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ABSTRACT

A characterization of quantum measurements by operator-
valued measures is presented in this thesis. The 'genera-
lized' measurements characterized include simultaneous
approximate measurement of noncommuting observables. This
characterization is suitable for solving problems in quantum
communications.

Two realizations of such measurements are discussed.
The first is by adjoining an apparatus to the system under
observation and performing a measurement corresponding to a
self-adJoint operator in the tensor-product Hilbert space of
the system and apparatus spaces. The second realization is
by performing on the system alone, sequential measurements
that correspond to self-adJoint operators, with the choice
of each measurement based on the outcomes of previous
measurements.

Simultaneous generalized measurements are found to be
equivalent to a single 'finer grain' generalized measurement,
and hence it is sufficient to consider the set of single
measurements.

An alternate characterization of generalized measurement
is proposed. It is shown to be equivalent to the characteri-
zation by operator-valued measures, but it is potentially
more suitable for the treatment of estimation problems.

Finally, a study of the interaction between the informa-
tion carrying system and a measuring apparatus, provides
suggestion for the physical realizations of abstractly
characterized quantum measurements.
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CHAPTER 1

INTRODUCTION

SECTION 1.1 Motivation for Research

Recent developments in coherent and incoherent light

sources, optical processors, detectors, optical fibers, etc.

have sparked wide interests in optical communication systems

and optical radars. At optical frequencies, quantum effects

can be very significant in the detection of signals. In

fact, there are many cases where quantum noise completely

dominates other noise sources in limiting the performance

of optical systems. In order to design, and to evaluate

quantum optical systems, it is essential to have a good

understanding of the properties of quantum measurements.

It is the purpose of this thesis to present a characteriza-

tion of quantum measurements which the communication

engineers will find convenient to use. The study of the

interaction between the information carrying system and a

measuring apparatus, provides a suggestion for the physical

realization of abstractly characterized quantum measurements.
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SECTION 1.2 Introduction to Part I -- the Characterization

of Quantum Measurements

It is a general assumption in quantum mechanics that a

measurement on a quantum system is characterized by a self-

adjoint operator, also known as an observable. Usually, the

Hilbert space in which this self-adJoint operator acts, is

not well defined. And in some literature it is not even

mentioned. Frequently, one assumes that the Hilbert space is

the one that includes all (but only) the accessible states

of the system. That is, it is possible to put the system in

any given state in this Hilbert space. Occasionally, one

can make use of the a priori knowledge of how the quantum

system has been prepared, and specify the Hilbert space as

the one that is spanned by the set of states that occur with

non-zero a priori probabilities. Only rarely is the Hilbert

space considered as any one that includes the set of acce-

ssible states as a proper subspace. And it is only in such

a definition of the Hilbert space that every measurement is

characterized by a self-adJoint operator. However, this

definition of the space is often unacceptable, because one

is seldom sure how big the Hilbert space has to be before a

particular measurement can be characterized by a self-

adjoint operator within the space. It is particularly

clumsy for the communication engineer when he tries to find



- 14 -

the optimal measurement, by optimizing over a set of such

loosely and poorly defined measurements. Therefore, the

communication engineer is interested in characterizing the

set of all quantum measurements by operators acting in more

well-defined Hilbert spaces, such as the space spanned by

all the accessible states, or the space spanned by the set

of states with non-zero a priori probabilities. When

defined on such spaces, not every measurement can be charac-

terized by a self-adJoint operator. For example, Louisell

and Gordon [1], and recently Helstrom and Kennedy [2] and

Holevo [3] have noted that if the system under observation

is adjoined with an apparatus, and a subsequent measurement

is performed on both systems, the scope of measurement can be

extended to at least simultaneous approximate measurements of

noncommuting observables. This particular type of measure-

ment is important because it has been shown [2] that minimum

Bayes Cost in communication problems may sometimes be

achieved by such measurements. The several authors noted

above, have suggested that the characterization of quantum

measurements by operator-valued measurements is appropriate

for quantum communications. Yuen [4], and then Holevo [3]

have derived necessary and sufficient conditions on the

operator-valued measures for optimal performances in detection

problems. It seems then, this characterization of measurement

is at least useful in calculating optimal performances of
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quantum receivers. However, being essentially an abstract

mathematical characterization, it does not suggest how the

measurement can be realized physically. Furthermore, it

does not explain what happens to the system as a result of

the measurement. This is in contradiction to the self-

adjoint observable view of quantum measurement, where the

observable can be expressed as a function of a set of genera-

lized coordinates of the system and one can at least see

what coordinates of the system the measurement should measure

in some fashion. Also the von Neumann Projection Postulate

(see Chapter 8) gives the final state of a system after a

self-adjoint measurement. So there are nice properties

about a self-adjoint observable that are better than the

operator-valued measure approach, particularly when one is

interested in physical realization of quantum measurements.

