Research Supported By:

NSF grant 9300494-DMI

A Note on Error Bounds for Convex and Nonconvex Programs

Bertsekas, D.P.

A NOTE ON ERROR BOUNDS FOR ${ }^{1}$ CONVEX AND NONCONVEX PROGRAMS

by
Dimitri P. Bertsekas ${ }^{2}$

Abstract

Given a single feasible solution x_{F} and a single infeasible solution x_{I} of a mathematical program, we provide an upper bound to the optimal dual value. We assume that x_{F} satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [Man97] on the distance of a point to a convex set specified by inequalities.

[^0]
1. INTRODUCTION

We consider the problem

$$
\begin{align*}
& \operatorname{minimize} f(x) \tag{1}\\
& \text { subject to } x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r
\end{align*}
$$

where X is a nonempty subset of \Re^{n}, and $f: \Re^{n} \mapsto \Re, g_{j}: \Re^{n} \mapsto \Re$ are given functions. We denote by $g(x)$ be the vector of constraint functions

$$
g(x)=\left(g_{1}(x), \ldots, g_{r}(x)\right)
$$

and we write the constraints $g_{j}(x) \leq 0$ compactly as $g(x) \leq 0$. In our notation, all vectors are column vectors and a prime denotes transposition.

Let f^{*} and q^{*} be the optimal primal and dual value, respectively:

$$
\begin{gather*}
f^{*}=\inf _{\substack{x \in X \\
g_{j}(x) \leq 0, j=1, \ldots, r}} f(x), \tag{2}\\
q^{*}=\sup _{\mu \geq 0} q(\mu), \tag{3}
\end{gather*}
$$

where $q: \Re^{r} \mapsto[-\infty,+\infty)$ is the dual function given by

$$
\begin{equation*}
q(\mu)=\inf _{x \in X}\left\{f(x)+\mu^{\prime} g(x)\right\} \tag{4}
\end{equation*}
$$

Throughout the paper, we assume the following:
Assumption 1: We have two vectors x_{F} and x_{I} from X such that:
(a) x_{F} is feasible, i.e., $g\left(x_{F}\right) \leq 0$.
(b) x_{F} is infeasible, i.e., $g_{j}\left(x_{I}\right)>0$ for at least one j. Furthermore, its cost $f\left(x_{I}\right)$ is strictly smaller than the cost $f\left(x_{F}\right)$ of x_{F}.

We note that by weak duality, we have $q^{*} \leq f\left(x_{F}\right)$. We will show that the value $f\left(x_{I}\right)$ can be used to improve this upper bound. In particular, we prove the following result in Section 3:

Proposition 1: Under Assumption 1, there holds

$$
\begin{equation*}
\frac{q^{*}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)} \leq \frac{\Gamma}{\Gamma+1} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma=\inf \left\{\gamma \geq 0 \mid g\left(x_{I}\right) \leq-\gamma g\left(x_{F}\right)\right\} \tag{6}
\end{equation*}
$$

If $\Gamma=\infty$ because there is no $\gamma \geq 0$ such that $g\left(x_{I}\right) \leq-\gamma g\left(x_{F}\right)$, the bound in Eq. (3) reduces to the trivial bound $q^{*} \leq f\left(x_{F}\right)$.

Note that we have $\Gamma<\infty$ if the Slater condition

$$
\begin{equation*}
g_{j}\left(x_{F}\right)<0, \quad \forall j=1, \ldots, r \tag{7}
\end{equation*}
$$

holds. More generally, we have $\Gamma<\infty$ if and only if the following weakened form of the Slater condition holds:

$$
\begin{equation*}
g_{j}\left(x_{I}\right) \leq 0 \quad \text { for all } j \text { with } g_{j}\left(x_{F}\right)=0 \tag{8}
\end{equation*}
$$

If the above condition holds, we have

$$
\begin{equation*}
\Gamma=\max _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}} \frac{g_{j}\left(x_{I}\right)}{-g_{j}\left(x_{F}\right)} \tag{9}
\end{equation*}
$$

