
April 1996 (revised October 1996) LIDS-P-2367

Research Supported By:

NSF
CCR-9103804
9300491-DML

C- RELAXATION AND AUCTION METHODS FOR SEPARABLE
CONVEX COST NETWORK FLOW PROBLEMS

Dimitri P. Bertsekas, Lazaros C. Polymenakos, Paul Tseng

b gesion Sys23n9US

Cambridge, MA 02139, USA

April 1996 (revised October 1996) LIDS-P-2367

8-RELAXATION AND AUCTION METHODS FOR SEPARABLE

CONVEX COST NETWORK FLOW PROBLEMS1

by

Dimitri P. Bertsekas,2 Lazaros C. Polymenakos, 3 and Paul Tseng 4

Abstract
We consider a generic auction method for the solution of the single commodity, separable convex cost

network flow problem. This method provides a unifying framework for the e-relaxation method and the
auction/sequential shortest path algorithm and, as a consequence, we develop a unified complexity analysis
for the two methods. We also present computational results showing that these methods are much faster
than earlier relaxation methods, particularly for ill-conditioned problems.

1 Research supported by NSF under Grant CCR-9103804 and Grant 9300494-DMI.
2 Department of Electrical Engineering and Computer Science, M.I.T., Room 35-210, Cambridge, Mas-

sachusetts 02139. Email address: dimitrib@mit.edu
3 IBM T. J. Watson Research Center, Room 23-116C, Yorktown Heights, New York 10598. Email address:

lcp@watson.ibm.com
4 Department of Mathematics, University of Washington, Seattle, Washington 98195. Email address:

tseng@math.washington.edu

1

1. Introduction

1. INTRODUCTION

We consider a directed graph with node set K = (1,..., N} and arc set iA C A x KA, where N denotes

the number of nodes and A denotes the number of arcs. (The implicit assumption that there exists at most

one arc in each direction between any pair of nodes is made for notational convenience and can be dispensed

with.) We are given, for each node i e Kf, a scalar si (the supply of i) and, for each arc (i, j) E A, a convex,

closed, proper function fij: R -+ R U (oo} (the cost function of (i,j)), i.e., fij is extended real-valued, lower

semicontinuous, not identically taking the value oo [Roc70]. The convex cost network flow problem with

separable cost function is

minimize f(x)= E fij(xij) (P)
(i,j)EA

subject to xii - xji = si, V i E, (1)
{jl(i,j)EA} {jl(j,i)EA}

where the real variable xij is referred to as the flow of the arc (i, j) and the vector x = {xij I (i, j) E A}

is referred to as the flow vector. We refer to problem (P) as the primal problem. A flow vector x with

fij(xij) < oo for all (i,j) E A, which satisfies the conservation-of-flow constraint (1) is called feasible. For

a given flow vector x, the surplus of node i is defined as the difference between the supply si and the net

outflow from i:

gi =8si+ xji - E xij. (2)
{jl(j,i)EA} {jl(i,j)EA}

We will assume that there exists at least one feasible flow vector x such that

fij(xij) < oo and f+(xij) > -oo, V (i,j) e A, (3)

where fi (Xij) and f+(xij) denote the left and right directional derivative of fij at xij [Roc84, p. 329].

There is a well-known duality framework for this problem, primarily developed by Rockafellar [Roc70],

and discussed in several texts; see e.g. [Roc84], [BeT89]. This framework involves a Lagrange multiplier

pi for the ith conservation-of-flow constraint (1). We refer to pi as the price of node i, and to the vector

P = {Pi I i e A} as the price vector. The dual problem is

minimize q(p) (D)

subject to no constraint on p,

where the dual functional q is given by

q(P)= E qij(pi-pj)- Esipi,
(i,j)eA ieJ

r

2

1. Introduction

and qij is related to fij by the conjugacy relation

qij(tij) = sup {xijtij - fij(xij)).
Xij ER

We will assume throughout that fij is such that qij is real-valued for all (i, j) E A. This is true, for example,

if each function fij has finite value inside some compact interval and takes the value oo outside of the interval.

Of particular importance is the linear cost case in which fij is linear inside the interval [FoF62], [Ber91],

[Roc84].

It is known (see [Roc84, p. 360]) that, under our assumptions, both the primal problem (P) and the

dual problem (D) have optimal solutions and their optimal costs are the negatives of each other. Moreover,

a necessary and sufficient condition for a flow-price vector pair (x,p) to be primal and dual optimal is that

x is feasible and (x,p) satisfies the complementary slackness (CS for short) conditions:

fi(xij) <_Pi -p-j < fit(xij), V (i,j) E A.

We will be interested in the following relaxed version of the CS conditions, first introduced in [BHT87]: We

say that a flow-price vector pair (x,p) satisfies the e-complementary slackness (e-CS for short) conditions,

where e is any positive scalar, if

fij(xij) < oo, and fi (xij) - < i - pj f(xij) + e, V (i,j) E A. (4)

There are three classes of methods for solving the problem (P) and its dual (D) for the linear cost

case: primal, dual, and auction methods. The primal and dual methods iteratively improve the primal

or the dual cost function. The auction approach, which may not improve the primal or the dual cost at

any iteration, was introduced in the original proposal of the auction algorithm for the assignment problem

[Ber79], and the subsequent e-relaxation method [Ber86a], [Ber86b]. These methods iteratively adjust x

and p, one component at a time, so as to drive the node surpluses to zero while maintaining c-CS at all

iterations. They have an excellent worst-case (computational) complexity, when properly implemented, as

shown in [Go187] (see also [BeE88], [BeT89], [GoT90]). Their practical performance is also very good and

they are well suited for parallel implementation (see [BCEZ95], [LiZ94], [NiZ93]). Recently, the c-relaxation

method was extended to the general problem (P) and its dual (D) by the authors [BPT95] (also see the

Ph.D. thesis of the second author [Pol95]) and, independently, by De Leone et al. [DMZ95]. These studies

report favorable computational experiences with the method, and references [BPT95] and [Pol95] also show

that the method has a good worst-case complexity.

In this paper, we consider a generic auction method for solving (P) and (D), whereby x and p are

alternately adjusted so as to drive the node surpluses to zero while maintaining e-CS at all iterations. The

only additional requirements are that nodes with nonnegative surplus continue to have nonnegative surplus

and that price changes are effected by increasing the price of a node with positive surplus by the maximum

3

2. A Generic Auction Method

amount possible. We then consider two important special cases of this generic method. The first is the

e-relaxation method; the second is an extension of the auction/sequential-shortest-path algorithm for the

linear cost case [Ber92] to the general convex cost case of (P) and (D). The second method was proposed in

the Ph.D. thesis of the second author [Po195] but otherwise is unpublished. It differs from the first in that,

instead of moving flow from nodes with positive surplus to any other nodes along push-list arcs, it moves

flow from nodes with positive surplus to nodes with negative surplus along paths comprising push-list arcs.

We analyze the (computational) complexity of these two methods and report some favorable computational

experience with them. In particular, our test results show that, on problems where some (possibly all) arcs

have strictly convex cost, the new methods outperform, often by an impressive margin, earlier relaxation

methods. Furthermore, our methods seem to be minimally affected by ill-conditioning in the dual problem.

