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Abstract

For the classical gradient method Xt+l = xt - -ytVf(xt) and several deterministic and

stochastic variants, we discuss the issue of convergence of the gradient sequence Vf(xt) and the

attendant issue of stationarity of limit points of xt. W;"e assume that Vf is Lipschitz continuous,

and that the stepsize at diminishes to 0 and satisfies standard stochastic approximation condi-

tions. We show that either f(xt) - -oo or else f(xt) converges to a finite value and Vf(.t) -- 0

(with probability 1 in the stochastic case). Existing results assume various boundedness con-

ditions such as boundedness from below of f, or boundedness of Vf(xt), or boundedness of

Xt.
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1. Introduction

1. INTRODUCTION

We consider the problem
minimize f(x)

(1.1)
subject to x E Rn,

where Rn denotes the n-dimensional Euclidean space and f: RI'n - is a continuously differen-

tiable scalar function on Rn, such that for some constant L we have

11Vf(x) - Vf(Z)<II < LJlx -ill, V x, x G W. (1.2)

We focus on the gradient method

Xt+ = Xt - ytVf (Xt), (1.3)

where the positive stepsize -yt satisfies

00

7Y -4 0, E rt, = Do. (1.4)
t=O

The purpose of the paper is to sharpen the existing convergence theory for this classical and

important method, and some of its variations involving deterministic and stochastic errors.

Our main result for the method (1.3) is that either f(xt) -* -oo or else f(xt) converges to

a finite value and limt-o, Vf(xt) = 0. Furthermore, every limit point of .t is a stationary point

of f. For the case where the stepsize 7yt is chosen by several other rules, such as the minimization

and limited minimization rules, or the Armijo and Goldstein rules, these gradient convergence

results are known and are relatively easy to show. However, when the stepsize is diminishing,

as per Eq. (1.4), our results are stronger than those existing in the literature. This is true even

for the deterministic method (1.3), but is particularly so for the case of gradient methods with

errors, for which the use of a diminishing stepsize is essential for convergence.

The gradient method variants that we consider involve deterministic and stochastic errors,

and scaling of the gradient direction. Such methods include among others, the standard incre-

mental gradient/backpropagation method for neural network training, the convergence of which

has been the object of much recent analysis [Luo91], [Gai94], [Gri94], [LuT94], [I/IaS94], [Man93],

[Ber95a] (see the authors' [BeT96] for a discussion of incremental gradient methods and their ap-

plication to neural network training). They also include the classical Robbins-AiIonro/stochastic

gradient method. In particular, we consider the method

Xt+I = Xt + yt(st + Wt), (1.5)
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1. Introduction

where st is a descent direction satisfying for some positive scalars cl and c2, and all t,

cilHvf(xt)fl2 < -Vf(xt)'st, IISll <_ C21IVf(Xt)]l, (1.6)

and wt is an error vector satisfying for some positive scalars p and q, and all t,

Ilt 1 < yt (q + pIIVf(xt) 11). (1.7)

The relation (1.6) is a standard condition in gradient methods, which guarantees that the angle

between Vf(xt) and st is bounded away from 90 degrees, and also provides a bound to IIstll that

is proportional to IlVf(xt)ll. The relation (1.7) bounds the error wt proportionally to the stepsize

and IV f(xt) l.

We also consider stochastic variants where wt are random errors, and the pseudogradient

condition of Poljak and Tsypkin [PoT73] is satisfied; see Section 5 for a precise statement of our

assumptions. Basically, the entire spectrum of unconstrained gradient methods is considered,

with the only restriction being the diminishing stepsize condition (1.4) (which is essential for

convergence in the case of gradient methods with errors) and the attendant Lipschitz condition

(1.2) [which is necessary for showing any kind of convergence result under the stepsize condition

(1.4)].

To place our analysis in perspective, we review the related results of the literature for

gradient-like methods with a diminishing stepsize and in the absence of convexity. Our results

relate to two types of analyses that can be found in the literature:

(1) Results that are based on some type of deterministic or stochastic descent argument, such

as the use of a Lyapounov function or a supermartingale convergence theorem. All of the

results of this type known to us assume that f is bounded below, and in some cases require a

boundedness assumption on the sequence {(t) or show only that lim infto, l Vf(xt)lI = 0.

By contrast, we show that limt-, IIVf(xt)ll -- 0 and we also deal with the case where f is

unbounded below, and {xt} is unbounded. In fact, a principal aim of our work has been to

avoid any type of boundedness assumption. For example, the classical analysis of Poljak and

Tsypkin [PoT73], under essentially the same conditions as ours, shows that if f is bounded

below, then f(xt) converges and liminft-,, 1Vf(xt)II = 0 (see Poljak [Pol87], p. 51). The

analysis of Gaivoronski [Gai94], for stochastic gradient and incremental gradient methods,

under similar conditions to ours shows that limto,, IlVf(xt)ll = 0, but also assumes that

f(x) is bounded below and that IlVf(x)Hl is bounded over R"I. The analysis of Luo and

Tseng [LuT94] for the incremental gradient method shows that limtMOO [IVf(xt)ll = 0, but

also assumes that f(x) is bounded below, and makes some additional assumptions on the
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2. Gradient Methods Without Errors

stepsize yt. The analyses by Grippo [Gri94], and by Mangasarian and Solodov [MaS94] for

the incremental gradient method (with and without a momentum term), make assumptions

that are different from ours and include boundedness of the generated sequence xt.