Figure 1 illustrates the idea underlying the bound (5), (6). In the case of a single constraint ($r=1$) the bound reduces to

$$
\begin{equation*}
\frac{q^{*}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)} \leq \frac{\hat{f}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)}=\frac{g\left(x_{I}\right)}{g\left(x_{I}\right)-g\left(x_{F}\right)} \tag{10}
\end{equation*}
$$

where \hat{f} is the point of intersection of the vertical axis of \Re^{2} with the line segment connecting the vectors $\left(g\left(x_{F}\right), f\left(x_{F}\right)\right)$ and $\left(g\left(x_{I}\right), f\left(x_{I}\right)\right)$. When there are multiple constraints, this line segment can be projected on the 2-dimensional subspace spanned by the vertical axis $(0,1)$ of \Re^{r+1} and the vector $\left(g\left(x_{I}\right), 0\right)$. The inequality (10) can then be applied on this subspace in a suitably modified form (see the proof in the next section).

Figure 1 also suggests the following slightly stronger version of our bound:

$$
\begin{equation*}
\frac{\tilde{f}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)} \leq \frac{\Gamma}{\Gamma+1} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{f}=\inf \{w \mid(z, w) \in \operatorname{Conv}(A)\} \tag{12}
\end{equation*}
$$

the subset A of \Re^{2} is given by

$$
A=\{(z, w) \mid \text { there exists } x \in X \text { such that } g(x) \leq z, f(x) \leq w\}
$$

and $\operatorname{Conv}(A)$ denotes its convex hull. Indeed, we prove this bound in Section 3, and we also prove that

$$
\tilde{f} \leq f^{*}
$$

Furthermore, in the case where X is convex, and f and g_{j} are convex over X, we have $\tilde{f}=f^{*}$. We state the corresponding bound as a proposition:

Figure 1: Geometrical interpretation of the bound (8) in the case where there is only one constraint. We consider the convex hull of the subset A of \Re^{2} given by

$$
A=\{(z, w) \mid \text { there exists } x \in X \text { such that } g(x) \leq z, f(x) \leq w\}
$$

Let \hat{f} be the point of intersection of the vertical axis of \Re^{2} with the line segment connecting the vectors $\left(g\left(x_{F}\right), f\left(x_{F}\right)\right)$ and $\left(g\left(x_{I}\right), f\left(x_{I}\right)\right)$. The vector $(0, \hat{f})$ belongs to $\operatorname{Conv}(A)$. Also, by Euclidean geometry, we have

$$
\frac{\hat{f}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)}=\frac{g\left(x_{I}\right)}{g\left(x_{I}\right)-g\left(x_{F}\right)}
$$

and by the definition of q^{*} we have

$$
q^{*} \leq \tilde{f} \leq \hat{f} \leq f^{*}
$$

where

$$
\tilde{f}=\inf \{w \mid(z, w) \in \operatorname{Conv}(A)\}
$$

Combining these two relations, the bound (5), (6) follows.

Thus under these convexity assumptions, we have the following:

Proposition 2: In addition to Assumption 1, assume that X is convex, and f and g_{j} are convex over X. Then, there holds

$$
\begin{equation*}
\frac{f^{*}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)} \leq \frac{\Gamma}{\Gamma+1} \tag{13}
\end{equation*}
$$

2. RELATIONS TO EXISTING BOUNDS

There are several analytical and algorithmic contexts where both feasible and infeasible solutions are known in optimization problems (e.g., in primal-dual algorithms), and in which our bound may prove useful. As an illustration of one such context, let us derive an error bound for the distance of a point to a convex set specified by inequality constraints. A similar error bound for this projection problem was derived by Mangasarian [Man97] using different methods, and was the inspiration for the present paper. In particular, let $y \in \Re^{n}$ be a given vector and consider the following projection problem

$$
\begin{aligned}
& \operatorname{minimize}\|y-x\| \\
& \text { subject to } x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r
\end{aligned}
$$

Let us assume that X is a convex set and g_{j} are convex over X. Furthermore:
(a) $y \in X$ and $g_{j}(y)>0$ for at least one j.
(b) There exists a vector $x_{F} \in X$ such that

$$
\begin{gathered}
g_{j}\left(x_{F}\right) \leq 0, \quad \forall j=1, \ldots, r \\
g_{j}(y) \leq 0 \quad \text { for all } j \text { with } g_{j}\left(x_{F}\right)=0 .
\end{gathered}
$$