We do not know of any other method for which this is true. We note that there are available other approaches

for dealing with separable convex cost network flow problems. These include reducing the problem to an

essentially linear cost problem by piecewise linearization of the arc cost functions [Mey79], [KaM84], [Roc84];

primal cost improvement [Wei74], [Roc84], [KaM93]; dual cost improvement based on e-subgradient [Roc84]

or e-CS [BHT87]. However, these other approaches tend to be more complicated and their complexities do

not match those obtained from the auction approach. The approach of using differentiable unconstrained

optimization methods on the dual problem [BHT87], [Ven91], [HaH93], [Hag92], [BeE87], [TBT90], though

popular, applies primarily to problems with strictly convex arc cost functions.

This paper is organized as follows. In Section 2 we present the generic auction method and analyze

its termination property. In Section 3, we consider the first special case of the generic method, the E-

relaxation method, and we analyze its complexity using the results of Section 2. In Section 4 we consider the

second special case of the generic method, the auction/sequential-shortest-path algorithm, and we analyze

its complexity also using the results of Section 2. Finally, in Section 5, we report some of our computational

experience with the methods of Sections 3 and 4 on some convex quadratic cost problems. A brief word

about notation: By a path in (Af, A), we mean a sequence of nodes (ni, n2,..., nk) in X and a corresponding

sequence of k - 1 arcs in A (k E {1, 2, ...}) such that the ith arc in the sequence is either (ni, ni+l) (in which

case it is called a forward arc) or (ni+l, ni) (in which case it is called a reverse arc). A path with nl = nk

is called a cycle. A path having no repeated nodes is called simple.

2. A GENERIC AUCTION METHOD

Intuitively, a feasible flow vector x an-I a price vector p that together satisfy the e-CS conditions are

approximately optimal for the primal problem (P) and the dual problem (D), respectively. This intuition

was verified in a result of [BHT87] which is restated in Prop. 4 to follow. Thus, we may consider finding,

4

2. A Generic Auction Method

for a given e > 0, a feasible flow-price vector pair that satisfies the e-CS conditions and, by making e small

enough, we can get as close to optimality as desired. In this section we present a generic method, based

on the auction approach, that finds such a pair. We also give a partial complexity analysis for this generic

method. In Sections 3 and 4, we will refine our analysis for two special cases of this method, the e-relaxation

method of [BPT95] and a certain auction/sequential-shortest-path algorithm.

For a fixed e > 0 and 3 E (0, 1), and a given flow-price vector pair (x,p) satisfying e-CS, an iteration of

the generic auction method updates (x,p) as follows:

An Iteration of the Generic Auction Method

If there is no node with positive surplus, terminate the method. Otherwise, perform one of the following two

operations:

(a) [Flow adjustment] Adjust the flow vector x in such a way that e-CS is maintained and all nodes with

nonnegative surplus continue to have nonnegative surplus. (Here p is unchanged.)

(b) [Price rise on a node] Increase the price pi of some node i with positive surplus by the maximum amount

that maintains e-CS. (Here x and all other components of p are unchanged.)

(Notice that the method either adjusts x with p fixed or adjusts p with x fixed. We can more generally

consider adjusting x and p simultaneously and/or adjusting more than one prices at a time, as is done for

example in [BHT87]. The analysis below extends accordingly.) Upon termination of the generic auction

method, the flow-price vector pair (x,p) satisfies e-CS and all nodes have non-positive surplus. Since we

assumed there exists at least one feasible flow vector so that ZEic si = 0, it is well known and not difficult

to show (by summing Eq. (2) over all nodes i) that all nodes must have zero surplus, i.e., x is feasible. Thus,

the validity of the method rests on whether it terminates finitely. In the following proposition, we show that

the total number of price rises is finite under a suitable assumption. The proof of this result is identical to

that given in [BPT95, Prop. 3] for the e-relaxation method, except 1/2 is replaced throughout by /. The

proof is included for completeness.

Proposition 1: Let K be any nonnegative scalar such that the initial price vector p0 for the generic

auction method (with parameters e > 0 and 3 E (0, 1)) satisfies Ke-CS together with some feasible flow

vector x°. Also, assume that each price rise on a node increases the price of that node by at least /3e, for

some fixed /3 E (0, 1). Then, the method performs at most (K + 1)(N - 1)//3 price rises on each node.

Proof: Consider the pair (x, p) at the beginning of an iteration of the generic method. Since the surplus

vector g = (91,..., 9N) is not zero, and the flow vector xs is feasible, we conclude that for each node s with

gs > 0 there exists a node t with gt < 0 and a simple path H from t to s such that:

Xij > 4x, o V (i, j) E H+, (5)

ij < , V (i j) E H-, (6)

5

2. A Generic Auction Method

where H+ is the set of forward arcs of H and H- is the set of backward arcs of H. [This can be seen from the

Conformal Realization theorem ([Roc84] or [Ber91]) as follows. For the flow vector x - x° , the net outflow

from node t is -gt > 0 and the net outflow from node s is -gs < 0 (here we ignore the flow supplies), so, by

the Conformal Realization Theorem, there is a simple path H from t to s that conforms to the flow x - x° ,

that is, xij - X > 0 for all (i,j) E H+ and xij - 4i0 < 0 for all (i, j) E H-. Eqs. (5) and (6) then follow.]

From Eqs. (5) and (6), and the convexity of the functions fij for all (i, j) E A, we have

fi(Xiji) > fj(xij), V (i,j) E H+, (7)

f+(xij) < fij(xij), V (i,j) E H-. (8)

Since the pair (x, p) satisfies e-CS, we also have that

Pi - pj E [fi (xij) -e, f +(xij) + E], V (i,j) E A. (9)

Similarly, since the pair (x°,p°) satisfies Ke-CS, we have

p-pj E [fit (xij)-K, ft() + Ke], V (ij)A. (10)

Combining Eqs. (7)-(10), we obtain

pi - Pj > P - p - (K + 1)e, V (i,j) E H+,

pi - pj pO + (K+)e, V (i,j) E H-

Applying the above inequalities for all arcs of the path H, we get

Pt - Ps Ž> Pt° - (K + 1)IHle, (11)

where IHI denotes the number of arcs of the path H. Since only nodes with positive surplus can change their

prices and nodes with nonnegative surplus continue to have nonnegative surplus, it follows that if a node

has negative surplus at some time, then its price is unchanged from the beginning of the method until that

time. Thus pt = pO. Since the path is simple, we also have that IHI < N - 1. Therefore, Eq. (11) yields

Ps- p°s < (K + 1)IHle (K + 1)(N- 1)e. (12)

Since only nodes with positive surplus can increase their prices and, by assumption, each price rise increment

is at least /e, we conclude from Eq. (12) that the total number of price rises that can be performed for node

s is at most (K + 1)(N - 1)//?. Q.E.D.

The preceding proposition shows that the bound on the number of price rises is independent of the cost

functions, but depends only on

K° = min{K E [0, oo) I (x °O,pO) satisfies Ke-CS for some feasible flow vector x° },

6

2. A Generic Auction Method

which is the minimum multiplicity of e by which CS is violated by the initial price vector together with some

feasible flow vector. Note that K ° is well defined for any pO because, for all K sufficiently large, Ke-CS is

satisfied by p0 and the feasible flow vector x satisfying Eq. (3).

To ensure that the number of flow adjustments between successive price rises is finite and that each price

rise is at least /e, we need to further specify how the price rises and flow adjustments should be effected.