(2) Results based on the so-called ODE analysis ([Lju77], [KuC78], [BMP90], [KuY97]) that

relate the evolution of the algorithm to the trajectories of a differential equation dx/dt =

h(x). For example, if we are dealing with the stochastic steepest descent method xt+l =

Xt -yt (Vf(xt) +wt), the corresponding ODE is dx/dt = -Vf(x). This framework typically

involves an explicit or implicit assumption that the average direction of update h(x) is a

well-defined function of the current iterate x. It cannot be applied, for example, to a

gradient method with diagonal scaling, where the scaling may depend in a complicated

way on the past history of the algorithm, unless one works with differential inclusions -

rather than differential equations - for which not many results are available. For another

example, an asynchronous gradient iteration that updates a single component at a time

(selected by some arbitrary or hard to model mechanism) does not lead to a well-defined

average direction of update h(x), unless one makes some very special assumptions, e.g., the

stepsize assumptions of Borkar [Bor95]. In addition to the above described difficulty, the

ODE approach relies on the assumption that the sequence of iterates xt. is bounded or

recurrent, something that must be independently verified. Let us also mention the more

recent results by Delyon [Del96], which have some similarities with ours: they are proved

using a potential function argument and can establish the convergence of Vf(xt) to zero.

Similar to the ODE approach, these results assume a well-defined average update direction

h(x) and are based on boundedness or recurrence assumptions.

The paper is organized as follows. In the next section, we focus on the scaled gradient

method xt+l = xt + ytst, which involves an error-free direction st that satisfies condition (1.6).

The techniques used for this case are extended in Section 3 to the case where there is a nonrandom

error wt satisfying the condition (1.7). These results are then applied in Section 4 to the case of

incremental gradient methods for minimizing the sum of a large number of functions. Finally, in

Section 5, we focus on stochastic gradient methods.

2. GRADIENT METHODS WITHOUT ERRORS

Throughout the paper, we focus on the unconstrained minimization of a continuously differen-
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2. Gradient Methods Without Errors

tiable function f : Rn F- R, satisfying for some constant L

1Vf(x) - Vf(T) II < Lllx- -ll, V x, E ,n. (2.1)

The proof of the following proposition follows standard arguments to show the known result

lim inft-, IIVf(xt)ll = 0. The strengthened result, limt ,o Vf (t) = 0, is then shown by argu-

ing that if ]IVf(xt)ll exceeds some positive level e > 0 infinitely often, the corresponding cost

improvement must be infinite. This line of argument, appropriately modified, is also used in the

case of errors in Sections 3 and 5.

Proposition 1: Let xt be a sequence generated by a gradient method

Xt+l = Xt + 7'tSt,

where st satisfies

clllVf(xt)12 < -Vf(xt)st, Iistll < c2IIVf(xt)ll, (2.2)

for some positive scalars cl and c2, and all t. Assume that the stepsize %t is positive and satisfies
00

7t -- 0, t = 00.
t=O

Then either f(xt) -+ -oo or else f(xt) converges to a finite value and limt-- Vf(xt) = 0.

Furthermore, every limit point of xt is a stationary point of f.

Proof: Fix two vectors x and z, let J be a scalar parameter, and let g(l) = f (x + z). The

chain rule yields (dg/dl)(J) = z'Vf(x + Jz). We have

f(X + Z) - f(X) = g(l) - g(O)

= dg () 

-0~ z10 7fm -~~~~IzI~(2.3)

= z 'Vf (x) + Iz' 7f(x + z) - f(x)

< zVf(x) + II ll jljzl +d

= z'Vf(x) + Lllzll2 .

Applying this relation with z = ytst and using also Eq. (2.2), we have

f(xt+l) < f(xt) + ytVf(xt)'st + 2 -llst l2

< f(Xt) - t (C1 - 2tc ) 1Vf(xt)l[2 .
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2. Gradient Methods Without Errors

Since t -O 0, we have for some positive constant c and all t greater than some index t,

f(Xt+l) < f(xt) - %tcllVf(xt)112. (2.4)

From this relation, we see that for t > t, f(xt) is monotonically nonincreasing, so either f(xt) -

-oo or f(xt) converges to a finite value. If the former case holds we are done, so assume the

latter case. By adding Eq. (2.4) over all t > t, we obtain

o00

c y7tIIVf(xt)l2 < f(xT) - lim f(xt) < O.
t-+OO

t=t

We see that there cannot exist an e > 0 such that 1lVf(xt)l12 > e for all t greater than

some t, since this would contradict the assumption t=o Yt = 00. Therefore, we must have

lim inft-, [IVf(xt)Hl = 0.

To show that limt-o, Vf(xt) = O, assume the contrary; that is, limsuptOO IIVf(.xt)l > 0.

