vw $ 0

for some h: R -4 R with lihllx < 1,

then the system in Figure 1 is stable in the sense that the state vector, x, cor-
responding to the plant P, and the integrator state2 , xI, satisfy

a. x, x E L [O , °°),

b. ii E L2[0, oo) and

j D 2 (xi, [-1,1])dt < oo,

where D(., [-1, 1]) is the minimum distance function.

Remark 7. The stability conclusion implies that x(t) -+ 0 and xI(t) -+ [-1, 1]
as t -+ oo.

Remark 8. Note that the injected signal f can be used to generate any initial
condition for a state space representation of G = -GpIP. Indeed, consider any
controllable state space realization G(s) = C(sI- A)-1B, where A has a simple
eigenvalue at the origin and all other eigenvalues are strictly in the left half
plane. The corresponding state space representation of the system in Figure 1
becomes

i = Az + Bu, z(0) = 0,

u = ((Cz + f),

where y represents the deadzone nonlinearity. Then

f(t) = { -Cz(t) + sign(u(t)) + u(t), t E [0, to]
0, t > to

where

u(t) = BTeAT (to-t)W(to)-1z,

W(to) A eA(t°-t)BBTeAT(t°-t)dt,

can be used to generate the inital condition z(to) = zo, for any to > 0. This
follows from standard controllability arguments, see for example [1].

2 We assume that the integrator is implemented as I(t) = fd k2 eds, where I denotes the
integral part of the controller output.
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Proof of Proposition 1. We transform the system as in Figure 3. We have
Go(s) = -G(s) + 1 and the encapsulation A,, satisfies the IQC in Lemma 2.
Let us apply Theorem 1 with the parametrization A,, in (5). It follows from
Lemma 3 that we only need to verify condition (ii) in Theorem 1. We have

k Go (jw)] * (j[Go (jw)] =Re(kGo(jw) - 1)(1 -H(jw))

- Re (1 - H(jw))
3w

=Re(G(jw) - 1)(1 - H(jw)) < -e,

for all w 4 0. We can thus conclude that the system is L2 stable. The states
corresponding to the plant P are included in Go and stability conclusion a
follows. For stability conclusion b we notice that the state, z, in A, corresponds
to the integrator state xz. Stability of the system in Figure 3 implies that so(v-z)
is in L2[0, oo). Hence, fJo D 2(v-z, [-1, 1])dt < oo. The conclusion follows since

J D 2 (z, [-1, 1])dt < 2 D 2 (v - z, [-1, 1])dt + 2llvll2 < oo.

The encapsulation technique is also useful in the analysis of more complex
systems. We illustrate with a slight extension of the introductory example.

Example Consider the system with a PI controler and a deadzone actua-
tor in Figure 1 for the case when there is an uncertain time delay in the system.
We assume that

P(s) = Po(s)e-ST, T [O, To],

Gpi(S) = K 1 + K 2 /s,

where Po (s) is stable and proper. We are interested in finding a bound on the
maximal time delay To such that stability for the closed loop system is ensured.

Straightforward manipulations give

-GPP = -GPIPo(1 + e- S T - 1) = K(G 2 2 - 1/s) + G21ATG12 (7)

where

1 1
K = -K2 Po(0), G2 2 = GPIPO + -

K s
K1s + K 2G21 - K + a)K2 G 1 2 = (s + a)Po

e
-

sT - 1
At(S) = , a > 0,
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where we note that AT E Ha, i.e., it is a bounded operator. We encapsulate the
integrator in (7) with the deadzone nonlinearity exactly as in the introductory
example. The resulting system can be represented as in Figure 4 with A1 = AT,

A2 = Av, fl = 0, and f2 = f. We need to find suitable IQCs for Al and A2 in
order to apply Theorem 1. By Lemma 2 we have A2 E IQC(1 2 ), where 112 is
the matrix in Remark 5. An IQC for AT can be obtained by using an idea in
[6]. Let

e- = max - 1 2 4sin2 (wTo/2)/w 2 , Jwj < r/To
(W)= TE[OTo] jw 4/W 2, IW > r/To

Then we have A1 = AT E IQC(II111 ), where

HILj w) = X(jW) [To (W) 0-1]

and where x(jw) = x(jw) > O. For numerical computations we often want II1
and 112 to be rational. We can use