An observable is usually considered to be physically

measurable, at least in principle, while there has been

no indication at all that any measurement characterized by an

operator-valued measure can be measurable at all, even in

principle. But it is very important for a communication

engineer to optimize his receiver performances on a set of

measurements that is at least physically implementable in

principle. Recently Holevo [3] has noted that for every

operator-valued measure, one can always find an adjoining

apparatus and a self-adJoint observable on the composite
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system, such that the measurement statistics is the same as

given by the operator-valued measure. In Part I of this

thesis, we show, given the operator-valued measure, how the

apparatus Hilbert space can be found and what the corres-

ponding observable is. This constructive procedure, we will

call our 'first realization of generalized measurements'.

The method described is not the only way to realize a

generalized measurement however. If one considers a sequence

of self-adjoint measurements performed on the system alone,

the statistics of the outcomes sometimes correspond to those

given by an operator-valued measure. This, we call our

'second realization'.

Since considerations of simultaneous measurement of

noncommuting observables lead to the operator-valued measure

characterization, we will consider the simultaneous measure-

ment of two or more measurements characterized by operator-

valued measures.

Finally, we propose an alternate (but equivalent)

characterization of generalized measurements. This charac-

terization is potentially very useful in considering

estimation problems.
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SECTION 1.'3 Brief Summary of Part I

In Chapters 3 and 4, we address the mathematical problem

of the extension of operator-valued measures to projector-

valued measure on an extended space. (The results are used

only in the proofs of the theorems in later chapters. For

a general appreciation of the results of this thesis,

Chapter 4 can be skipped). The first realization of genera-

lized measurement by adjoining an apparatus is described in

Chapter 5. In Chapter 6, several properties of the extended

space and the resulting measure are discussed. The dimen-

sionality results are used in Chapter 7 to determine the

dimensionality of the apparatus Hilbert space required for

the first realization. They are also used in the 'second'

realization of several classes of generalized measurements

by sequential measurements, which is developed in Chapters

8 and 9 and the main results given in Chapter 10. Although

not every operator-valued measure corresponds to a sequential

measurement, we have.been able to show in Chapters 11 and 12

that a large class of measurements in quantum communications

can be realized by sequential measurements with the same or

arbitrarily close performances.

In Chapter 13, we show that a simultaneous measurement

of two or more generalized measurements corresponds to a
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single generalized measurement. Hence, consideration of

such measurements will not give improved performances.

Chapter 14 gives an alternative characterization

of generalized measurements.
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SECTION 1.4 Relation of Part I to Previous Work

Holevo suggested the realization by adjoining an

apparatus, when he noted Naimark's Theorem provides an

extension of operator-valued measures to projector-valued

measures on an extended space [3]. The method of embedding

the extended space in the tensor product space of the

system and apparatus is found by the author.

P. A. Benioff has done some work in the area of sequen-

tial measurements, 51, [61, [71 at the same time of this

thesis research. The characterization of sequential measure-

ment is similar to that given in Chapter 8.
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SECTION 1.5 Introduction and Summary of Part II

Although self-adJoint observables can in principle be

measured, very few of them correspond to known implementable

measurements. In Part II, we will show, how by means of an

interaction between the system under observation and an

apparatus, the relevent information can be transformed in

such a way that by measuring a measurable observable, we can

obtain the same outcome statistics of the abstractly charac-

terized measurement. Chapter 17 shows what type of trans-

formation is required and Chapter 18 provides means to find

the required interaction Hamiltonian. Inferences as to

what coordinates of the system and apparatus should be

coupled together and in what fashion, are drawn. Then in

Chapter 19, the constraints of physical law on the 'allowable'

set of interactions are discussed.
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CHAPTER 2