Then there exists an e > O such that IIVf(xt)ll < 6/2 for infinitely many t and also llVf(xt)ll > e

for infinitely many t. Therefore, there is an infinite subset of integers T such that for each t c 7',

there exists an integer i(t) > t such that

llVf(xt)ll < e/2, HlVf(xt(m))ll > e,

e/2 _< lVf(xi)ll < e, if t < i < i(t).

Since

IlVf(xt+l)Hl - IlVf(xt)ll < IlVf(xt+i) Vf(t)ll

< Lllxt+i - xtII

= a'tLlst ll

< ytLc2lIVf(xt)ll,

it follows that for all t e 7 that are sufficiently large so that ytLc2 < 1, we have

e/4 < IVf(xt)ll;

otherwise, the condition 6/2 < [lVf(xt+l)ll would be violated. Without loss of generality, we

assume that the above relations hold for all t E 7.

We have for all t E T, using the condition IIstll < c2llVf(xt)ll and the Lipschitz condition
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2. Gradient Methods Without Errors

(2.1),

2•< IVf(xim))11- |IVf(xt)11

< IlVfi(tx)) - Vf (xt)11

< Ixi(t) - xtlI
i(t)-1

< L E '1ill (2.5)
i=t

i(t)-l

< Lc2 yE ilIVf(xi)[I
i=t

i(t)-l

< Lc2e E P7i,
i=t

and finally
i(t)--1

-- 2Lc< E (2.6)2Lc2
i=t

Using Eq. (2.4) for sufficiently large t e 'T, and the relation |IVf(xi)ll > c/4 for i t ,t +

1,...,i(t) - 1, we have

f ( im) < f(xt)E t C T. (2.7)
2=t

Since f(xt) converges to a finite value, the preceding relation implies that

i(t)--i

lirm i = 0, (2.8)
t--oo, tCT

i=t

contradicting Eq. (2.6). Thus, limt-, Vf(xt) = 0. Finally, if T is a limit point of xt, then

f(xt) converges to the finite value f(Y). Thus we have Vf(xt) -4 0, implying that Vf(*) = 0.

Q.E.D.

Part of Prop. 1 can be proved if we replace the assumption Ilst II < c21lVf(xt)ll [cf. Eq. (2.2)]

with the weaker assumption

llstll < c2(1 + IIVf(Xt)fl), (2.9)

which allows st to be bounded, but not necessarily in proportion to I[Vf(xt)ll. Under this weaker

assumption, the proof of Prop. 1 can be modified to show that either f(xt) -0 -co or else

lim inft-, IlVf (xt) ll = 0, but in the latter case the convergence of V7f(xt) to 0 and of f(xt) to

a finite value is unclear. To see this, note that under condition (2.9), the relation (2.4) can take

the form

f(xt+l) < f(xt) - 'tyiIVf(xt)l 2 + ~t22, V t > A, (2.10)



3. Deterministic Gradient IM~ethods With Errors

where J1 and ~2 are some positive scalars. From this relation, we see that if there exists an c > 0

such that 1lVf(xt)ll2 > e for all t greater than some t, the term ytlllVf(xt)ll 2 dominates the

term ,242 in Eq. (2.10), so that the sequence f(xt) eventually becomes decreasing, leading to the

conclusion that f(xt) -+ -oo or to a contradiction of the assumption tcco = Therefore,

we must either have f(xt) -* -oo or else liminfot, IIVf(xt)II = 0.

The conclusion of Prop. 1 can be proved in its entirety with the weaker assumption II st II

c2(1 + [lVf(xt) l), provided we require that the stepsize /t satisfies in addition E-:0 -t2 < oo.

This is shown as a special case of Props. 2 and 4 that follow, by setting wt _ 0.

3. DETERMINISTIC GRADIENT METHODS WITH ERRORS

We now extend the results of the preceding section to cover the case where the direction contains

an error wt that is bounded by a multiple of the stepsize yt. NWe will need the following lemma,

which we prove for completeness:

Lemma 1: Let Yt, Wt, and Zt be three sequences such that Wt is nonnegative for all t. Assume

that

Yt+1 < ¼ - Wt + Zt, t = 0, 1,...,

and that the series Yt= 0 Zt converges as T -4 oo. Then either Yt - -no, or else Yt converges to

a finite value and t=0 Wt < o.

Proof: Let t be any nonnegative integer. By adding the relation Yt+1 < Yt + Z1 over all t > t

and by taking the limit superior as t -+ oo, we obtain

o00

lim sup Yt < Yt + 'Zt < co.
ttooo

t=t

By taking the limit inferior of the right-hand side as T --* o and using the fact linmt o D Ot= Zt =

0, we obtain

lim sup Yt < lim inf YT < oo.
t--too too

This implies that either Yt -- -no or else Yt converges to a finite value. In the latter case, by

adding the relation YI+1 < YI - Wi + Zi from i = 0 to i = t, we obtain

t t

E W < Yo + Z - Yt+1, t = 0, 1, .. ,
i=O i=O
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3. Deterministic Gradient iMlethods With Errors

which implies that i00o Wi < Yo + -i 0o Zi - limt- Yt < oo. Q.E.D.