In the remainder of this section, we introduce the key mechanisms for achieving this. For any c > 0, any

B3 E (0, 1), and any flow-price vector pair (x,p) satisfying e-CS, we define for each node i E ./ its push list

as the union of the following two sets of arcs

L+(i) = {(i,j) I (1-O)e < pi - pj - fi+ (xij) < e} , (13a)

L-(i) = {(j, i) | -(1-/)e > pj-pi- f (xji) >-e}. (13b)

Our definition of the push list is a direct extension of that used in [BPT95] for the case 3 = 1/2.

For each arc (i, j) (respectively, (j, i)) in the push list of i, the supremum of a for which

Pi - Pj > hi+(xij + 6)

(respectively, pj - Pi < fj, (xji -)) is called the flow margin of the arc. An important fact, observed in

[BPT95, Prop. 1] for the case / = 1/2, is that the flow margin of these arcs are always positive.

Proposition 2: All arcs in the push list of a node have positive flow margins.

Proof: Assume that for an arc (i, j) E A we have

Pi-Pj < fi+(Xij +5), V>0.

Since the function f + is right continuous, this yields

pi - pj < lim fi (xiij + 6) =- fi+(xi),

and thus, based on the definition of Eq. (13a), (i, j) cannot be in the push list of node i. A similar argument

shows that an arc (j, i) E A such that

pj -pi > fj (xji -), V 6 > 0,

cannot be in the push list of node i. Q.E.D.

The way we will make flow adjustments is to decrease the surplus of a node with positive surplus by

increasing/decreasing flow on push-list arcs. (This can be done either one arc at a time, as in the case of

the e-relaxation method of Section 3, or one path of arcs at a time, as in the case of the auction/sequential-

shortest-path algorithm of Section 4.) When the push list of the node is empty, we perform a price rise

7

2. A Generic Auction Method

on the node. An important fact, observed in [BPT95, Prop. 2] for the case o = 1/2, is that the price rise

increment for a node with empty push list is at least be.

Proposition 3: If we perform a price rise on a node whose push list is empty, then the price of that node

increases by at least /3e.

Proof: If the push list of a node i is empty, then for every arc (i, j) E A we have pi -pj -fi+(xij) (1-1)e,

and for every arc (j, i) E A we have pj - pi - fj (xji) > -(1 - /)e. This implies that the following numbers:

Pj -Pi - + fi+ (xij) + e, V (i,j) E A,

pj - Pi -fj (xji) + e, V (j,i) E A,

are all greater than or equal to 3eg. Since a price rise on i increases pi by the increment that is the minimum

of all these numbers, the result follows. Q.E.D.

Props. 2 and 3 may be interpreted graphically in terms of the characteristic curve:

rij = {(xij,tij) E R2 I fij(xij) < tij < fi(i)

Then, (i, j) being in the push list of i (respectively, j) corresponds to (xij,pi -pj) belonging to the "strip"

at height between (1 - /)e and e above (respectively, below) rij. Figure I illustrates when an arc (i, j) is in

the push list of i and when it is in the push list of j.

i.i.
Pi'Pj Pi-Pj r...

I I

Xij Xij

Figure 1: A visualization of the conditions satisfied by a push-list arc. The

shaded area represents flow-price differential pairs corresponding to a push-list

Since fij is convex so that rij is a monotone curve, it is readily seen that, if (i, j) is in the push list of i

(respectively, j), then xij may be increased (respectively, decreased) by a positive amount before (xij, pi -pj)

reaches rij. The flow margin of an arc (i, j) for the case 3 = 1/2 is illustrated in Fig. 2. Similarly, if (i, j) is

2. A Generic Auction Method

I , I
I.' I.

Pi-Pj i- PiPj

in the push list of i. in the push list of j

.·
- ..'./I

- Theo margn r 'The flow margin of an arce
(i j) in the push list of i. , (i j) in the push list ofj.

xij Xij + 6 ij - Xi

Figure 2: The flow margin 6 of a push-list arc (i,j).

not in the push list of i (respectively, j), then Pi - pj may be increased (respectively, decreased) by at least

Oe before (xij, pi - pj) exits from the strip of height up to e above and below Fij.

Lastly, for any e > 0, any / E (0, 1), and any flow-price vector pair (x,p) satisfying e-CS, we consider

the arc set A* that contains all push list arcs oriented in the direction of flow change. In particular, for each

arc (i,j) in the forward portion L+(i) of the push list of a node i, we introduce an arc (i,j) in A* and for

each are (j, i) in the backward portion L- (i) of the push list of node i we introduce an arc (i, j) in A* (thus

the direction of the latter arc is reversed). The set of nodes AJ and the set A* define the admissible graph

G* = (J/, A*) [BPT95]. Note that an arc can be in the push list of at most one node, so G* is well defined.

We will consider methods that keep G* acyclic at all iterations. Intuitively, because we move flow in the

direction of the arcs in G*, keeping G* acyclic helps to limit the number of flow adjustments between price

rises. To ensure that initially the admissible graph is acyclic, one possibility is to choose, for any initial price

vector pO, the initial flow vector xz such that (xz,p0) satisfies O-CS, that is,

fi (x) < - p < ft(x), V (i, j) E A. (14)

It can be seen that this choice is always possible [BPT95], that e-CS is satisfied by (x°,p0) for any e > 0,

and that the initial admissible graph is empty and thus acyclic.

In the next two sections, we will study two specializations of the generic auction method. These methods

perform flow adjustment by moving flow out of nodes with positive surplus along push-list arcs and they

perform price rises only on nodes with empty push lists. In addition, they keep the admissible graph acyclic

at all iterations and have favorable complexity bounds. As a final note, we saw earlier that, upon termination

of the generic auction method, the flow vector and price vector satisfy e-CS and the flow vector is feasible,

so they are approximately optimal for (P) and (D). The following proposition, due to [BHT87], makes this

notion of approximate optimality more precise.

Proposition 4: For each e > 0, let x(e) and p(c) denote any flow and price vector pair satisfying e-CS

9

3. The e-Relaxation Method

with x(e) feasible and let ((e) denote any flow vector satisfying CS together with p(e) (note that ((e) need

not be feasible). Then

0 < f(x(e)) + q(p(e)) < e IE xij(e) - Eij(e)

(i,j)EA

Furthermore, f(x(e)) + q(p(e)) - 0 as e -+ 0.

Proposition 4 does not give an a priori estimate of how small e has to be in order to achieve a certain

degree of approximate optimality as measured by the duality gap. However, in the common case where

finiteness of the arc cost functions fij imply lower and upper bounds on the arc flows, Prop. 4 does yield

such an estimate for e.

3. THE e-RELAXATION METHOD

In this section we consider the e-relaxation method presented in [BPT95] for solving (P) and (D). We

will see that it is a special case of the generic auction method and, as such, its complexity may be analyzed

using the results of Section 2. First, we describe the method.

For a fixed c > 0 and JI E (0, 1), and a given flow-price vector pair (x,p) satisfying e-CS, an iteration of

the e-relaxation method updates (x,p) as follows:

An Iteration of the c-Relaxation Method

Step 1: Select a node i with positive surplus gi (see Eq. (2)); if no such node exists, terminate the method.

Step 2: If the push list of i is empty, go to Step 3. Otherwise, choose an arc from the push list of i and perform a

6-flow push towards the opposite node j (i.e., increase fij by 6 if (i,j) is the arc; decrease fji by 6 if (j, i)

is the arc), where

5 = min{gi, flow margin of the chosen arc}.