TTW=2 1 + 0.08(wTo)2

T°(W) = T° 2 1 + 0.13(wTo)2 + 0.02(wTo)4 (8)

as an rational upper bound of TTo. It follows from Remark 1 after Theorem 1
that the system is stable if

0 G12]* [0 G12] + [G2 G22'*11 [G G22] <0, (9)

for all w C [0, oo].
Let us consider the case when K 1 = 3, K2 = 0.3, and

Po(s)= s2+s+1P 2 + S +

With a = 1 we get

s + 1 10s + 1 s - 9
G12(s) = s2 +s+1' G21(S)= +1, and G22(s) = 2+ +1.

The stability criterion in (9) is satisfied when To = 0.22, X = 20, and H(s) =
1/(s + 1), i.e.,

I1l (jw) = 20 [202(g)O -1]

H2(jw) = jw 21w2/3 1.
jiW + 1 W2 + 1

Figure 5 shows the Nyquist curves for the open loop system GpIPoe -S T ° =
(3s + 0.3)/(s3 + s2 + s)e -S To, when To is 0, 0.10, and 0.22. It can be shown that
the maximum allowable time delay in the linear case is To = 0.35. We see that
even very simple multipliers give a reasonable bound on To.
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Figure 5: Nyquist plots of the open loop system GpIPoe- sTO = (3s + 0.3)/(s 3 +
s2 + s)e-S To, when To is 0,0.10, and 0.22.

6 Conclusions

We have obtained useful tools for stability analysis of critically stable systems.
Our results are more general and less conservative than previous approaches
based on state space techniques, see e.g., [8, 4].
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Appendix

Proof of Lemma 2: Let y = v - z. We have y E L2[0, oc) since ) E L2[0, (o) by
assumption. We will for simplicity assume that v(0) = 0. This can be achieved
by transforming the system as in Corollary 4 in [6]. The case when v(0) $ 0
can be treated along the lines of [3].

It follows from the boundedness of /A that p(y) E L2[0, 0), so by the
assumed continuity of cp, we have limt,- c(y(t)) = 0. Let

@(y) = j Wo(s)ds
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It is clear that @(y) > 0. Hence, if A > 0 we have

A V(y))Udt = AT(y(oo)) > 0

since y(O) = 0. Hence, with y = v - z, w = = 9=(y), we get

pop ( v, w) = A (w, - W) > 0,

which proves the claim. If 9p E slope[O, k] then limt-,, o(y(t)) = 0 and the IQC
also holds when A < 0.

Proof of Theorem 2: The next lemma is a key ingredient in the proof. We
will assume that L2 [0, 00) C L2 (- o, 00) is defined such that f E L2[0, c0) has
f(t) = 0 when t < 0. Similarly, any f E L2e[0, 00) is extended to be defined on
R with f(t) = when t < 0.

Lemma 4. Assume that x, y E L2e[0, 00) are a monotonic pair in the the sense
that for any t 1, t2 E R, we have the implication x(t1) < x(t 2) := y(t1) < y(t2 ),
then

T 

-J00 x (t)y(t)dt > x(t --)y(t)dt,

for all T > 0 and for all r C R.

Proof. This follows from Hardy, Littlewood, and Polya's rearrangement inequal-
ity, [2]. -

Consider the equations that defines A4:

I =w, z(0) =0,{ w = ;V(v -z),

If v E L2[0, oo), then it follws from Lemmma I that also w E L2[0, oo). Let
y = v - z. It follows from the slope condition of Vo that w and y - }w satisfy
the monotonicity condition in Lemma 4 and thus

w(t)(y(t) - w(t))dt > w(t- )((t)- (t))dt,
00

for all T > O and all r E R.
We can get an additional inequality if Vc is odd. For fixed, T, let 0 be defined

such that 0(t)O(t - -) = -1 and 0(t)2 = 1, Vt. Then if y = 0(t)y(t), we have
sign(y(t)y(t- -)) = -sign(y(t)y(t - T)), Vt. Using that w(t) = Vo(y(t)) =
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O(t)o((y(t)) gives

f w(t)(y(t) - w (t))dt j (t)(t(t) ( - (t))

rT 

> w(t- )(E(t)- kw(t))dt

= - j w(t - T)(y(t) - w(t))dt.

