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Abstract

Given a single feasible solution XF and a single infeasible solution XI of a mathematical

program, we provide an upper bound to the optimal dual value. We assume that XF satisfies a

weakened form of the Slater condition. We apply the bound to convex programs and we discuss

its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian

[Man97] on the distance of a point to a convex set specified by inequalities.
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1. Introduction

1. INTRODUCTION

We consider the problem

minimize f(x)
(1)

subject to x E X, gj(x) , j 1,... ,,

where X is a nonempty subset of Rn, and f : Rn R, gj : Rn X_ R are given functions. AWe

denote by g(x) be the vector of constraint functions

g(x)= (gl(x),. .,9 (.)),

and we write the constraints gj(x) < 0 compactly as g(x) < 0. In our notation, all vectors are

column vectors and a prime denotes transposition.

Let f* and q* be the optimal primal and dual value, respectively:

f* = inf f(z), (2)
xEX

gj (x) <0, j=-1, ....,r

q* = sup q(/), (3)
P>o

where q : Rrs - [-oo, +oo) is the dual function given by

q(/) = inf {f(x) + /'g(x)}. (4)
xEX

Throughout the paper, we assume the following:

Assumption 1: We have two vectors XF and xi from X such that:

(a) XF is feasible, i.e., g(xF) < 0.

(b) XF is infeasible, i.e., gj(xI) > 0 for at least one j. Furthermore, its cost f(xi) is strictly

smaller than the cost f(xF) of XF.

We note that by weak duality, we have q* < f(xF). We will show that the value f(xi) can

be used to improve this upper bound. In particular, we prove the following result in Section 3:

Proposition 1: Under Assumption 1, there holds

q*- f(xi) < F
f(xF) - f(XI) - r + 1(

where

r = inf{y > 0 I g(xI) < -yg(xF)}. (6)
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1. Introduction

If r = oo because there is no -y > 0 such that g(xz) < -yg(xF), the bound in Eq. (3)

reduces to the trivial bound q* < f(XF).

Note that we have r < oo if the Slater condition

.j(XF) < O, V .,, (7)

holds. More generally, we have r < oo if and only if the following weakened form of the Slater

condition holds:

gj(xi) < 0 for all j with gj(XF) = O. (8)

If the above condition holds, we have

r = max gj (XI) (9)
{jlgj (F)<0} --gj(XF)

Figure 1 illustrates the idea underlying the bound (5), (6). In the case of a single constraint

(r = 1) the bound reduces to

q* - f() f< - f(xI) g(xz)
< _(10)

f(XF) - f(xi) - f(XF) - f(x) 9(XI) - g(XF)'

where f is the point of intersection of the vertical axis of R2 with the line segment connecting

the vectors (g(xF), f(XF)) and (g(xi), f(xi)). When there are multiple constraints, this line

segment can be projected on the 2-dimensional subspace spanned by the vertical axis (0, 1) of

3Rr+1 and the vector (g(xi), 0). The inequality (10) can then be applied on this subspace in a

suitably modified form (see the proof in the next section).

Figure 1 also suggests the following slightly stronger version of our bound:

f-f(xi) <

f(XF) - f(xI) r + 1

where

f = inf{w I (z,w) c Conv(A)}, (12)

the subset A of R2 is given by

A = {(z,w) there exists x e X such that g(x) < z, f(x) < w},

and Conv(A) denotes its convex hull. Indeed, we prove this bound in Section 3, and we also

prove that

f<f*

Furthermore, in the case where X is convex, and f and gj are convex over X, we have f = f*.

We state the corresponding bound as a proposition:
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A = {(z, i) I there is an x in Xsuch that g(x) < z, f(x) < w}

w '1

((XF),f(x)) I xF)) 

(Of

(g(x, f(xl)) z

Figure 1: Geometrical interpretation of the bound (8) in the case where there

is only one constraint. We consider the convex hull of the subset A of R2 given

by

A {(z,w) I there exists x E X such that g(x) < z, f(z) < tv}.

Let f be the point of intersection of the vertical axis of R2 with the line segment

connecting the vectors (g(xF), f(xF)) and (g(xi), f(xi)). The vector (0, f) be-

longs to Conv(A). Also, by Euclidean geometry, we have

f - f(XI) g(xi)
f(XF) - f(XI) g(XI) - g(xF)'

and by the definition of q* we have

q*_< f< < f*,

where

f= inf {w I (z, w) E Conv(A))}

Combining these two relations, the bound (5), (6) follows.

Thus under these convexity assumptions, we have the following:

Proposition 2: In addition to Assumption 1, assume that X is convex, and f and gj are

convex over X. Then, there holds

f* - f(xI) (
f(XF) - f (I) - F + (3
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2. RELATIONS TO EXISTING BOUNDS

There are several analytical and algorithmic contexts where both feasible and infeasible

solutions are known in optimization problems (e.g., in primal-dual algorithms), and in which our

bound may prove useful. As an illustration of one such context, let us derive an error bound for

the distance of a point to a convex set specified by inequality constraints. A similar error bound

for this projection problem was derived by Mangasarian [Man97] using different methods, and

was the inspiration for the present paper. In particular, let y E Rn be a given vector and consider

the following projection problem

minimize IY- xll

subject to x C X, gj(x) < 0, j = 1,...,r.