GENERALIZATION OF QUANTUM MEASUREMENTS

AN INTRODUCTION

It is generally assumed in quantum mechanics that an

observable of a quantum system is characterized by a self-

adJoint operator defined on the Hilbert space which describes

the state of the system. Let us call this operator K, and

assume it has a complete set of orthonormal eigenvectors

{Iki>}iei, associated with distinct eigenvalues {kil}i¢l

where I is some countable index set, and,

Klki> = kilki> (2.1)

Each commuting and orthogonal projection operator

{Hi - Iki><kiJ}ie projects an arbitrary vector of the

Hilbert space into the subspace spanned by Iki> and together

they form a complete resolution of the identity, that is,

AI i = I (2.2)where I is the identity operator
where I is the identity operator.

When the measurement characterized by the operator K is
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performed, one of the eigenvalues ki will be the outcome and

the probability of getting ki is,

P(ki) = <sinils>, (2.3)

if the system is described by a pure state Is>, or,

P(ki) = Tr{Ps1l i } , (2.4)

if the system is described by the density operator p s

This formulation of the measurement problem does not

include all possible measurements. For example it does not

encompass a simultaneous measurement of noncommuting observa-

bles. Louisell and Gordon [1] and recently Holstrom and

Kennedy [2] and Holevo [3] have noted that if the system S

is made to interact with an apparatus A and subsequent measure-

ments performed on S+A or A alone, the scope of measurement

can be extended to at least simultaneous approximate measure-

ments of noncommuting observables of S. In particular, one

can perform measurements corresponding to a set of noncommuting,

nonorthogonal self-adJoint operators {Qi}icl, defined on HS

the system Hilbert space, which forms a resolution of the

identity in HS.

I Qi = I (2.5)
iCH
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To illustrate this possibility we consider the interaction

of the system S with an apparatus A. Before interaction the

Joint state of S+A can be represented by the density operator

to = to to (2 .6)PS+A PS A

defined on the Tensor Product Hilbert space HS ® HA = HS+A

where denoted tensor product. The result of the interaction

is a unitary transformation on the oint state. At any

arbitrary time t later than to, the density operator of the

combined system and apparatus is,

pt = tU(tto)ptO o pOut(t,to ) (2.7)
PS+A ' S A

where U(t,to ) is the said unitary transformation.

Let {i(t)}iel be a set of commuting, orthogonal

projectors in HS® HA at the time t. If we perform a

measurement characterized by the i' s , the probability of

getting the eigenvalue ki corresponding to the subspace which

ni projects into, is

P(ki) = Tr{p +Ai(t ) (2.8)

Let 1if(to ) = U(t,to)i (t)U(t,to) (2.9)
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The {Ri(to))ic! again form a commuting, orthogonal projector-

valued, resolution of the identity in HS$ HA, and

P(ki) = Tr{p to ptoi(to)} (2.10)

Defining Q TrA{Ptoll(to). (2.11)

where TrA indicates taking partial trace over HA. We obtain

P(ki) = TrS{PSQi} (2.12)

where TrS indicates taking trace over HS.

The set {Qi}is! is again a resolution of the identity

but in general the Qi's are not orthogonal, nor commuting and

furthermore, they only have to be nonnegative definite self-

adJoint operators. However, it can be easily shown that if

the Qs are projectors it is necessary and sufficient that

they are orthogonal (A statement of the theorem due to Halmos

is given in Appendix A). This particular form of measurement

is important because it has been shown that minimum

Bayes Cost in the communication problems may sometimes be

achieved by such measurements.



CHAPTER 3

THEORY OF GENERALIZED QUANTUM MEASUREMENTS

We will now specify a generalized theory of quantum

measurements, that does not necessarily correspond to

measurements characterized by self-adJoint operators on the

Hilbert space that describes the system under observation.

As we have noted in the last chapter, in quantum mechanics,

an observable is characterized by a self-adJoint operator K

which possesses a set of orthogonal projection operators { i}

such that

Ski =I.
i

The set of projection operators are said to form a commuting

resolution of the identity, and defines a projector-valued

measure on the index set {i}.