If the surplus of i becomes zero, go to the next iteration; otherwise, go to Step 2.

Step 3: Increase the price pi by the maximum amount that maintains e-CS. Go to the next iteration.

To see that the e-relaxation method is a specialization of the generic auction method of Section 2,

simply notice that Step 3 is a price rise on node i and that Step 2 adjusts the flows in such a way that e-CS

is maintained and nodes with nonnegative surplus continue to have nonnegative surplus for all subsequent

iterations. The reason for the latter is that a flow push at a node i cannot make the surplus of i negative

(by choice of 6 in Step 2), and cannot decrease the surplus of neighboring ncdec. Furthermore, the e-

relaxation method performs a price rise only on nodes with empty push list. Then, by Prop. 3, each price

rise increment is at least Ofe and, by Prop. 1, the number of price rises (i.e., Step 3) on each node is at

10

3. The e-Relaxation Method

most (K + 1)(N - 1)/3, where K is any nonnegative scalar such that the initial price vector satisfies Ke-CS

together with some feasible flow vector. Thus, to prove finite termination of the c-relaxation method, it

suffices to show that the number of flow pushes (i.e., Step 2) performed between successive price rises is

finite. Following [BPT95], we show this by first showing that the method keeps the admissible graph acyclic.

Proposition 5: If initially the admissible graph is acyclic, then the admissible graph remains acyclic at

all iterations of the e-relaxation method.

Proof: We use induction. Initially, the admissible graph G* is acyclic by assumption. Assume that G*

remains acyclic for all subsequent iterations up to the mth iteration for some m. We will prove that after

the mth iteration G* remains acyclic. Clearly, after a flow push the admissible graph remains acyclic, since

it either remains unchanged, or some arcs are deleted from it. Thus we only have to prove that after a price

rise on a node i, no cycle involving i is created. We note that, after a price rise on node i, all incident arcs to

i in the admissible graph at the start of the mth iteration are deleted and new arcs incident to i are added.

We claim that i cannot have any incoming arcs which belong to the admissible graph. To see this, note that,

just before a price rise on node i, we have from (4) that

Pi -Pi- f i(xji) < e, V (j, i) E A,

and since each price rise is at least 3e, we must have

pj - pi - f+ (xji) < (1 -)E, V (j, i) E A,

after the price rise. Then, by Eq. (13a), (j, i) cannot be in the push list of node j. By a similar argument, we

have that (i, j) cannot be in the push list of j for all (i, j) E A. Thus, after a price rise on i, node i cannot

have any incoming arcs belonging to the admissible graph, so no cycle involving i can be created. Q.E.D.

We say that a node i is a predecessor of a node j in the admissible graph G* if a directed path (i.e., a

path having no backward arc) from i to j exists in G*. Node j is then called a successor of i. Observe that,

in the e-relaxation method, flow is pushed towards the successors of a node and if G* is acyclic, flow cannot

be pushed from a node to any of its predecessors. A d-flow push along an arc in A is said to be saturating if

S is equal to the flow margin of the arc. By our choice of 6 in the e-relaxation method, a nonsaturating flow

push always exhausts (i.e., sets to zero) the surplus of the starting node of the arc. Then, by using Prop. 5,

we obtain the following result as in [BPT95, Prop. 5].

Proposition 6: If initially the admissible graph is acyclic, then the number of flow pushes between two

successive price rises (not necessarily at the same node) performed by the e-relaxation method is finite.

Proof: Wie observe that a saturating flow push along an arc removes the arc from the admissible graph,

while a nonsaturating flow push does not add a new arc to the admissible graph. Thus the number of

saturating flow pushes that can be performed between successive price rises is at most A. It will thus

11

3. The e-Relaxation Method

suffice to show that the number of nonsaturating flow pushes that can be performed between saturating flow

pushes is finite. Assume the contrary, that is, there is an infinite sequence of successive nonsaturating flow

pushes, with no intervening saturating flow push. Then the admissible graph remains fixed throughout this

sequence. Furthermore, the surplus of some node i ° must be exhausted infinitely often during this sequence.

This can happen only if the surplus of some predecessor il of i ° is exhausted infinitely often during the

sequence. Continuing in this manner we construct an infinite succession of predecessor nodes {ik}k=o,1,....

Thus some node in this sequence must be repeated, which is a contradiction since the admissible graph is

acyclic. Q.E.D.

By refining the proof of Prop. 6, we can further show that the number of flow pushes between successive

price rises is at most (N + 1)A, from which a complexity bound for the e-relaxation method may be readily

derived. Below, we consider an implementation of the method, also presented in [BPT95, Section 4], that

has a very good complexity.

Efficient Implementations

Here we consider a particularly efficient implementation, called the sweep implementation, of the e-

relaxation method. This implementation was introduced in [Ber86a] and was analyzed in more detail in

[BeE88], [BeT89], and [BeC93] for the linear cost case. We will analyze the running time of this imple-

mentation for the general convex cost case. The analysis was orginally presented in the Ph.D. thesis of the

second author [Pol95] and in the subsequent paper [BPT95]. Here we only review the basic ideas and the

main results, some of which will also be used to analyze the auction/sequential-shortest-path algorithm of

the next section. The reader is referred to the above thesis and paper for more details of the analysis and

the proofs.

In the sweep implementation of the e-relaxation method, the admissible graph is acyclic initially (and,

by Prop. 5, it remains acyclic at all iterations), and the nodes are chosen in Step 1 of the iteration in an

order which we now describe: All the nodes are kept in a linked list T, which is traversed from the first to

the last element. The order of the nodes in the list is consistent with the successor order implied by the

admissible graph; that is, if a node j is a successor of a node i, then j must appear after i in the list. If the

initial admissible graph is empty, as is the case with the initialization of Eq. (14), the initial list is arbitrary.

Otherwise, the initial list must be consistent with the successor order of the initial admissible graph. The

list is updated in a way that maintains the consistency with the successor order. In particular, let i be the

node chosen in Step 1 of the iteration, and let Ni be the subset of nodes of T that are after i in T. If the price

of i changes in this iteration, then node i is removed from its position in T and placed in the first position of

T. The node chosen in the next iteration, if Nt is nonempty, is the node i' E Ni with positive surplus which

ranks highest in T. Otherwise, the positive surplus node ranking highest in T is chosen. It can be shown

(see the references cited earlier) that, with this rule of repositioning the nodes following a price change, the

12

3. The e-Relaxation Method

list order is consistent with the successor order implied by the admissible graph at all iterations. The idea

of the sweep implementation is that an e-relaxation iteration at a node i that has predecessors with positive

surplus may be wasteful, since the surplus of i will be set to zero and become positive again through a flow

push at a predecessor node.

The next proposition gives a bound on the number of flow pushes made by the sweep implementation of

the e-relaxation method. This result is based on the observations that (i) between successive saturating flow

pushes on an arc, there is at least one price rise performed on one of the end nodes of the arc; (ii) between

successive price rises (not necessarily at the same node), the number of nonsaturating flow pushes is at most

N. We refer the reader to [BPT95, Props. 7 and 8] for a detailed proof of this result.

Proposition 7: Let K be any nonnegative scalar such that the initial price vector for the sweep imple-

mentation of the e-relaxation method satisfies Ke-CS together with some feasible flow vector. Then, the

number of price rises on each node, the number of saturating flow pushes, and the number of nonsaturating

flow pushes up to termination of the method are O(KN), O(KNA), and O(KN3), respectively.