Let us assume that X is a convex set and gj are convex over X. Furthermore:

(a) y c X and gj(y) > 0 for at least one j.

(b) There exists a vector XF E X such that

gj(XF) < 0 j = 1,...,r,

gj(y) < 0 for all j with gj(xF) = 0.

Then we can apply the error bound (13) with f(x) = Ily - xll, f* equal to the distance d(y) of y

from the convex set X n { I gj() < , j = 1,... r, xr = y, and f(xI) = 0, f(XF) = I -- XF.

We have

d(y) < rr +- l
I
Y

-XFII, (14)

where r is given by Eq. (9). It is easily seen that F < F, where

r. = max{jl9j(xF)<o} g(XI) (15)
min{jlgJ (xF)<O} -gj(xF)'

and the inequality (14) yields

d(y) < r IlY - XF11, (16)
F+1

or equivalently

max{jil9j(F)<o} ig (xI)
d(y) < II-m- X Fl. (17)

max{j19 j(XF)<o} g5 (xT) + min{jig (xF)<o} -gj(XF)
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This bound coincides with the relative error bound derived by Mangasarian ([Man97], Theorem

2.2) under the assumption that X = Rn and gj(XF) < 0 for all j. Note, however, that using F

from Eq. (9) in place of I as in Eq. (16) yields a stronger bound.

For a generalization of the bound (14), let us consider replacing the distance IlY - xl] with

a more general metric. In particular, consider the problem

minimize f (x, y)

subject to x E X, gj(x) < , j1,...,r,

where X is a convex set, gj are convex over X, and f (, y) is convex over X and satisfies

f(y, Y) = O, f(XF, y) > 0.

Then, if f* (y) is the optimal cost of this problem, the preceding analysis can be used to show

that [cf. Eq. (14)]

r+f*(y) < F + I f(XF' Y),

where F is given by

r= max
{jlgj (F)<O} --gj(XF)'

We finally note that the bound given here is fundamentally different from the well-known

Hoffman's bound [Hof52] and its extensions (see e.g., [LuL94], [LuT92a], [LuT92b], [Man97],

[PaL96], [Pan97], which give many additional references). To see this, we note that Propositions

1 and 2 do not explicitly require the existence of a Lagrange multiplier for problem (1). By

contrast, as we will show shortly, Hoffman-like bounds essentially amount to assertions on the

uniform boundedness of the Lagrange multipliers of some parametric convex program as the

parameter vector ranges over some set.

Indeed let X be convex subset of Rn, let y be a parameter vector taking values in X, and

consider the parametric program

minimize f (x, y)
(18)

subject to x E X, gj(x,y) < , j = 1,...,r,

where for each y E X, f(., y) and gj(-, y) are convex over X. We assume that for each y c X,

the optimal value f* (y) of this program is finite and that when the constraints gj (x, y) < 0 are

dualized, there is no duality gap; that is, the optimal value q*(y) of the dual problem

maximize q(, y)
(19)

subject to p > 0
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is equal to f*(y), where q((p, y) is the dual function

q(/, y)= inf f(x, y) + /lg(x, y))
xEX

Consider a penalty function P: RIr i- R that is convex and satisfies

P(u) = 0, V u < 0,

P(u) > 0, if uj > 0 for some j = 1,...,r.

Let c > 0 denote a penalty parameter. It is shown in [Ber95] [Prop. 5.4.1(a)] that we have

f*(y) = inf {f(x, y) + cP(g(x, y)) }
xEX

if and only if

U'L*(y) < CP(U), V u E C r,

for some dual optimal solution /L*(y) [an optimal solution of the dual problem (14), which is also

referred to as a Lagrange multiplier].

Thus, a bound of the form

f*(y) < f(y, y) + cP(g(y, y)), V y E X (20)

holds if and only if there exists a uniform bounding constant c > 0 such that

U/'l*(y) < CP(U), V U E ~r, y E X. (21)

For the above relation to hold, it is essential that the penalty function P be nondifferentiable,

such as for example

P(u) = Ilu+11l, P(U)= u+112, P(u)= 11t+11l,

where u+ is the vector with components max{0, uj}, j = 1,..., r. Given any of these choices, it

is seen that Eq. (21), and the equivalent bound (20), hold if and only if for every y C Y, it is

possible to select a Lagrange multiplier /*(y) of the parametric problem (18) such that the set

{u*(y) I y e X} is bounded.