We have the following result:

Proposition 2: Let xt be a sequence generated by the method

Xt+l = Xt + /yt(st + wt),

where st is a descent direction satisfying for some positive scalars cl and c2, and all t,

CllIVf(xt)ll2 < -XVf(xt)'st, IIstl < C2(1 + lIVf(Xt)ll), (3.1)

and wt is an error vector satisfying for some positive scalars p and q, and all t,

lwttll < yt (q + pllVf(xt)ll). (3.2)

Assume that the stepsize 'yt is positive and satisfies

00 00

E At=°, E 7t2 < T
t=O t=O

Then either f(xt) -- -oo or else f(xt) converges to a finite value and limt, 00 Vf(xt) = 0.

Furthermore, every limit point of xt is a stationary point of f.

Proof: The proof is similar to the proof of Prop. 1, with the appropriate modifications to deal

with the error vectors wt. We apply Eq. (2.3) with x = xt and z = "yt(st + wt). W\Te obtain

f(xt+l) < f(xt) + ytVf(xt)'(st + wt) + '-2 st + wt112.

Using our assumptions, we have

Vf(xt)'(st + wt) < -Cr11Vf(xt)1l2 + I-lVf(xt)ll IIwtll

< -clllvf(xt)112 + ytqllVf(xt)ll + -ytpllVf(Xt)ll 2

Furthermore, using the relations lstll2 < 2c~ (1+l Vf(xt)ll2 ) and Ilwt 12 < 2t, 2(q2+-p2lVf(x.) 2I),

which follow from Eqs. (3.1) and (3.2), respectively, we have

11st + wtfl 2 < 211st112 + 211tllw2

< 4c2(1 + IlVf(xt)ll 2 ) + 4^t2(q2 +-p2+lVf(Xt)ll 2 ).

Combining the above relations, we obtain

f(xt+l) < f(xt) --yt(cl -t - 2-ytc2L - 2yt3p 2 L) 7lf(xt)ll 2

A+ 1tqllVf(xt) 11 + 2ct2CL + 2~tq2 L.

9



3. Deterministic Gradient Methods With Errors

Since %yt -+ 0, we have for some positive constant c and all t sufficiently large

f(xt+l) < f(xt) - ytcllVf(xt)ll 2 + yt2qllVf(xt)j + 2/t2c2L + 2%y4q 2L.

Using the inequality IlVf(xt)ll < 1 + ilVf(xt)112, the above relation yields for all t

f(xt+l) < f(xt) < - Yt(c - -tq) 1Vf(xt) 1 2 + 7t2 (q + 2c2 L) + 2y4q2L. (3.3)

Consider Eq. (3.3) for all t sufficiently large so that c - ytq > 0. By using Lemma 1 and

the assumption t=0 yt2 < oo, we see that either f(xt) - -oc or else f(xt) converges and

00

%tllVf(Xt)11 < .(34)
t=O

If there existed an c > 0 and an integer t such that ljVf(xt)ll > e for all t > t, we would have

00 00

t 11Vf(xt)ll2 > e2 oyt~ = oo,
t=t t=t

which contradicts Eq. (3.4). Therefore, liminft,, 11Vf(xt)ll = 0.

The proof of limt-,, Vf(xt) = 0 now proceeds as in the proof of Prop. 1, by assuming that

lim supt_,, IVf(xt) l > e > 0, in order to each a contradiction. In particular, using the condition

IIstll < c2(1 + IIlVf(xt)lH) in place of IlstHl < c2llVf(xt)ll, Eq. (2.5) takes the form

i(t)-1

2 < Lc 2 (1 + e) i,2-
{=t

and Eq. (2.6) takes the form
i(t)-1

< 2 Y%. (3.5)2Lc2(1 + e) i=t

Using Eq. (3.3) in place of Eq. (2.4), we see that Eq. (2.7) becomes

2 i(t)- 1 i(t)- 1 i(t)--I
f(Xi(t )) <f(Xt)-c(4) E 'y± 5 ayH+ 5 ', V teT,

i=t i=t i=t

for appropriate positive scalars E and (. Using the already shown convergence of f(.ti) and the

assumption -t°=o0 t2 < oo, this relation still implies that

i(t)--i

lim Yi = O,
t-00, tET

[cf. Eq. (2.8)], and contradicts Eq. (3.5). Q.E.D.
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4. Incremental Gradient Methods

4. INCREMENTAL GRADIENT METHODS

In this section, we apply the results of the preceding section to the case where f has the form

m

fe) Z fi(x),
i=l

where fi,: 3 n - X is for every i, a continuously differentiable function satisfying the Lipschitz

condition

IlVfi(x) - Vfi() 11_ < LIlx - ll, V x,x c Rn, (4.1)

for some constant L.