By using Prop. 7, we now bound the running time for the sweep implementation of the e-relaxation

method. The dominant computational requirements are:

(1) The computation required for price rises.

(2) The computation required for saturating flow pushes.

(3) The computation required for nonsaturating flow pushes.

In contrast to the linear cost case, we cannot express the running time in terms of the size of the

problem data since the latter is not well defined for convex cost functions. Instead, we introduce a set of

simple operations performed by the e-relaxation method, and we estimate the number of these operations.

In particular, in addition to the usual arithmetic operations with real numbers, we consider the following

operations:

(a) Given the flow xij of an arc (i, j), calculate the cost fij(xij), the left derivative fi (xij), and the right

derivative f+ (xij).

(b) Given the price differential tij = pi - pj of an arc (i,j), calculate sup{(l f+(,) < tij} and inf{(

fi () Ž> tij}.

Operation (a) is needed to compute the push list of a node and a price increase increment; operation (b) is

needed to compute the flow margin of an arc and the flow initialization of Eq. (14). Complexity will thus be

measured in terms of the total number of operations performed by the method, as is stated in the following

proposition as a consequence of Prop. 7.

Proposition 8: Let K be any nonnegative scalar such that the initial price vector for the sweep imple-

mentation of the e-relaxation method satisfies Kc-CS together with some feasible flow vector. Then, the

13

4. The ASSP Algorithm

method requires O(KN3) operations up to termination.

The theoretical and the practical performance of the e-relaxation method can be further improved by

a technique known as e-scaling, originally conceived in [Ber79] as a means of improving the performance of

the auction algorithm for the assignment problem and later used in [Gol87] and [GoT90] for improving the

complexity of related algorithms for linear cost network flow. The idea of e-scaling is to apply the e-relaxation

method several times, starting with a large value of e, say e°, and to successively reduce e (typically at a

geometric rate) up to a final value, say e, that will give the desirable degree of accuracy to our solution.

Furthermore, the price and flow information from one application of the method is passed to the next. The

e-scaling implementation of the e-relaxation method is described and analyzed in detail in [BPT95, Section

4]. In particular, it is shown there that if e° is chosen sufficiently large so that the initial price vector satisfies

e°-CS together with some feasible flow vector, then the running time of the e-relaxation method using the

sweep implementation and e-scaling is O(N 3 ln(oe°/)) operations.

We note that a complexity bound of O(NAln(N)ln(e°/E)) operations was derived in [KaM93] for

the tighten and cancel method. For relatively dense network flow problems where A = ®(N 2 /lnN), our

complexity bound for the e-relaxation method is more favorable, while for sparse problems, where A =)(N),

the reverse is true. Also, it may be possible to obtain sharper complexity bounds for special (but still

interesting) classes of problems, such as those involving quadratic arc cost functions, and this is a subject

for further research.

4. THE AUCTION/SEQUENTIAL-SHORTEST-PATH (ASSP) ALGORITHM

The auction/sequential-shortest-path (ASSP) algorithm was proposed in [Ber92] for linear cost network

flow problems. In this section, we consider an extension of this algorithm to the general convex cost case

of (P) and (D). The resulting ASSP algorithm is a special case of the generic auction method and, as such,

we will analyze its complexity by using the results of Section 2 and by adapting the analysis of Section 3.

This algorithm differs from the e-relaxation method of Section 3 in that, instead of pushing flow along a

push-list arc to any node, it pushes flow along a path of push-list arcs to a node with negative surplus. In

fact, whereas a flow push in the e-relaxation method may increase the surplus of a node in magnitude (e.g.,

when flow is pushed to a neighboring node with nonnegative surplus), the ASSP algorithm maintains the

surplus of each node to be nonincreasing in magnitude.

First, we introduce some definitions that are needed to describe the ASSP algorithm. For a path P in

(Ar,4 A), we denote by s(P) and t(P) the starting node and the terminal node, respectively, of P. We define

two operations on a given path P = (ni, n2 ,..., nk): A contraction of P deletes the terminal node of P and

the arc incident to this node. An extension of P by an arc (nk, nk+l) or an arc (nk+l, nk), replaces P by

14

4. The ASSP Algorithm

the path (nl,n2,. .. ,nk,nk+l) and adds to P the corresponding arc. For any e > 0 and f3 E (0, 1), and any

flow-price vector pair (x, p) satisfying e-CS, we say that a path P in (N/I, A) is augmenting if each forward

(respectively, backward) arc (i, j) of P is in the push list of i (respectively, j) and s(P) is a source (i.e., has

positive surplus) and t(P) is a sink (i.e., has negative surplus). Below we describe the ASSP algorithm for

solving (P) and (D).

For a fixed e > 0 and 3 E (0, 1), and a given flow-price vector pair (x,p) satisfying e-CS, an iteration of

the ASSP algorithm updates (x, p) as follows:

An Iteration of the ASSP Algorithm

Step 1: Select a node i with positive surplus gi (see Eq. (2)) and let the path P consist of only this node; if no such

node exists, terminate the algorithm.

Step 2: Let i be the terminal node of the path P. If the push list of i is empty, then go to Step 3; otherwise, go to

Step 4.

Step 3 (Contract Path): Increase the price pi by the maximum amount that maintains e-CS. If i : s(P), contract

P. Go to Step 2.

Step 4 (Extend Path): Select an arc (i,j) (or (j,i)) from the push list of i and extend P by this arc. If the

surplus of j is negative, go to Step 5; otherwise, go to Step 2.

Step 5 (Augmentation): Perform an augmentation along the path P by the amount 5 (i.e., increase the flow of

all forward arcs in P and decrease the flow of all backward arcs in P by 6), where

6 = min {9g(p), -gt(p), minimum of flow margins of the arcs of P .

Go to the next iteration.

Roughly speaking, at each iteration of the ASSP algorithm, the path P starts as a single source and is

successively extended or contracted until the terminal node of P is a sink. Then an augmentation along P

is performed so to decrease (respectively, increase) the surplus of the starting node (respectively, terminal

node) towards zero, while leaving the surplus of the remaining nodes unchanged. In case of a contraction,

the price of the terminal node of P is strictly increased. To see that the ASSP algorithm is a specialization

of the generic auction method of Section 2, notice that Step 2 is a price rise on node i and that Step 5

adjusts the flows in such a way that e-CS is maintained and nodes with nonnegative surplus continue to

have nonnegative surplus for all subsequent iterations. The reason for the latter is that an augmentation

along P changes the surplus of only two nodes s(P) and t(P), and, by our choice of 6, the surplus of the

node s(P) remains nonnegative after the augmentation. Furthermore, the ASSP algorithm performs price

rise only on nodes with empty push list. Then, by Prop. 3, each price rise increment is at least 3e and, by

Prop. 1, the number of price rises (i.e., path contractions) on each node is at most (K + 1)(N - 1)/3, where

K is any nonnegative scalar such that the initial price vector satisfies Ke-CS together with some feasible

15

4. The ASSP Algorithm

flow vector. Thus, to prove finite termination of the ASSP algorithm, it suffices to show that the number of

path extensions (i.e., Step 4) and the number of augmentations (i.e., Step 5) performed between successive

path contractions is finite. Similar to Section 3, we show this by first showing that the algorithm keeps the

admissible graph acyclic and that the path P, when its backward arcs are reversed in direction, belongs to

the admissible graph.