Using these inequalities with y =v - z gives

j w(t)(v(t) - lw(t))dt > ± J w(t- r)(v(t) - w(t))dt

rT

+ z(t)(t)(w(t) : w(t- r))dt, (10)

where the inequality with the "upper signs" is valid for all pO E slope[O, k] and
the other inequality holds if ,o in addition is odd.

The last term in (10) causes some worries since it contains z(t), which may
not be in L2 [0, oo). However, we will next see that a partial integration of the
last term gives benign terms.

Let u(t) = fto[w(s) - w(s - r)]ds = Fw, where

F() 1 - e- srF(s) =

is a bounded operator on L2 (-oo, oo). This means that u E L2 (-oo, oo) and
since also it E L2 (-oo, oo) we have u(t) -+ 0 as t -* oo. Partial integration gives

T T

J zitdt = z(T)u(T)- z(-oo)u(-oo) - J udt.

If we use that

1. u(T) -+ O, as T -4 oo, and z(T) is bounded,

2. z(t) = 0 for t < 0 and u(t) = 0 for t < r,

then the above inequality becomes

J zidt =- wudt,

as T -4 oo.

Similarly,

zf (t)[w(t) + w(t- r)]dt = 2 zdt - zidt > wudt.
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Using this in (10) gives

ro0 1
J (w(t) t w(t - r))(v (t) - w(t))dt J w(t)u(t)dt > 0, (11)

oo-co

for all r E R.
Let us first consider the general case when 9V is not necessarily odd. Mul-

tiplying the inequality in (10) with "upper signs" with h(-T) and integrating
with respect to r gives

0 J J h(-T)w(t)(v(t) - w(t))dtdr -F-- oo roO 

J J f0 h(-r)(w(t - r)(v(t) - w(t))dtdT +
J -J 00 

/ J. f0 h(--r)w(t)u(t)dtdr

((jhjlj - H*)w,v--w + (F*w, w)

< W,(I-H)(v- w)) + (w,Fw),

where the last inequality follows from the observation in Remark 3 and since

11hllL < 1.
Finally, for the case when V is odd we multiply the inequalities in (11)

with lh(-r)1. The terms with arbitrary sign for given r can be multiplied
by h(-r) = jh(-r)lsign(h(-r)). Integration with respect to r gives (where
y = v - w)

0 < J J Ih( -r)lw(t)y(t)dtdwr -

J J Ih(-r)lsign(h(-r))(w(t- r)y(t)dtdr +
J - j X O0

-oO -00

/ Ih (- r ) Is ig n (h (- r ) ) w ( t) u ( t ) ]d t d r

< (KhII-H*)w, v-W) + (F*w, w)

< w, (I-H)(v-k w) + (w,Fw).

Proof of Theorem 3: It is clear that A0o = 0 and Al, = A,. Causality
of A,, is obvious and boundedness follows since rgo E sector[O, rk], which by
Lemma 1 implies that IATI11 I< rTk. Condition (iii) and (iv) follows from the
same argument.

The proof of condition (v) relies on the following lemma.
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Lemma 5. Consider

y(t) = -k(t)y(t) + f(t), y(O) = f(O) = 0,

where k(t) C [0, 1]. Then there exists c > 0 such that

Iky2 dt < c XIf fdt. (12)

Proof. We will construct a continuous function V(t) satisfying V(t) > 0, Vt > 0,
V(O) = 0, and

dtdV <Vt>lf0l-C2lkyl2 v Et>0, (13)

for some positive constants cl and c2. Integration of (13) gives

c2 Ikyl 2 I d<t + V(O) - V(t) < c X If fldt,

since V(O) = 0 and V(t) > 0, which proves the lemma.
It remains to construct V(t) with the stated properties. Let us partion the