In situations where there are many component functions fi, it may be attractive to use an

incremental method that does not wait to process the entire set of components before updating

x; instead, the method cycles through the components in sequence and updates the estimate of

x after each component is processed. In particular, given xt, we may obtain xt+l as

Xt+l = ± m1

where /m is obtained at the last step of the algorithm

i =%ifi- 'yt~Vfi(-i-l), i= 1,.. .. ,m, (4.2)

and

tDo = t . (4.3)

This method can be written as

m

Xt+l = xt- 7t Vfi(i- ). (4.4)
i=1

It is referred to as the incremental gradient method, and it is used extensively in the training of

neural networks. It should be compared with the ordinary gradient method, which is

Xt+1 =- Xt - 'tVf(xt) = xt - 'yt Vfi(xt) (4.5)
i=l

Thus, a cycle of the incremental gradient method through the components fi differs from an

ordinary gradient iteration only in that the evaluation of Vfi is done at the corresponding current

estimates _i- 1 rather than at the estimate xt available at the start of the cycle. The advantages of

incrementalism in enhancing the speed of convergence (at least in the early stages of the method)

are well-known; see for example the discussion in [Ber95], [BeT96].

,-------s --- -- ------------------ ~1



4. Incremental Gradient Methods

The main idea of the following convergence proof is that the incremental gradient method

can be viewed as the regular gradient iteration where the gradient is perturbed by an error term

that is proportional to the stepsize. In particular, if we compare the incremental method (4.4)

with the ordinary gradient method (4.5), we see that the error term in the gradient direction is

bounded by
m

Z Vfi (i- 1) - Vfi(xt) I
i=1

In view of our Lipschitz assumption (4.1), this term is bounded by

m
LZ HIj-i - xtII,

which from Eq. (4.2), is seen to be proportional to 7t (a more precise argument is given below).

Proposition 3: Let xt be a sequence generated by the incremental gradient method (4.2)-

(4.4). Assume that for some positive constants C, and D, and all i = 1,..., m, we have

11Vfi(x)ll < C + DIIVf(x)ll, V x EE 'n. (4.6)

Assume also that

Yt = O, 7t < oo.
t=O t=O

Then either f(xt) --* -oc or else f(xt) converges to a finite value and lim, oo Vf(xt) = O.

Furthermore, every limit point of xt is a stationary point of f.

Proof: We formulate the incremental gradient method as a gradient method with errors that

are proportional to the stepsize, and then apply Prop. 2. For simplicity we will assume that there

are only two functions fi; that is, m = 2. The proof is similar when rm > 2. WVe have

'1 = Xt - -tVfl(xt),

Xt+I = / 1 - YtVf2(tl).

By adding these two relations, we obtain

Xt+l = xt + Yt(-Vf(xt) + wt),

where

Wt = Vf 2 (xt) - Vf2(-').

We have

IHwtll < LIIxt- 11 = ytLjV fl(xt)] < _ t (LC + LDl[V f(xt)ll).

12



5. Stochastic Gradient Methods

Thus Prop. 3 applies. Q.E.D.

Condition (4.6) is guaranteed to hold if each fk is of the form

fk(x) = x'Qkx 9X + + hk,

where each Qk is a positive semidefinite matrix, each gk is a vector, and each hk is a scalar. (This

is the generic situation encountered in linear least squares problems.) If ElZ I Qk is positive

definite, there exists a unique minimum to which the algorithm must converge. In the absence

of positive definiteness, we obtain Vf(xt) - 0 if the optimal cost is finite. If on the other hand

the optimal cost is -oo, it can be shown that IlVf(x) l > a for some a > 0 and for all x. This

implies that f(x) -÷ -oo and that Ilxll - co.

5. STOCHASTIC GRADIENT METHODS

In this section, we study stochastic gradient methods. Our main result is similar to Proposition

2, except that we let the noise term wt be of a stochastic nature. Once more, we will prove

that f(xt) converges and, if the limit is finite, Vf(xt) converges to 0. TWe comment on the

technical issues that arise in establishing such a result. The sequence f(xt) can be shown to be

approximately a supermartingale. However, the variance of the underlying noise is allowed to

grow with IlVf(xt)ll and can therefore be unbounded. Furthermore, since no lower bound on

f(xt) is assumed, the supermartingale convergence theorem or its variants cannot be used in a

simple manner. Our approach is to show is that whenever jjVf(xt)ll is large, it remains so for a

sufficiently long time interval, guaranteeing a decrease in the value of f(xt) which is significant

and dominates the noise effects.

Proposition 4: Let xt be a sequence generated by the method

Xt+l = Xt + 't(st + Wt),

where yt is a deterministic positive stepsize, st is a descent direction, and uwt is a random noise

term. Let Ft be an increasing sequence of a-fields. We assume the following:

(a) xt and st are St-measurable.

(b) There exist positive scalars cl and c2 such that

cIllVf(xt)ll2 < -Vf(xt)'st, IIltll < c2(1 + IIVf(xt)ll), V t. (5.1)

13



5. Stochastic Gradient Methods

(c) We have, for all t, and with probability one,

E[wt I Ft] =0, (5.2)

E[llwtll2 I Ft] < A(1 + ±IVf(xt)112), (5.3)

where A is a positive deterministic constant.