Proposition 9: If initially the admissible graph is acyclic, then the admissible graph remains acyclic at

all iterations of the ASSP algorithm. Moreover, the path P maintained by the algorithm, when its backward

arcs are reversed in direction, belongs to the admissible graph at all times.

Proof: The admissible graph can change either by a price rise (Step 3) or by an augmentation (Step 5).

An augmentation keeps the admissible graph acyclic because, after an augmentation, the admissible graph

either remains unchanged or some arcs are deleted from it. A price rise keeps the admissible graph acyclic,

as was shown in the proof of Prop. 5.

To show that P, when its backward arcs are reversed in direction, belongs to the admissible graph at all

times, we simply observe that a path extension maintains this property (since the arc added to P is in the

push list of the terminal node of P) and that a path contraction also maintains this property (since a price

rise on the terminal node of P changes the admissible graph only by adding/deleting arcs incident to this

node and, after the contraction, this node and its incident arc in P are both deleted from P). Q.E.D.

By using Prop. 9, we have the following result that gives a bound on the number of augmentations

and path extensions performed by the ASSP algorithm between successive path contractions. By using this

bound and the bound on the number of path contractions found earlier, we can readily derive a complexity

bound for the ASSP algorithm.

Proposition 10: If initially the admissible graph is acyclic, then the number of augmentations and path

extensions between two successive path contractions (not necessarily at the same node) performed by the

ASSP algorithm are at most A + N and N(A + N), respectively.

Proof: We observe that an augmentation does not increase the number of nodes with nonzero surplus and

does not add any arc to the admissible graph. Moreover, after an augmentation, either an arc is removed

from the admissible graph or a node has its surplus set to zero. Thus, the number of arcs in the admissible

graph plus the number of nodes with nonzero surplus is decreased by at least one after each augmentation.

It follows that the number of augmentations between successive path contractions is at most A + N.

By Prop. 9, the path P always belongs to the admissible graph which is acyclic, so P cannot have

repeated nodes and hence the number of successive extensionls of P (bcfore a contraction or an augmentation

is performed) is at most N. Thus, the number of path extensions between successive path contractions is at

most N · (number of augmentations between successive path contractions) < N(A + N). Q.E.D.

16

5. Computational Experimentation

There is an interesting connection between the ASSP algorithm and the auction algorithm of [Ber91] for

finding a shortest path between two nodes, which explains our use of the name ASSP. In particular, we note

that each iteration comprises a sequence of path extensions and contractions, followed by an augmentation

at the end. Let us fix an iteration and let (P, j5) be the flow-price vector at the start of this iteration. Let us

now define an arc set A4z by introducing, for each arc (i, j) E A, two arcs in A4 : an arc (i, j) with length

pj -i3i+ f (xij)+ eand an arc (j,i) with lengthi -pj - fi (xij) +e. The resulting graph G7 = (Af, A47) will

be referred to as the reduced graph. Note that, because the pair (x,p) satisfies e-CS, the arc lengths in the

reduced graph are nonnegative. Furthermore, the reduced graph contains no zero-length cycles whenever the

admissible graph is acyclic (since such a cycle would belong to the admissible graph). It can then be verified

that the sequence of path extensions and contractions performed during the iteration is just the algorithm

of [Ber91] applied to find a shortest path in the reduced graph GR from a given source to any sink.

5 COMPUTATIONAL EXPERIMENTATION

We have developed and tested two experimental Fortran codes implementing the methods of Sections

3 and 4, with 3 = 1/2, for convex quadratic cost problems. The first code, named NE-RELAX-F, im-

plements the e-relaxation method with the sweep implementation and e-scaling as described in Section 3

(also see [BPT95] for alternative implementations). The second code, named ASSP-N, implements the

auction/sequential-shortest-path algorithm with some enhancements described in [Pol95]. These codes are

based on corresponding codes for linear cost problems described in Appendix 7 of [Ber91], which have

been shown to be quite efficient. Several changes and enhancements were introduced in our codes to handle

quadratic costs. In particular, all computations are done in real rather than integer arithmetic, and e-scaling,

rather than arc cost scaling, is used.

The codes NE-RELAX-F and ASSP-N were compared to two existing Fortran codes NRELAX and

MNRELAX from [BHT87]. The latter implement the relaxation method for, respectively, strictly convex

quadratic cost and convex quadratic cost problems, and are believed to be quite efficient. All codes were

compiled and run on a Sun Sparc-5 workstation with 24 megabytes of RAM under the Solaris operating

system. We used the -O compiler option in order to take advantage of the floating point unit and the design

characteristics of the Sparc-5 processor. Unless otherwise indicated, all codes upon termination meet the

criterion that the node surpluses are below 10- 5 in magnitude and the cost of the flow vector and the cost

of the price vector agree in their first 12 digits.

For our test problems, the cost functions are of the form

fij(=ij) aijij + bijo2j if 0 s Xij cij,
o 1 otherwise,

17

5. Computational Experimentation

for some aij E R and bij E [0, oo) and cij E [0, oo). We call aij, bij, and cij the linear cost coefficient, the

quadratic cost coefficient, and the capacity, respectively, of arc (i, j). We created the test problems using

two Fortran problem generators. The first is the public-domain generator NETGEN, written by Klingman,

Napier and Stutz [KNS74], which generates linear-cost assignment/transportation/transshipment problems

having a certain random structure. The second is the generator CHAINGEN, written by the second author,

which generates transshipment problems having a chain structure as follows: starting with a chain through

all the nodes (i.e., a directed graph with nodes 1, ..., N and arcs (1, 2), (2, 3), ..., (N - 1, N), (N, 1)), a user-

specified number of forward arcs are added to each node (for example, if the user specifies 3 additional arcs

per node then the arcs (i,i + 2), (i,i + 3), (i,i + 4) are added for each node i) and, for a user-specified

percentage of nodes i, a reverse arc (i, i - 1) is also added. The graphs thus created have long diameters

and earlier tests on linear cost problems showed that the created problems are particularly difficult for all

methods tested. As the above two generators create only linear-cost problems, we modified the created

problems as in [BHT87] so that, for a user-specified percent of the arcs, a nonzero quadratic cost coefficient

is generated in a user-specified range.

Our tests were designed to study two key issues:

(a) The performance of the e-relaxation method and the ASSP algorithm relative to the earlier relaxation

methods, and the dependence of this performance on network topology and problem ill-conditioning.

(b) The sensitivity of the e-relaxation method and the ASSP algorithm to problem ill-conditioning.

Ill-conditioned problems were created by assigning to some of the arcs much smaller (but nonzero)

quadratic cost coefficients compared to other arcs. When the arc cost functions have this structure, ill-

conditioning in the traditional sense of unconstrained nonlinear programming tends to occur.

We experimented with three sets of test problems: the first set comprises well-conditioned strictly

convex quadratic cost problems generated using NETGEN (Table 1); the second set comprises ill-conditioned

strictly convex quadratic cost problems and mixed linear/quadratic cost problems generated using NETGEN

(Table 3); the third set comprises well-conditioned strictly convex quadratic cost problems generated using

CHAINGEN (Table 5). The running time of the codes on these problems are shown in the last three to four

columns of Tables 2, 4, and 6. On the ill-conditioned NETGEN problems and the CHAINGEN problems,

NRELAX often had difficulty meeting the termination criterion and was terminated early. From the running

times we can see that the codes NE-RELAX-F and ASSP-N consistently outperform, by a factor of at least

3 and often much more, the relaxation codes NRELAX and MNRELAX on: all test problems, independent

of network topology and problem ill-conditioning. In fact, on the CHAINGEN problems, the e-relaxation

and auction codes outperform the relaxation codes by an order of magnitude or more.