Then we can apply the error bound (13) with $f(x)=\|y-x\|, f^{*}$ equal to the distance $d(y)$ of y from the convex set $X \cap\left\{x \mid g_{j}(x) \leq 0, j=1, \ldots, r\right\}, x_{I}=y$, and $f\left(x_{I}\right)=0, f\left(x_{F}\right)=\left\|y-x_{F}\right\|$. We have

$$
\begin{equation*}
d(y) \leq \frac{\Gamma}{\Gamma+1}\left\|y-x_{F}\right\| \tag{14}
\end{equation*}
$$

where Γ is given by Eq. (9). It is easily seen that $\Gamma \leq \hat{\Gamma}$, where

$$
\begin{equation*}
\hat{\Gamma}=\frac{\max _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}} g_{j}\left(x_{I}\right)}{\min _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}}-g_{j}\left(x_{F}\right)} \tag{15}
\end{equation*}
$$

and the inequality (14) yields

$$
\begin{equation*}
d(y) \leq \frac{\hat{\Gamma}}{\hat{\Gamma}+1}\left\|y-x_{F}\right\| \tag{16}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
d(y) \leq \frac{\max _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}} g_{j}\left(x_{I}\right)}{\max _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}} g_{j}\left(x_{I}\right)+\min _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}}-g_{j}\left(x_{F}\right)}\left\|y-x_{F}\right\| \tag{17}
\end{equation*}
$$

This bound coincides with the relative error bound derived by Mangasarian ([Man97], Theorem 2.2) under the assumption that $X=\Re^{n}$ and $g_{j}\left(x_{F}\right)<0$ for all j. Note, however, that using Γ from Eq. (9) in place of $\hat{\Gamma}$ as in Eq. (16) yields a stronger bound.

For a generalization of the bound (14), let us consider replacing the distance $\|y-x\|$ with a more general metric. In particular, consider the problem

$$
\begin{aligned}
& \operatorname{minimize} f(x, y) \\
& \text { subject to } x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r
\end{aligned}
$$

where X is a convex set, g_{j} are convex over X, and $f(\cdot, y)$ is convex over X and satisfies

$$
f(y, y)=0, \quad f\left(x_{F}, y\right)>0
$$

Then, if $f^{*}(y)$ is the optimal cost of this problem, the preceding analysis can be used to show that [cf. Eq. (14)]

$$
f^{*}(y) \leq \frac{\Gamma}{\Gamma+1} f\left(x_{F}, y\right)
$$

where Γ is given by

$$
\Gamma=\max _{\left\{j \mid g_{j}\left(x_{F}\right)<0\right\}} \frac{g_{j}(y)}{-g_{j}\left(x_{F}\right)}
$$

We finally note that the bound given here is fundamentally different from the well-known Hoffman's bound [Hof52] and its extensions (see e.g., [LuL94], [LuT92a], [LuT92b], [Man97], [PaL96], [Pan97], which give many additional references). To see this, we note that Propositions 1 and 2 do not explicitly require the existence of a Lagrange multiplier for problem (1). By contrast, as we will show shortly, Hoffman-like bounds essentially amount to assertions on the uniform boundedness of the Lagrange multipliers of some parametric convex program as the parameter vector ranges over some set.

Indeed let X be convex subset of \Re^{n}, let y be a parameter vector taking values in X, and consider the parametric program

$$
\begin{align*}
& \operatorname{minimize} f(x, y) \tag{18}\\
& \text { subject to } x \in X, \quad g_{j}(x, y) \leq 0, \quad j=1, \ldots, r
\end{align*}
$$

where for each $y \in X, f(\cdot, y)$ and $g_{j}(\cdot, y)$ are convex over X. We assume that for each $y \in X$, the optimal value $f^{*}(y)$ of this program is finite and that when the constraints $g_{j}(x, y) \leq 0$ are dualized, there is no duality gap; that is, the optimal value $q^{*}(y)$ of the dual problem

$$
\begin{align*}
& \operatorname{maximize} \quad q(\mu, y) \\
& \text { subject to } \mu \geq 0 \tag{19}
\end{align*}
$$

is equal to $f^{*}(y)$, where $q(\mu, y)$ is the dual function

$$
q(\mu, y)=\inf _{x \in X}\left\{f(x, y)+\mu^{\prime} g(x, y)\right\}
$$

Consider a penalty function $P: \Re^{r} \mapsto \Re$ that is convex and satisfies

$$
\begin{gathered}
P(u)=0, \quad \forall u \leq 0 \\
P(u)>0, \quad \text { if } u_{j}>0 \text { for some } j=1, \ldots, r
\end{gathered}
$$