If we now specialize the preceding discussion to the parametric program

minimize II - xlI
(22)

subject to x X, gj(x) < 0, j 1,...,r,

we see that a bound of the form

d(y) < •P(g(y)), V y E X (23)
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holds if and only if c satisfies Eq. (20). Thus, the Hoffman-like bound (23) holds if and only if

the projection problem (22) has a Lagrange multiplier tL*(y) such that the set {ju*(y) I y E X} is

bounded. The latter assertion can be made under a number of conditions, such as the following

two:

(a) X = Rn and gj are linear (this is the original Hoffman's bound [Hof52]). For a simple way

to prove this, let gj(x) = a'jx - bj, where aj is a vector in S
n and bj is a scalar. Then

the projection program (22) can be shown to have at least one Lagrange multiplier Au(y),

satisfying

_-Y_ - Z u*(y)aj,
jEJ(y)

where y is the unique projection of y, and J(y) is a subset of indices such that the set of

vectors {aj I j E J(y)} is linearly independent. Since the vector in the right-hand side of

the above equation has norm 1, it follows that the set {bp*(y) I y C Rn } is bounded. This

line of argument can be generalized to the case where, instead of Ily - xll in Eq. (22), we

have a cost function f(x, y), which is differentiable and convex with respect to x, and is

such that the set {Vxf(y, y) I y E lRn} is bounded.

(b) For each y E X, a Slater condition holds; that is there exists a vector T(y) C X such that

gj (x(y)) < 0 for all j = 1, ... , r. Furthermore, there is a constant y such that

IIY - T(y)ll - d(y)
minj=l,...,r{-gj((y)) } - V X.

This is Mangasarian's principal result [Man97], who assumed that X = Rn. For a proof of

this result, note that the Slater condition implies (see e.g., [Ber95], p. 450) that for each

y c X there exists a Lagrange multiplier ,/*(y) with

E /by* (Y) < minr-l ,r { -gj (<C~v)) } (25)j=1 mn . gj(MY)) (

Thus, Eq. (24) implies the boundedness of the set {u* (y) I y E X}, and hence the existence

of a uniform bounding constant c in Eq. (23).
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3. PROOF OF PROPOSITIONS 1 AND 2

We consider the subset of Rr+1

A = {(z,w) I there exists x E X such that g(x) < z, f(z) < w},

and its convex hull Conv(A). The vectors (g(XF), f(XF)) and (g(xz), f(xi)) belong to A. In

addition, the vector (0, f), where

f = inf{w I (z, w) Conv(A)},

is in the closure of Conv(A). Let us now show that q* < f, as indicated by Fig. 1.

Indeed, for each (z, w) C Conv(A), there exist j1 > 0 and ~2 > 0 with 1 + (2 = 1, and

x1 E X, x2 E X such that

6lg(Xl) + J2g(X2) < Z,

lf(Xl) + r2f(X2) < W.

Furthermore, by the definition of the dual function q, we have for all / C ERr,

q(/u) < f(xi) + -/g(x1),

q(jt) < f(x2) + /'g(x2).

Combining the preceding four inequalities, we obtain

q(/L) < w + /t'z, V (z, w) C Conv(A), /u > 0.

The above inequality holds also for all (z, w) that are in the closure of Conv(A), and in particular,

for (z, w) = (0, f). It follows that

q() <f, V > 0,

from which, by taking the maximum over /t > 0, we obtain q* < f.

Let -y be any nonnegative scalar such that g(xI) < --Tg(xF), and consider the vector

= --yg(xF) - g(xz).

Since A > 0, it follows that the vector

(-TYg(XF), f(xi)) = (g(XI) + A, f(x))
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also belongs to the set A. Thus the three vectors

(g(XF), f(XF)), (0,f), (--g(xF), f(xI))

belong to the closure of Conv(A), and form a triangle in the plane spanned by the "vertical"

vector (0, 1) and the "horizontal" vector (g(XF), 0).

Let (0, f) be the intersection of the vertical axis with the line segment connecting the vectors

(g(XF), f(XF)) and (--yg(xF), f(xi)) (there is a point of intersection because a > 0). MWe have

by Euclidean triangle geometry (cf. Fig. 1)

f - f(xI) (26)
f(XF) - f(XI) + 1

Since the vectors (g(xF), f(XF)) and (--yg(XF), f(xi)) both belong to Conv(A), we also have

(0,f) E Conv(A). Therefore, there exist vectors xl,...,xm E X and nonnegative scalars

**., ~m with im_=1 i = 1, satisfying

m m

~ig(xi) _ c~40, (xi)
i=l i=l

Thus, if f < f, we must have i =l Eif(xi) < f, contradicting the definition of f. It follows that

f < f and since q* < f, as shown earlier, from Eq. (26) we obtain

q* -f(xi) < - f(xI) < 2
f(XF) - f(xI) - I(XF) - f(XI) -- ± + 1(

Taking the infimum over 'y > 0, the error bound (5), (6) follows.

Assume now that X is convex, and f and gj are convex over X. Then the set A is known to

be convex under these assumptions (see e.g., [Ber95], Prop. 5.3.1, p. 446), and we have f = f*.

Proposition 2 then follows from Eq. (27). Q.E.D.
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