18

References

REFERENCES

[Ber79] Bertsekas, D. P., "A Distributed Algorithm for the Assignment Problems," Laboratory for Informa-

tion and Decision Systems Working Paper, M.I.T., Cambridge, MA, 1979.

[Ber86a] Bertsekas, D. P., "Distributed Relaxation Methods for Linear Network Flow Problems," Proceedings

of 25th IEEE Conference on Decision and Control, 1986, pp. 2101-2106.

[Ber86b] Bertsekas, D. P., "Distributed Asynchronous Relaxation Methods for Linear Network Flow Prob-

lems," Laboratory for Information and Decision Systems Report P-1606, M.I.T., Cambridge, MA, 1986.

[Ber91] Bertsekas, D. P., Linear Network Optimization: Algorithms and Codes, M.I.T. Press, Cambridge,

MA, 1991.

[Ber92] Bertsekas, D. P., "An Auction/Sequential Shortest Path Algorithm for the Min Cost Flow Problem,"

Laboratory for Information and Decision Systems Report P-2146, M.I.T., Cambridge, MA, 1992.

[BeC93] Bertsekas, D. P., Castafion, D. A., "A Generic Auction Algorithm for the Minimum Cost Network

Flow Problem," Computational Optimization and Applications, Vol. 2, pp. 229-260, 1993.

[BCEZ95] Bertsekas, D. P., Castafion, D. A., Eckstein, J., and Zenios, S. A., "Parallel Computing in Network

Optimization", Handbooks in Operations Research and Management Science, (M. O. Ball, et. al, Eds.), Vol.

7, 1995, pp. 331-399.

[BeE87] Bertsekas, D. P., and Eckstein, J., "Distributed Asynchronous Relaxation Methods for Linear Net-

work Flow Problems," Proceedings of IFAC '87, Munich, Germany, July 1987.

[BeE88] Bertsekas, D. P., and Eckstein, J., "Dual Coordinate Step Methods for Linear Network Flow Prob-

lems," Mathematical Programming, Vol. 42, 1988, pp. 203-243.

[BeE87] Bertsekas, D. P., and El Baz, D., "Distributed Asynchronous Relaxation Methods for Convex

Network Flow Problems," SIAM Journal on Control and Optimization, Vol. 25, 1987, pp. 74-85.

[BHT87] Bertsekas, D. P., Hosein, P. A., and Tseng, P., "Relaxation Methods for Network Flow Problems

with Convex Arc Costs," SIAM Journal on Control and Optimization, Vol. 25, 1987, pp. 1219-1243.

[BPT95] Bertsekas, D. P., Polymenakos, L. C., and Tseng, P., "An e-Relaxation Method for Separable

Convex Cost Network Flow Problems," Laboratory for Information and Decision Systems Report LIDS-P-

2299, M.I.T., Cambridge, MA, 1995; to appear in SIAM Journal on Optimization.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods,

Prentice-Hall, Englewood Cliffs, NJ, 1989.

[DMZ95] De Leone, R., Meyer, R. R., and Zakarian, A., "An e-Relaxation Algorithm for Convex Network

19

References

Flow Problems," Computer Sciences Department Technical Report, University of Wisconsin, Madison, WI,

1995.

[FoF62] Ford, L. R., Jr., and Fulkerson, D. R., Flows in Networks, Princeton University Press, Princeton,

NJ, 1962

[Gol87] Goldberg, A. V., "Efficient Graph Algorithms for Sequential and Parallel Computers," Laboratory

for Computer Science Technical Report TR-374, M.I.T., Cambridge, MA, 1987.

[GoT90] Goldberg, A. V., and Tarjan, R. E., "Solving Minimum Cost Flow Problems by Successive Approx-

imation," Mathematics of Operations Research, Vol. 15, 1990, pp. 430-466.

[Hag92] Hager, W. W., "The Dual Active Set Algorithm," in Advances in Optimization and Parallel Com-

puting, Edited by P. M. Pardalos, North-Holland, Amsterdam, Netherland, 1992, pp. 137-142.

[HaH93] Hager, W. W., and Hearn, D. W., "Application of the Dual Active Set Algorithm to Quadratic

Network Optimization," Computational Optimization and Applications, Vol. 1, 1993, pp. 349-373.

[KaM84] Kamesam, P. V., and Meyer, R. R., "Multipoint Methods for Separable Nonlinear Networks,"

Mathematical Programming Study, Vol. 22, 1984, pp. 185-205.

[KaM93] Karzanov, A. V., and McCormick, S. T., "Polynomial Methods for Separable Convex Optimization

in Unimodular Linear Spaces with Applications to Circulations and Co-circulations in Network," Faculty of

Commerce Report, University of British Columbia, Vancouver, BC, 1993; to appear in SIAM Journal on

Computing.

[KNS74] Klingman, D., Napier, A., and Stutz, J., "NETGEN - A Program for Generating Large Scale

(Un) Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems," Management

Science, Vol. 20, 1974, pp. 814-822.

[LiZ94] Li, X., and Zenios, S. A., "Data Parallel Solutions of Min-Cost Network Flow Problems Using

e-Relaxations," European Journal of Operational Research, Vol. 79, 1994, pp. 474-488.

[Mey79] Meyer, R. R., "Two-Segment Separable Programming," Management Science, Vol. 25, 1979, pp.

285-295.

[NiZ93] Nielsen, S. S., and Zenios, S. A., "On the Massively Parallel Solution of Linear Network Flow

Problems," in Network Flow and Matching: First DIMACS Implementation Challenge, Edited by D. Johnson

and C. McGeoch, American Mathematical Society, Providence, RI, 1993, pp. 349-369.

[Pol95] Polymenakos, L. C. "e-Relaxation and Auction Algorithms for the Convex Cost Network Flow Prob-

lem," Electrical Engineering and Computer Science Department Ph.D. Thesis, M.I.T., Cambridge, MA,

1995.

[Roc70] Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

20

References

[Roc84] Rockafellar, R. T., Network Flows and Monotropic Programming, Wiley-Interscience, New York,

NY, 1984.

[TBT90] Tseng, P., Bertsekas, D. P., and Tsitsiklis, J. N., "Partially Asynchronous, Parallel Algorithms for

Network Flow and Other Problems," SIAM Journal on Control and Optimization, Vol. 28, 1990, pp. 678-710.

[Ven91] Ventura, J. A., "Computational Development of a Lagrangian Dual Approach for Quadratic Net-

works," Networks, Vol. 21, 1991, pp. 469-485.

[Wei74] Weintraub, A., "A Primal Algorithm to Solve Network Flow Problems with Convex Costs," Man-

agement Science, Vol. 21, 1974, pp. 87-97.