Let $c>0$ denote a penalty parameter. It is shown in [Ber95] [Prop. 5.4.1(a)] that we have

$$
f^{*}(y)=\inf _{x \in X}\{f(x, y)+c P(g(x, y))\}
$$

if and only if

$$
u^{\prime} \mu^{*}(y) \leq c P(u), \quad \forall u \in \Re^{r}
$$

for some dual optimal solution $\mu^{*}(y)$ [an optimal solution of the dual problem (14), which is also referred to as a Lagrange multiplier].

Thus, a bound of the form

$$
\begin{equation*}
f^{*}(y) \leq f(y, y)+\bar{c} P(g(y, y)), \quad \forall y \in X \tag{20}
\end{equation*}
$$

holds if and only if there exists a uniform bounding constant $\bar{c}>0$ such that

$$
\begin{equation*}
u^{\prime} \mu^{*}(y) \leq \bar{c} P(u), \quad \forall u \in \Re^{r}, y \in X \tag{21}
\end{equation*}
$$

For the above relation to hold, it is essential that the penalty function P be nondifferentiable, such as for example

$$
P(u)=\left\|u^{+}\right\|_{1}, \quad P(u)=\left\|u^{+}\right\|_{2}, \quad P(u)=\|u+\|_{\infty}
$$

where u^{+}is the vector with components $\max \left\{0, u_{j}\right\}, j=1, \ldots, r$. Given any of these choices, it is seen that Eq. (21), and the equivalent bound (20), hold if and only if for every $y \in Y$, it is possible to select a Lagrange multiplier $\mu^{*}(y)$ of the parametric problem (18) such that the set $\left\{\mu^{*}(y) \mid y \in X\right\}$ is bounded.

If we now specialize the preceding discussion to the parametric program

$$
\begin{align*}
& \operatorname{minimize}\|y-x\| \\
& \text { subject to } x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r \tag{22}
\end{align*}
$$

we see that a bound of the form

$$
\begin{equation*}
d(y) \leq \bar{c} P(g(y)), \quad \forall y \in X \tag{23}
\end{equation*}
$$

holds if and only if \bar{c} satisfies Eq. (20). Thus, the Hoffman-like bound (23) holds if and only if the projection problem (22) has a Lagrange multiplier $\mu^{*}(y)$ such that the set $\left\{\mu^{*}(y) \mid y \in X\right\}$ is bounded. The latter assertion can be made under a number of conditions, such as the following two:
(a) $X=\Re^{n}$ and g_{j} are linear (this is the original Hoffman's bound [Hof52]). For a simple way to prove this, let $g_{j}(x)=a_{j}^{\prime} x-b_{j}$, where a_{j} is a vector in \Re^{n} and b_{j} is a scalar. Then the projection program (22) can be shown to have at least one Lagrange multiplier $\mu(y)$, satisfying

$$
\frac{y-\hat{y}}{\|y-\hat{y}\|}=\sum_{j \in J(y)} \mu_{j}^{*}(y) a_{j}
$$

where \hat{y} is the unique projection of y, and $J(y)$ is a subset of indices such that the set of vectors $\left\{a_{j} \mid j \in J(y)\right\}$ is linearly independent. Since the vector in the right-hand side of the above equation has norm 1 , it follows that the set $\left\{\mu^{*}(y) \mid y \in \Re^{n}\right\}$ is bounded. This line of argument can be generalized to the case where, instead of $\|y-x\|$ in Eq. (22), we have a cost function $f(x, y)$, which is differentiable and convex with respect to x, and is such that the set $\left\{\nabla_{x} f(y, y) \mid y \in \Re^{n}\right\}$ is bounded.
(b) For each $y \in X$, a Slater condition holds; that is there exists a vector $\bar{x}(y) \in X$ such that $g_{j}(\bar{x}(y))<0$ for all $j=1, \ldots, r$. Furthermore, there is a constant γ such that

$$
\begin{equation*}
\frac{\|y-\bar{x}(y)\|-d(y)}{\min _{j=1, \ldots, r}\left\{-g_{j}(\bar{x}(y))\right\}} \leq \gamma, \quad \forall y \in X \tag{24}
\end{equation*}
$$