(d) We have
00 00

hayt = X0, E ty2 < N0.

t=O t=0

Then, either f(xt) -- -oc or else f(xt) converges to a finite value and linmt-oo Vf(xt) = 0.

Furthermore, every limit point of xt is a stationary point of f.

Remarks:

(a) The a-field Ft should be interpreted as the history of the algorithm up to time t, just

before wt is generated. In particular, conditioning on Ft can be thought of as conditioning

on Xo, so, wo, . . , xt_-, st-1, wt-_, xt, st.

(b) Strictly speaking, the conclusions of the proposition only hold "with probability 1." For

simplicity, an explicit statement of this qualification will often be omitted.

(c) Our assumptions on wt are of the same type as those considered in [PoT73].

Proof: We apply Eq. (2.3) with x = xt and z = yt(st + wt). We obtain

f(xt+l) < f(Xt) + %ytVf(xt)'(st + Wt) + -2 -lst + wtJI2

< f(xt) - ytcillVf(xt)112 + %tVf(xt)'wt + y/t2L(stI 2 + lwt[l[ 2)

< f(xt) - ytcllVf(xt)ll2 + %tVf(xt)'wt + yt22LC2 (5.4)

+ /t22LC2JlVf(xt)112 + yt2LJwtlt 2

< f(Xt) - 2C1 IVf(xt)ll2 + ytVf(xt)'wt + yt22Lc 2 + _,2Ll lu,112;
2 t 2 it a1L wt ,

where the last inequality is only valid when t is large enough so that 'yt2Lc 2 < cl/2. Without

loss of generality, we will assume that this is the case for all t > 0.

Let 6 > 0 be an arbitrary positive number that will be kept constant until the very end of

this proof. Let r1 be a positive constant defined, in terms of 6, by

tc2 -+ 2 = 2L' (5.5)

We will partition the set of all times t (the nonnegative integers) into a set S of times at which

IJVf(xt)ll is "small" and intervals Ik = {Tk, Tk + 1,.... ,7} during which IIVf(xt)[I stays "large."

14



5. Stochastic Gradient Methods

The definition of the times -rk and Tk is recursive and is initialized by letting T-F =-1. WVe then

let, for k = 1, 2,...,

Tk = min {t > 'T-j1 | [IVf(xt)l Ž> }).

(We leave Tk undefined if l[Vf(xt)ll < 6 for all t > W-l.) WVe also let

T- = max {t > Tk yi < l, and

IlVf(Xk)1 < 11Vf(xt)1t < 211V7f(T,,;)l}.

We say that the interval Ik is full if Z -t= 't > A/. Let S be the set of all times that do not

belong to any of the intervals Ik.

We define a sequence Gt, used to scale the noise terms wt, by

(6, if t E S,

t = ]Vf(xlk)[ [ = Hk, if t E I',

where the last equality should be taken as the definition of Hk. In particular, Gt is constant

during an interval It. Note that Gt > 6 for all t.

We now collect a few observations that are direct consequences of our definitions.

(P1) For all t e S, we have fIVf(xt)II < 6 = Gt.

(P2) For all t c Ik, we have

Ct HIk
Gt -k < llVf(xt)ll < 2Hk = 2Gt.2 2

Combining this with (P1), we also see that the ratio I[Vf(xt)ll/Gt is bounded above by 2.

(P3) If -Tk is defined and Ik is a full interval, then

-Tk

2< - %- +< < Z % < ", (5.6)
t=Tk

where the leftmost inequality holds when k is large enough so that -yi+1 -< q/2. Without

loss of generality, we will assume that this condition actually holds for all k.

(P4) The value of Gt is completely determined by xo, Xl,.. ., xt and is therefore St-measurable.

Similarly, the indicator function

=1, if t S,

0, otherwise,

15



5. Stochastic Gradient Methods

is also Ft-measurable.

Lemma 2: Let rt be a sequence of random variables with each rt being St+l-measurable, and

suppose that E[rt I )t] = 0 and E[11rtfl2 I St] < B, where B is some deterministic constant.

Then, the sequences

T T

S. trt and yt21lrtlI2, T = 0, 1,...,
t=O t=O

converge to finite limits (with probability 1).

Proof: It is seen that T-=0 % ytrt is a martingale whose variance is bounded by B E't=o '2. It

must therefore converge, by the martingale convergence theorem. Furthermore,

E E72 11rt 112 < BE yt2 < oo,
t=O t=O

which shows that t% 0 7rt2lIrtlH2 is finite with probability 1. This establishes convergence of the

second sequence. Q.E.D.

Using Lemma 2, we obtain the following:

Lemma 3: The following sequences converge (with probability 1):

T

(a) E xt-ytVf (xt)'wt;

T

(b) E yt G
t=O

T Vf(xt)'wt
(c) %E ,t G2

t=o t

Gt 

T

(e) E 7t2Xt wllWt2.
t=o

Proof: (a) Let rt XtVf(xt)'wt. Since Xt and Vf(xt) are .t-measurable and E[wt Ft] = 0, we

obtain E[rt I Yt] = 0. Whenever Xt = 1, we have IlVf(xt)llI < and E[llwt l 2 1 t] < A(1 + 62).