Due to the inconvenience of this characterization of

quantum measurements to take into account of simultaneous

approximate measurement of noncommuting observables, it is

necessary to consider more generalized measurements

- 25 -



- 26 -

characterized by 'generalized' resolutions of the identity.

The requirement on the i's being projection operators

is relaxed, by replacing i's with nonnegative definite

operators Qi's, having norms less than or equal to one, so

Cs iJi I.

Now the 'measurement operators' Qi's no longer have to pair-

wise commute, nor are they orthogonal to each other in

general. The Qi's then define an operator-valued measure

on the index i.

Sometimes, the resolution of the identity does not have

to be defined on countable index sets like the integers.

For example the index set can be the whole real line. In the

next few pages, we will discuss more general definitions of

resolutions of the identity. Some of the terminologies will

be required for the discussion of estimation problems, although

for detection problems, what is given above is generally

adequate.

* See references [9], [10],[11] for more detailed motivations

and discussions.
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DEFINITION. A resolution of the identity is a one parameter

family of projections {Ex<} X<+ which satisfies the

following conditions,

(i) EkE = Emin(A,)

(ii) E o -= 0, E+ = I,

(iii) EX+ 0 - EX 

where E+0x = Ji EX

E+O x = 1$ E x,

x is an element in the space H. (3.1)/

Such a family of operators defines a projector-valued

measure on the real line R. For an interval A (X,1X2],

where X1 <X2 , the measure E(A) E E2-EX1 is a projection

operator (thus the name). It follows from condition (i) that

for two disjoint intervals A1 ,A2 on the real line,

E(A 1)E(A 2 ) = 0. (3.2)

In fact the above orthogonal relation is true for two
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arbitrary disjoint subsets of the real line (see Appendix A).

In this sense the resolution of the identity EX is also

called an orthogonal resolution of the identity.

For a small differential element d, the corresponding

measure is dE. = E(dX) = E+dX-E .

The integral

A = flXdEX (3.3)

converges in strong operator topology, and defines a self-

adjoint operator in the Hilbert space H. Conversely, by the

Spectral Theorem for self-adjoint operators (see Appendix B),

every self-adjoint operators possesses such integral repre-

sentation. The family {Ex} is called the spectral family for

the operator A.

Sometimes the projector-valued measure is defined on

only a finite number of discrete points, (for example the

points may be the integers i = 1,...,M) and it is often more

convenient to write the measure Hi corresponding to each

point i explicitly. The measures { i} are projection

operators and they sum to the identity operator,
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Ci n = I (3 .4)

The orthogonality condition in equation (3.1) becomes,

Bid j = 6ijEj (3.5)

where 6ij is the Kronecker 6-function 6 ij = {o i='J

To reconstruct the resolution of the identity given

in the definition, one only has to define,

X) = I Ili (3.6)i's

and {Ed} will have all the desired properties of a resolution

of the identity.

EXAMPLE 3.1

If a self-adJoint operators A has a set of eigenvectors

{lai>}i=l that forms a complete orthonormal basis for the

Hilbert space H, then A can be written as,

M
A = I ailai><ail (3.7)i

where the ais are the real eigenvalues of A.
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The set of projection operators,

Hi = lai><ail (3.8)

forms a projector-valued measure on the integers, i 1,...,M,

and they sum to the identity operator.

M
I ri = I (3.9)

i=l

DEFINITION. A generalized resolution of the identity is a

one parameter family of operators {F }_ .<x<+ . which

satisfy the following conditions,

(i) if 2>1, F 2-F 1 is a bounded nonnegative definite

operator (which implies it is also self-adJoint.)

(ii) FX+ F1

(iii) F_ = 0, F+ = I. (3.10)/

Such a family of operators defines an operator-valued

measure on the real line. For example, if we have an interval

A = ( 1 ,A2 ], where 1 Ax2 , the measure is F(A) = FX2-F 1.

For a small differential element d, the corresponding

measure is dF = F(dX) = F +dX-F . Whenever the integral

A = fIdFl converges in strong operator topology, it defines

a symmetric operator A in the Hilbert space H (i.e. its

domain DA is dense in ; and for f,geDA, (Af,g)=(f,Ag).) and
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the family {Fa} is called the generalized spectral family for

the operator A.