This is Mangasarian's principal result [Man97], who assumed that $X=\Re^{n}$. For a proof of this result, note that the Slater condition implies (see e.g., [Ber95], p. 450) that for each $y \in X$ there exists a Lagrange multiplier $\mu^{*}(y)$ with

$$
\begin{equation*}
\sum_{j=1}^{r} \mu_{j}^{*}(y) \leq \frac{\|y-\bar{x}(y)\|-d(y)}{\min _{j=1, \ldots, r}\left\{-g_{j}(\bar{x}(y))\right\}} \tag{25}
\end{equation*}
$$

Thus, Eq. (24) implies the boundedness of the set $\left\{\mu^{*}(y) \mid y \in X\right\}$, and hence the existence of a uniform bounding constant \bar{c} in Eq. (23).

3. PROOF OF PROPOSITIONS 1 AND 2

We consider the subset of \Re^{r+1}

$$
A=\{(z, w) \mid \text { there exists } x \in X \text { such that } g(x) \leq z, f(x) \leq w\}
$$

and its convex hull $\operatorname{Conv}(A)$. The vectors $\left(g\left(x_{F}\right), f\left(x_{F}\right)\right)$ and $\left(g\left(x_{I}\right), f\left(x_{I}\right)\right)$ belong to A. In addition, the vector $(0, \tilde{f})$, where

$$
\tilde{f}=\inf \{w \mid(z, w) \in \operatorname{Conv}(A)\}
$$

is in the closure of $\operatorname{Conv}(A)$. Let us now show that $q^{*} \leq \tilde{f}$, as indicated by Fig. 1.
Indeed, for each $(z, w) \in \operatorname{Conv}(A)$, there exist $\xi_{1} \geq 0$ and $\xi_{2} \geq 0$ with $\xi_{1}+\xi_{2}=1$, and $x_{1} \in X, x_{2} \in X$ such that

$$
\begin{gathered}
\xi_{1} g\left(x_{1}\right)+\xi_{2} g\left(x_{2}\right) \leq z \\
\xi_{1} f\left(x_{1}\right)+\xi_{2} f\left(x_{2}\right) \leq w
\end{gathered}
$$

Furthermore, by the definition of the dual function q, we have for all $\mu \in \Re^{r}$,

$$
\begin{aligned}
& q(\mu) \leq f\left(x_{1}\right)+\mu^{\prime} g\left(x_{1}\right) \\
& q(\mu) \leq f\left(x_{2}\right)+\mu^{\prime} g\left(x_{2}\right)
\end{aligned}
$$

Combining the preceding four inequalities, we obtain

$$
q(\mu) \leq w+\mu^{\prime} z, \quad \forall(z, w) \in \operatorname{Conv}(A), \mu \geq 0
$$

The above inequality holds also for all (z, w) that are in the closure of $\operatorname{Conv}(A)$, and in particular, for $(z, w)=(0, \tilde{f})$. It follows that

$$
q(\mu) \leq \tilde{f}, \quad \forall \mu \geq 0
$$

from which, by taking the maximum over $\mu \geq 0$, we obtain $q^{*} \leq \tilde{f}$.
Let γ be any nonnegative scalar such that $g\left(x_{I}\right) \leq-\gamma g\left(x_{F}\right)$, and consider the vector

$$
\Delta=-\gamma g\left(x_{F}\right)-g\left(x_{I}\right)
$$

Since $\Delta \geq 0$, it follows that the vector

$$
\left(-\gamma g\left(x_{F}\right), f\left(x_{I}\right)\right)=\left(g\left(x_{I}\right)+\Delta, f\left(x_{I}\right)\right)
$$

also belongs to the set A. Thus the three vectors

$$
\left(g\left(x_{F}\right), f\left(x_{F}\right)\right), \quad(0, \tilde{f}), \quad\left(-\gamma g\left(x_{F}\right), f\left(x_{I}\right)\right)
$$

belong to the closure of $\operatorname{Conv}(A)$, and form a triangle in the plane spanned by the "vertical" vector $(0,1)$ and the "horizontal" vector $\left(g\left(x_{F}\right), 0\right)$.