It follows easily that E[IrtJ2 1 Ft] is bounded. The result follows from Lemma 2.

(b) Let rt = wt/Gt. Since Gt is .t-measurable and E[wt I Ft] 0, we obtain E[?-t t] = 0.

Furthermore,
E[llrtll 2 I at] < A(1 + Ilvf(xt)ll2)

-16 2

16



5. Stochastic Gradient Methods

Since the ratio 1IVf(xt)ll]/G is bounded above [cf. observation (P2)], Lemma 2 applies and

establishes the desired convergence result.

(c) Let rt = Vf(xt)'wt/G2 . Note that

Vf(xt)'wt < IVf(xt)ll Ilwtll I 211w
G 2 - G2 - Gtt t

The ratio in the left-hand side has bounded conditional second moment, by the same argument

as in the proof of part (b). The desired result follows from Lemma 2.

(d) This follows again from Lemma 2. The needed assumptions have already been verified while

proving part (b).

(e) This follows from Lemma 2 because XYtwt has bounded conditional second moment, by an

argument similar to the one used in the proof of part (a). Q.E.D.

We now assume that we have removed the zero probability set of sample paths for which

the series in Lemma 3 do not converge. For the remainder of the proof, we will concentrate on a

single sample path outside this zero probability set. Let e be a positive constant that satisfies

e < m/, 2e + 2Lt < el _ 4Lc2e < ci8 2r] (5.7)
-48- 48

Let us choose some to after which all of the series in Lemma 3, as well as the series Et=o0 Yt, stay

within c from their limits.

Lemma 4: Let to be as above. If Tk is defined and is larger than to, then the interval Ik is full.

Proof: Recall that for t C Ik = {rk,... ,Tk} we have Gt Hk = 117'f(X,-k)ll >_ 6 and IIstfl <

c2(1 + [lVf(xt)ll) < c2(1 + 2Hk). Therefore,

IIX+1 -+%Tk11 < Z YtItst tl + %tWt

- Z'tllstl± + Hk E ltGGt

< rlc2(1 + 2Hk) + HkIe

_< rc2Hk ( + 2) + riHk

Hk

2L'

where the last equality follows from our choice of r] [cf. Eq. (5.5)]. Thus,

HXk IlH_ f(C.:)H1
IV f( z+X) - Vf(xTk)lH < LxI +_ - xtl < _- = 1 2

17



5. Stochastic Gradient Methods

which implies that

1lHVf(xTk)l _< IlVf(xq+±1)l _< 2llVf(xJk)]l.

If we also had -,t=k yt < r, then Tk + 1 should be an element of Ik, which it isn't. This shows

that Zi+k ,= t > U, and Ik is a full interval. Q.E.D.

Our next lemma shows that after a certain time, f(xt) is guaranteed to decrease by at least

a constant amount during full intervals.

Lemma 5: Let to be the same as earlier. If Tk is defined and larger than to, then

f(X/+1) < f(xk ) -

where h is a positive constant that only depends on 6.

Proof: Note that Ik is a full interval, by Lemma 4. Using Eq. (5.4), we have

f(xt+l) - f(xt) < -at l Vf(xt)ll2 + ytVf(xt)'wt + y22Lc + ± 'rLll'wt 1l2.

We will sum (from Tk to Tk-) the terms in the right-hand side of the above inequality, and provide

suitable upper bounds. Recall that for t E Ijk, we have lVf(xt)ll > Hk/2. Thus, using also

Eq. (5.6),
Tk 7'2 k cj

- t 2 IlVf(xt)ll2 < 2 cH< E % < c (5.8)2 8 16
t=-r

k t=-rk

Furthermore,

E tVf(xt)'wt < 2Hk2c, (5.9)
t=-Tk

which follows from the convergence of the series in Lemma 3(c) and the assumption that after

time to the series is within c of its limit. By a similar argument based on Lemma 3(d), we also

have

L 7 y'21wt112 < 2LHk2e. (5.10)
t=rk

Finally,
Trk

2Lc2 E 7y2 < 4Lc2e. (5.11)
t=-rk

We add Eqs. (5.8)-(5.11) and obtain

f(XT'+l) •f(xrk)- 16 +i/l - (2E + 2Le)H' + 4Lc2e

Px (+I))< _2CfX C1- 2

Jkxk) - 48 + 48

<f(xrk) - 4

18



5. Stochastic Gradient Methods

The second inequality made use of (5.7); the third made use of Hk > 6. Q.E.D.

Lemma 6: For almost every sample path, f(xt) converges to a finite value or to -oo. If

limt-, f(xt) + -oo, then lim supt, IIVf(xt)ll _< 6.