A projector-valued measure is a special type of operator-

valued measure. However operator-valued measures are more

general in the sense that the measures are nonnegative definite

self-adjoint operators instead of being restricted to projec-

tion operators only, as is the case in projector-valued

measures. One of the consequences of this definition of

measure is that the measures of two disjoint subsets of the

index set do not have to be orthogonal as in projector-valued

measures.

EXAMPLE 3.2

An example of operator-valued measures that is not a

projector-valued measure is when {El}, {El} are two projector-

valued measures that do not commute for at least one value

of X, and we form the generalized resolution of the identity,

FX = E + (-a)E X (3.11)

where a is a real parameter in the interval (0,1). Specifical-

ly, FX defines an operator-valued measure, but not a

projector-valued measure, on the real line.
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As in the case of projector-valued measure, sometimes an

operator-valued measure is defined on only a finite number of

discrete points (for example, the points may be the integers,

i = 1,...,M) and it is more convenient to write the measure

Qi corresponding to each point i explicitly. The measures

Qi's are nonnegative definite self-adJoint operators with norm

less than or equal to one. To reconstruct the resolution of

the identity given in the definition, one only has to define

F = I Qi (3.12)i<Ai

and {Fx} will have all the desired properties of a resolution

of the identity.

EXAMPLE 3.3

Figure 3.1 shows three vectors Isi>, i=1,2,3 with the

symmetry that

<s is > - / for all i. (3.13)

Is2 >

120 1200

53> Figure 3.1
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If we define

= lsi><sil, i = 1,2,3 (3 .14)i 3

Then Qi = (3.15)
i=l

and Q (3.16)

SoQ} i i

So {Qi}i= is an operator-valued measure but not a

projector-valued measure, on the space spanned by the {Isi>}.

The operator-valued measure {Qi above is defined on the

real line R. One can also define operator-valued measures on

general measurable spaces.

If (X,A) is a measureable space (where X is the space,

and A a collection of subsets of X, on which an appropriate

measure can be defined (for example, A can be a a-algebra,

a-ring, a-field, and so forth); a map F(.) can be defined

as follows,

For all subsets AcA, A F(A),

where,

(i) F(A) is a bounded nonnegative definite self-adjoint

operator,
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(ii) the map F(.) is countably additive, i.e. for any

countable number of pairwise disjoint subsets in

A, {Ai} say,

F( VAi) = I F(Ai), (3.17)
i

(iii) F(X) = I, the identity operator in H, so F(.) is

a resolution of the identity,

(iv) for the null set 0, F(0) = 0./

EXAMPLE 3.4

The output of a laser well above threshold is in a

coherent state 151 A coherent state a> is labeled by a

complex number a, where the modulus corresponds to the

amplitude of the output field, and the phase of a corresponds

to the phase of the field. The inner product between two

coherent states Ia>,1> is given by,

al = expa a- 2a - 81 2 (3.18)

The coherent states can be expressed as a linear combina-

tion of the photon states In>, n = ,1,... where the integer

n indicates the number of photons in the field

la> = e l/21 (n!)l ln (3.19)
n-0
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The Hilbert space H that describes the field is spanned

by the set of photon states {In>}n0 and,n=Oand

(3.20)XI n><nl = I H.
n=O

If we define

{IIn = In><nl n=On ~n=O (3.21)

The set of projectors { n} is a projector-valued measure

defined on the positive integers of the real line.

The set of coherent states also spans H, and the integral

fcla><ald2a = IH (3.22)

where C is the complex plane and d2a c dIm(a)dRe(a).

If we define

{Q = la><a }aeC (3.23)

we have an operator-valued measure {Q a} defined on the complex

plane C instead of the real line and

QaQa, ' Qa6aat (3.24)
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so it is not an orthogonal resolution of the identity.

A measurement on a physical system can be characterized

by an operator-valued measure, with the outcome of the measure-

ment having values in (or labeled by elements in) X. The

probability of the outcome falling within a subset AcA, is

given by Tr{pF(A)}, where p is the density operator for the

system under observation. When a measurement is characterized

by a single self-adJoint operator, sometimes called an

observable, the measures are all projector-valued. Here,

the measures are generalized to nonnegative self-adJoint

operators with norms less than or equal to one. A natural

question that arises is, how do we realize such generalized

measurements. Does every operator-valued measure corresponds

to some physical measuring process? In the sequel we will

prove the following major theorem.