21

Problem Name Nodes Arcs Linear Cost Quad Cost Total Supply Capacity Range
probl 200 1300 [1-100] [5,10] 10000 [100-500]
prob2 200 1500 [1-100] [5,10] 10000 [100-500]
prob3 200 2000 [1-100] [5,10] 10000 [100-500]
prob4 200 2200 [1-100] [5,10] 10000 [100-500]
prob5 200 2900 [1-100] [5,10] 10000 [100-500]
prob6 300 3150 [1-100] [5,10] 10000 [100-500]
prob7 300 4500 [1-100] [5,10] 10000 [100-500]
prob8 300 5155 [1-100] [5,10] 10000 [100-500]
prob9 300 6075 [1-100] [5,10] 10000 [100-500]

problO 300 6300 [1-100] [5,10] 10000 [100-500]
probl 400 1500 [1-100] [5,10] 10000 [100-500]
probl2 400 2250 [1-100] [5,10] 10000 [100-500]
probl3 400 3000 [1-100] [5,10] 10000 [100-500]
probl4 400 3750 [1-100] [5,10] 10000 [100-500]
prob15 400 4500 [1-100] [5,10] 10000 [100-500]
probl6 400 1306 [1-100] [5,10] 10000 [100-500]
prob17 400 2443 [1-100] [5,10] 10000 [100-500]
probl8 400 1416 [1-100] [5,10] 10000 [100-500]
probl9 400 2836 [1-100] [5,10] 10000 [100-500]
prob20 400 1382 [1-100] [5,10] 10000 [100-500]
prob21 400 2676 [1-100] [5,10] 10000 [100-500]
prob22 1000 3000 [1-100] [5,10] 10000 [1000-2000]
prob23 1000 5000 [1-100] [5,10] 10000 [1000-2000]
prob24 1000 10000 [1-100] [5,10] 10000 [1000-2000]

Table 1: The NETGEN problems with all arcs having quadratic cost coefficients in the range shown. The
problems probl-probl7 are identical to the problems 1-17 of Table 1 of [BHT87]. The problems named probl8,
probl9, prob20, prob21 correspond to the problems 20, 23, 24, 25, respectively, of Table 1 of [BHT87].

Problem NRELAX MNRELAX NE-RELAX-F ASSP-N
probl 7.95 6.0 1.95 1.09
prob2 7.55 6.35 2.13 1.27
prob3 2.88 5.65 2.13 0.707
prob4 20.45 10.62 2.4 1.42
prob5 2.32 24.8 1.45 1.13
prob6 7.31 22.11 2.71 1.43
prob7 7.52 21.12 3.94 1.69
prob8 48.3 26.72 3.88 2.7
prob9 7.25 22.71 3.22 2.54

problO 4.41 31.53 2.7 3.02
probll 69.25 15.07 8.79 4.88
probl2 17.68 17.24 4.98 2.91
probl3 22.00 20.43 7.3 4.14
probl4 13.2 24.3 3.03 2.33
probl5 10.01 35.99 7.42 4.11
probl6 85.10 25.46 8.64 4.87
probl7 31.63 21.52 7.38 4.14
probl8 7.51 9.03 0.96 0.91
probl9 45.43 26.76 8.63 5.07
prob20 79.96 17.71 9.95 7.5
prob21 33.48 23.97 6.8 4.11
prob22 64.42 50.94 8.46 2.44
prob23 26.7 49.06 4.08 4.3
prob24 26 323.296 5.53 5.23

Table 2: Computational Results on a Sun Sparc 5 with 24MB memory. Running times are in seconds.

Problem Name Nodes Arcs Linear Cost Small Quad Cost Total Supply Capacity Range

probl 200 1300 [1-100] 1 1000 [100-300]

prob2 200 1300 [1-100] 0.1 1000 [100-300]

prob3 200 1300 [1-100] 0.01 1000 [100-300]
prob4 200 1300 [1-100] 0.001 1000 [100-300]
prob5 200 1300 [1-100] 0.0001 1000 [100-300]

prob6 200 1300 [1-100] 0 1000 [100-300]

prob7 400 4500 [1-100] 1 1000 [100-300]

prob8 400 4500 [1-100] 0.1 1000 [100-300]

prob9 400 4500 [1-100] 0.01 1000 [100-300]
problO 400 4500 [1-100] 0.001 1000 [100-300]
probll 400 4500 [1-100] 0.0001 1000 [100-300]
probl2 400 4500 [1-100] 0 1000 [100-300]

Table 3: The NETGEN problems with half of the arcs having quadratic c(st coefficient in the range [5,10] and
the remaining arcs having the small quadratic coefficient indicated. The problems prob6 and probl2 are mixed
linear/quadratic cost problems where half of the arcs have quadratic cost coefficient in the range [5,10] and the

remaining arcs have zero quadratic cost coefficient.

ii

Problem NRELAX MNRELAX NE-RELAX-F ASSP-N
probl 3.6 3.6 0.5 0.50
prob2 20.95 4.3 0.61 0.53
prob3 56.1 3.6 0.67 0.62
prob4 (5)791.24 3.28 0.73 0.67
prob5 (5) 1866.67 2.7 0.77 0.94
prob6 - 2.23 0.69 0.67
prob7 52.22 14.1 1.73 1.53
prob8 53.42 11.26 1.88 1.42
prob9 (5)80.5 13.76 2.3 1.56

probl0 (5)710.73 15.0 2.67 2.0
probll (4)5753.45 13.56 3.67 3.4
probl2 8.33 2.79 2.51

Table 4: Computational Results on a Sun Sparc 5 with 24MB memory. On the very ill-conditioned problems,
NRELAX was taking extremely long running times and was terminated early. The numbers in parentheses
indicate the number of significant digits of accuracy of the answer given by NRELAX upon termination. The
running times of NE-RELAX-F and ASSP-N on the mixed linear/quadratic cost problems prob6 and probl2
are included to demonstrate the fact that these methods are not affected significantly by ill-conditioning.

Problem Name Nodes Linear Cost Total Supply Capacity Range Add. Forw. Arcs Total # Arcs
probl 50 [1-100] 1000 [100-1000] 4 269
prob2 100 [1-100] 1000 [100-1000] 4 544
prob3 150 [1-100] 1000 [100-1000] 4 819
prob4 200 [1-100] 1000 [100-1000] 4 1094
prob5 250 [1-100] 1000 [100-1000] 4 1369
prob6 300 [1-100] 1000 [100-1000] 6 2235
prob7 350 [1-100] 1000 [100-1000] 6 2610
prob8 400 [1-100] 1000 [100-1000] 8 3772
prob9 450 [1-100] 1000 [100-1000] 8 4247

probl0 500 [1-100] 1000 [100-1000] 10 5705

Table 5: The CHAINGEN problems with all arcs having quadratic cost coefficients in the range [5,10]. Half of
the nodes have an additional reverse arc.

Problem MNRELAX NE-RELAX-F ASSP-N
probI 1.19 0.18 0.26
prob2 14.97 0.68 0.9
prob3 15.65 1.22 1.72
prob4 33.03 2.17 2.85
prob5 41.08 2.48 3.52
prob6 93.9 4.6 7.0
prob7 266.9 5.9 7.17
prob8 1102.64 10.4 13.95
prob9 2152.51 10.81 14.6

problO >2300 17.72 24.15

Table 6: Computational Results on a Sun Sparc 5 with 24MB memory. On these problems, NRELAX was taking
extremely long running times even for 5 digits of accuracy. For this reason, we are not reporting any running
times for NRELAX on these problems. MNRELAX also was taking a very long time on the last problem and
was terminated early. This is indicated by the > sign.

111