Proof: Suppose that there are only finitely many intervals Ik and, in particular,

lim sup IlVf(xt)ll < 6.
t--oo

Let t* be some time such that t c S for all t > t*. We then have Xt = 1 for all t > t*. We use

Eq. (5.4) to obtain

f(xt+l) < f(xt) + -ytXtVf(xt)'wt + -y,22Lc 2 + Xt?2LIlwtll 2

= f(Xt) + Zt, for t > t*,

where the last equality can be taken as the definition of Zt. Using parts (a) and (e) of Lemma

3, the series Et Zt converges. Lemma 1 then implies that f(xt) converges to a finite value or to

-oc. This proves Lemma 6 for the case where there are finitely many intervals.

We consider next the case where there are infinitely many intervals. iWe will prove that

f(xt) converges to -oo. We first establish such convergence along a particular subsequence. Let

T = S U {fT1, T2, .. .}. We will show that the sequence {f(xt)}tETf converges to -oo. To see why

this must be the case, notice that whenever t E S, we have f(xt+l) < f(xt) + Zt, where Zt is

as in the preceding paragraph and is summable. Also, whenever t E T but t ¢ S, then t = Tk,

for some k, and the next element of T is the time T/k + 1. Using Lemma 5, f(xt) decreases by

at least h during this interval (for k large enough). We are now in the situation captured by

Lemma 1, with Wt = h whenever t = Tk. The convergence of the subsequence {f(xt) }tE follows.

Furthermore, since Wt = h infinitely often, the limit can only be -oo.

Having shown that f(xTk) converges to -oo, it now remains to show that the fluctuations of

f(xt) during intervals Ik cannot be too large. Because the technical steps involved here are very

similar to those given earlier, we only provide an outline. In order to carry out this argument,

we consider the events that immediately precede an interval Ik.

Let us first consider the case where Ik is preceded by an element of S, i.e., -k - 1 E S. By

replicating the first half of the proof of Lemma 4, we can show that Xt - Tk_-1, for t c Ik, is

bounded by a constant multiple of 6 (for k large enough). Since IIVf(zxTk_)ll < 6, this leads

to a C62 bound on the difference f(xt) - f(xk_-1), where c is some absolute constant. Since

f(x-k_l ) - o, the same must be true for f(xt), t c Ik.

Let us now consider the case where Ik is immediately preceded by an interval Ik-1. By

replicating the proof of Lemma 5 (with a somewhat smaller choice of e), we can show that (for k
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6. The Incremental Gradient Method Revisited

large enough) we will have f(xt) < f(xk_l) for all t E Ik. Once more, since f(xTk_ ) converges

to -oo, the same must be true for f(xt), t c Ik. Q.E.D.

According to Lemma 6, f(xt) converges and if

lim f(xt) 7-oo,
t-oo

then limsupto o I[Vf(xt)ll < 3. Since this has been proved for an arbitrary 6 > 0, we conclude

that if limt- f(xt) 4 -oo, then limsupt_,, IVf(xt)I = 0, that is, Vf(xt) -4 0.

Finally, if x* is a limit point of xt, this implies that f(xt) has a subsequence that converges

to f(x*). Therefore, the limit of the entire sequence f(xt), which we have shown to exist, must

be finite and equal to f(x*). We have shown that in this case Vf(xt) converges to zero. By

taking the limit of Vf(xt) along a sequence of times such that xt converges to x*, we conclude

that Vf(x*) = 0. Q.E.D.

6. THE INCREMENTAL GRADIENT METHOD REVISITED

We now provide an alternative view of the incremental gradient method that was discussed in

Section 4.

Consider again a cost function f of the form

f(x)- i ()

where each fi is a function from Rn into X that satisfies the Lispchitz condition (4.1). In con-

trast to the setting of Section 4, we now assume that each update is based on a single component

function fi, chosen at random. More specifically, let k(t), t = 1, 2,..., be a sequence of indepen-

dent random variables, each distributed uniformly over the set {1,. . ., n. The algorithm under

consideration is

xt+l = Xt - %tVfk(t)(xt), (6.1)

where yt is a nonnegative scalar stepsize. We claim that this is a special case of the stochastic

gradient algorithm. Indeed, the algorithm (6.1) can be rewritten as

Xt+ =- Xt - Vf(xt)- Yt (vfk(t)(Xt)-- i(X),
2i= i0=
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which is of the form

Xt+l = xt - ytVf(xt) - ?tWt,

where

wt = Vfk(t)(xt) -1SVfi(Xt)

i=1

We now verify that wt satisfies the assumptions of Proposition 4. Due to the way that k(t) is

chosen, we have

E[Vfk(t) (Xt) I -'t] E V i (Ft):
i=l

from which it follows that E[wt I ft] = O. We also have

E[IIWtI|2 I Ft] = E[|jVfk(t)(rt) 12 F t] - jE[Vfk(t)(rt) I Ft] l2

< E [|Vfk(t, (rt) || I nt],

which yields

E[Ilwt 12 I Ft] < max Vfk (xt) 2

Let us assume that there exist constants C and D such that

fi(x)I I< C + D Vf(x)>, V i, x, (6.2)

(cf. the assumption of Prop. 3). It follows that

E[IIwtll2 i 1 Ft] < 2C2 + 2D 2 | Vf(xt) 2,

so that condition (5.3) is satisfied and the assertion of Prop. 4 holds.
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