THEOREM 3.1

Every operator-valued measure can be realized as

corresponding to some physical measurement on the

quantum system under question in the following sense,

(a) it can always be realized as a measurement corres-

ponding to a self-adJoint operator on a composite

system formed by the system under observation and

some adjoining system which we will call the apparatus;
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or,

(b) under suitable conditions which will be specified

later, it can be realized as a sequence of self-
*

adJoint measurements on the system alone. /

In conclusion to this chapter we will give a simple example where

an observable cannot provide the type of information we desire and

generalized measurements have to be used.

Consider the situation when the information to be transmitted is

being stored in the orientation of the spin of an electron. The electron

will be in one of three possible states, just as those described in Example

3.3. By performing a spin measurement on the electron (that is, a

Stern-Gerlach type experiment), one can only have one of two possible

outcomes. This measurement is clearly unacceptable for distinguishing

between three possibilities. It is then necessary to bring in an apparatus

to interact with the electron and the subsequent measurement done on

the compoiste system will give the desired outcome statistics.

* We will restate this theorem in more precise mathematical

language later.
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CHAPTER 4

EXTENSION OF AN ARBITRARY OPERATOR-VALUED MEASURE

TO A PROJECTOR-VALUED MEASURE ON AN EXTENDED SPACE

This chapter entirely concerns the proof of Theorem 3.1

and actually provides two construction procedures for the

extension space and extended projector-valued measure. For

those readers, who neither are interested in the proof nor

the construction, this chapter can be skipped without major

difficulties later in understanding the thesis. Example 4.1

then may be very instructive to read.

In order to prove Theorem 3.1 we need some preliminary

mathematical results. First we like to investigate the

extension of an arbitrary operator-valued measure to a

projector-valued measure on an extended space. Two slightly

different methods of extension will be given, since each has

its own merits and usefulness.

Holevo has noted that Naimark's Theorem provides such

an extension

THEOREM 4.1 NAIMARK'S THEOREM

Let Ft be an arbitrary resolution of the identity
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for the space H. Then there exists a Hilbert space H

which contains H as a subspace, and there exists an

orthogonal resolution of the identity Et for the space

H+, such that Ftf = PHE f, for all feH, where PH is the

projection operator into H./

The proof, which provides an actual construction, is

given in Appendix C.

The second method of extension is related to the unitary

representations of *-semigroups.

DEFINITION. Let G be a group. A function T(s) on G whose

values are bounded operators on a Hilbert space H, is

called positive semi-definite if T(s-1 ) = T(s)t, for

every sG and

CI {T(t-ls)h(s),h(t)} > 0 (4.1)
seG tG 

for every finitely nonzero function h(s) from G to H,

(that is, h(s) has values different from zero on a finite

subset of G only)./

DEFINITION. A unitary representation of the group G is a

function U(s) on G, whose values are unitary operators
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on a Hilbert space H, and which satisfies the conditions,

U(e) = I (e being the identity element of G), and

U(s)U(t) = U(st), for s,teG./

The following theorem is due to Sz-Nagy [12].

THEOREM 4.2.

(a) If U(s) is a unitary representation of the group G

in the Hilbert space H , and if H is a subspace of H ,

then T(s) = PHU(s)/H is a positive definite function

on G such that, T(e) = IH. If moreover, G has a topology

and U(s) is a continuous function of s (weakly or

strongly, which amounts to the same since U(s) is

unitary), then T(s) is also a continuous function of s.

(b) Conversely, for every positive definite function

T(s) on G, whose values are operators on H, with T(e)=IH,

there exists a unitary representation of G on a space H+

containing H as a subspace, such that

T(s) = PHU(s)/H for sG, (4.2)

* / means the operatorsis restricted to operate on elements

in H.
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and the minimality condition for the smallest possible

f , i given by,

H+ = GU(s)H * (minimality condition) (4.3)

This unitary representation of G is determined by the

function T(s) up to an isomorphism so that one can

call it "the minimal unitary dilation" of the function

T(s). If moreover, the group G has a topology and T(s)

is a (weakly) continuous function of s, then U(s) is

also a (weakly, hence also strongly) continuous function

of s./

The proof, which also involves a construction, is given

in Appendix D for easy reference.