Let $(0, \hat{f})$ be the intersection of the vertical axis with the line segment connecting the vectors $\left(g\left(x_{F}\right), f\left(x_{F}\right)\right)$ and $\left(-\gamma g\left(x_{F}\right), f\left(x_{I}\right)\right)$ (there is a point of intersection because $\gamma \geq 0$). We have by Euclidean triangle geometry (cf. Fig. 1)

$$
\begin{equation*}
\frac{\hat{f}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)}=\frac{\gamma}{\gamma+1} \tag{26}
\end{equation*}
$$

Since the vectors $\left(g\left(x_{F}\right), f\left(x_{F}\right)\right)$ and $\left(-\gamma g\left(x_{F}\right), f\left(x_{I}\right)\right)$ both belong to $\operatorname{Conv}(A)$, we also have $(0, \hat{f}) \in \operatorname{Conv}(A)$. Therefore, there exist vectors $x_{1}, \ldots, x_{m} \in X$ and nonnegative scalars ξ_{1}, \ldots, ξ_{m} with $\sum_{i=1}^{m} \xi_{i}=1$, satisfying

$$
\sum_{i=1}^{m} \xi_{i} g\left(x_{i}\right) \leq 0, \quad \sum_{i=1}^{m} \xi_{i} f\left(x_{i}\right) \leq \hat{f}
$$

Thus, if $\hat{f}<\tilde{f}$, we must have $\sum_{i=1}^{m} \xi_{i} f\left(x_{i}\right)<\tilde{f}$, contradicting the definition of \tilde{f}. It follows that $\tilde{f} \leq \hat{f}$ and since $q^{*} \leq \tilde{f}$, as shown earlier, from Eq. (26) we obtain

$$
\begin{equation*}
\frac{q^{*}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)} \leq \frac{\tilde{f}-f\left(x_{I}\right)}{f\left(x_{F}\right)-f\left(x_{I}\right)} \leq \frac{\gamma}{\gamma+1} \tag{27}
\end{equation*}
$$

Taking the infimum over $\gamma \geq 0$, the error bound (5), (6) follows.
Assume now that X is convex, and f and g_{j} are convex over X. Then the set A is known to be convex under these assumptions (see e.g., [Ber95], Prop. 5.3.1, p. 446), and we have $\tilde{f}=f^{*}$. Proposition 2 then follows from Eq. (27). Q.E.D.

REFERENCES

[Ber95] Bertsekas, D. P., 1995. "Nonlinear Programming," Athena Scientific, Belmont, MA.
[Man97] Mangasarian, O. L., 1997. "Error Bounds for Nondifferentiable Convex Inequalities under a Strong Slater Constraint Qualification," Mathematical Programming Technical Report No. 96-04, Univ. of Wisconsin-Madison.
[Hof52] A. J. Hoffman, 1952. "On Approximate Solutions of Systems of Linear Inequalities," Natl. Bur. Standards, Vol. 49, pp. 263-265.
[LuL94] X.-D. Luo, and Z.-Q. Luo, 1994. "Extension of Hoffman's Error Bound to Polynomial Systems," SIAM J. on Optimization, Vol. 4, pp. 383-392.
[LuT92a] X.-D. Luo, and P. Tseng, 1992. "Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem," SIAM J. on Optimization, Vol. 2, pp. 43-54.
[LuT92b] X.-D. Luo, and P. Tseng, 1992. "On the Linear Convergence of Convex Essentially Smooth Minimization," SIAM J. on Control and Optimization, Vol. 30, pp. 408-425.
[PaL96] A. S. Lewis and J.-S. Pang, 1996. "Error Bounds for Convex Inequality Systems," working apper, Dept. of Math. Sciences, The Johns Hopkins University, Baltimore, MD; to appear in J.P. Crouzeix, ed., Proceedings of the Fifth International Symposium on Generalized Convexity.
[Pan97] J.-S. Pang, 1997. "Error Bounds in Mathematical Programming," manuscript, Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD.

[^0]: 1 Research supported by NSF under Grant 9300494-DMI.
 2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.