(y, f) plane into the regions

R1 = {(y,f):y>O0, f < y/4}U{(y,f):y <0, f > y/4},

R 2 = {(y, f): y > 0, f > y/4}U {(y, f): y < 0, f < y/4},

see Figure 6. Then define

= f (y(t) - f(t)) 2/2, (y(t), f(t)) E R1

V(t) (0.5y(t) + f(t))2 /2, (y(t), f(t)) E R2 (14)

It is clear that V(t) is continuous, V(t) > 0, and finally that V(O) = 0, since it
assumed that y(O) = f(0) = 0. It remains to prove (13). In region R1 we need

Vi = -(y - f)ky < cIlffl - c2 kyl 2

for all (y, f) E R1 and 0 < k < 1. We assume c2 > 0, so it follows by convexity
that we only need to verify the inequality for k = 0 and k = 1. The case k = 0
is trivial and for k = 1 we get the constraint (C2 - 1)y 2 + fy < cliffI. This
constraint holds if c2 < 3/4 since fy < y2 /4 in R1.

In region R2 we need

1V = (0.5y + f)(-0.5ky + 1.5f) < cllffl -c 2lkyl 2 (15)

for all (y, f) E R 2 and 0 < k < 1. Convexity in k implies, that we only need to
verify the cases k = 0 and k = 1.

Consider the case k = 0. The left hand side of (15) can be bounded above
by 1.5 (0.51yl + IfI)lfl < 4-51ffl, since Iyl < 41fl in R2. Hence, if cl > 4.5, then
(15) holds for the case k = 0.
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R1

Figure 6: Regions for defining V(t).

For the case k = 1 we have

-1(0.5y + f)y + 3(0.5y + f)± - clIffl < -C2ly12
2 2

<0 if c1>4.5

This inquality holds if c2 > 3/8 and cl > 4.5, since fy > y 2 /4 in R 2.
We have thus proved that V in (14) satisfies the inequality in (13) if cl > 4.5

and 3/8 < c2 < 3/4. []

We will now prove (v). Let

,1 = -1(P(1 - Z 1 ), Z1 (0 ) = 0,

z2 = 7r2 (v - z2), z2 (0) = 0,

and consider the difference 6 = z - z2. We need to prove that 1161 -YI7'1 - T21 -

IvIil, for some y > 0. We have

= (P(V - Z1 ) - (P(V - Z2)) + (T1 - T2)W(V - z 2)

= -k(t)(t) + 1 '2 2, (16)

where k(t) E [0, T1k]. The first term in the last equality follows from the slope
condition, p E slope[O,k]. The case when T1 = 0 is trivial since then 11611 <
72 k[]- ||vii. It is thus no restriction to assume that 0 < 7T < 72 < 1.

If we change time scale so that t -4 s = Trkt, and define

y(s) = 6(t), f(s) = 7 - T2 z2(t), k(s) = k- (t),
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then (16) becomes d= k(s)y(s) + d>, where k(s) E [0, 1], and y(O) = f(0) = 0.
An application of Lemma 5 shows that there exists c > 0 such that (12) holds
in the new time scale. Transformation back to the original time scale gives

T 1k6122dt < c (72 ) z2r2 dt

for all T > 0. The only essential remaining step of the proof is to show that
the integral on the right hand side can be bounded by llv112. To do this we first
observe that

22 = 2p(v - z2)a 2 < r2 k(v- Z2)-2,

and thus,

Z2Z2 < Vi2 - z- 2 < -2 2. (17)
T2 k -4

We define the positive and negative parts of Z2i 2 as

22 Z22(t), ±z2Z 2(t) > 0,
, { Z2±i2(t) < o

From (17) we get (z2 i2)+ < T2 kV2, which implies that (z2z 2 )+ is integrable with

f 0oo(z 2 2 )+dt < -IkV112. The relation

j(Z2T22)+dt- (z2z:2)-dt = z2z2dt= l(z 2 (T)2 - z2 (0) 2 ) > 0,

shows that also .foo(Z2z 2 )-dt < r-~k]vl[2, and thus fo Iz2z 2 ldt < kllvII 2 .
Hence,

11611 = II -k + tl-T2 2

< ( -2 +I + -1) kit - T21 ' |Vi < •ylri - T21* ' IVI,

where y = (c1/2 /2 + 1)k. This concludes the proof.
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