Given Theorem 4.2, one can easily arrive at the following

theorem for the extension of arbitrary operator-valued measures.

* U(s)H means the set of all elements U(s)f, for all fH.

AMJ is defined as the least subspace containing the family

of subspaces {Mj).

** An isomorphism between two normed linear spaces H1 and 2

is a one-to-one continuous linear map M : H1 + H2 with

MH 1 = 2'
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THEOREM 4.3.

Let {Fk} be an operator-valued measure on the

interval 0 < X < 2, then there exists a projector-

valued measure Ek} in some extended space H+= H such

that F = PHEX/H for all ./

The proof is given in Appendix E.

Note that the minimality condition of Theorem 4.2

a

H = V U(n)H (4.4)
n=O

is equivalent to

H+ = VE H (4.5)
XX

and the system (H ,{E } ) is determined up to an isomorphism.

Also the interval of variation of the parameter X, [0,2w) can

be extended to any finite or infinite interval by using a

continuous monotonic transformation of the parameter X.

EXAMPLE 4.1. [31]

In Example 3.3 we give an operator-valued measure that is

not a projector-valued measure. Three vectors {Isi>}3= have

the structure shown in Figure 4.1. If we define,
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Is2 >

1>

-

/7f

Fig.4.1 Possible states Fig.4.2 Configurations of

of S. n i = kfi><1il

2.s> il,2,3 (4.6)
Qi = 3i i><sil i=1,2,3

Then, C = I (4.7)
iIlQi =I

where IH denotes the identity operator of the two dimensional

Hilbert space H spanned by the three vectors {Isi>i=l . Pick

any extra dimension orthogonal to H to form H+ together with

H. Let {lIi>i=1l be an orthonormal basis for the three

dimensional space H+ as shown in Figure 4.2. By symmetry

considerations, we adjust the axis of the coordinate system

made up of the {(li>}3l to be perpendicular to the plane H

spanned by the (Isi>). The projections of the oi>'s on the

plane of the Isi>'s along the axis are adjusted so that they

coincide with their respective si>, so that <$ilsi> =constant

for all i, is maximized (see Figure 4.2). By straight-forward

I a _-
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geometric calculations

v< ils>,1 2 2

and PHi > = Isi>.

Hence

PHI i><~ilPH 2= si><si

= PH 1HiPH for all i

where i Iyi><~il for all i, and

i = I +. (4.11)
i=l H

Therefore, {I i) is the projector-valued extension of {Qi} on

the extended space H+.

(4.8)

(4.10)

= Qi
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CHAPTER 5

FIRST REALIZATION OF GENERALIZED MEASUREMENTS -

FORMING A COMPOSITE SYSTEM WITH AN APPARATUS

Given Theorems 4.1 and 4.3, we can immediately prove

part (a) of Theorem 3.1. However we will first define some

mathematical quantities in order to state the Theorem more

precisely.

When we combine two systems, S and A say, together to

form a composite system, and if Hs and HA are the respective

Hilbert spaces that previously describe their individual

states, then the oint state of S+A can be described by the

Tensor Product Hilbert Space HS HA formed by the tensor

product of the two spaces Hs and HA. Thus if the state of S

is Is> and the state of A is a>, in the absence of any

interaction between S and A the oint state of S+A is denoted

by Is>la>. Moreover every element in HS® HA is of the form,

E cilsi>lai>,

* Holevo has suggested this procedure in a former paper [3]

though a detail development was absent.

** Here we are using the Dirac notation for states.
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where the ci's are complex numbers such that 1Ici12<oo, and the
i i

Isi>'s and lai>'s are elements in HS and HA respectively.

The inner product on HS HA is induced in a unique way

by the inner products on the constituent spaces HS and HA,

so that,

(<all<sll,IP 2 >la 2>) = <lls 2><a11a 2> (5.1)

It is an immediate consequence of the above structure

for the tensor product space HS® HA that if we have a set of

complete orthonormal basis for each of the two spaces HS and

HA then the set of tensor products of the elements in these

two sets, taken two at a time, one from each set, forms a

complete orthonormal basis for HS ® HA' That is if {Isi>)ie!

and {laj>)jeJ are sets of complete orthonormal basis for HS

and HA respectively, then the set {Isi>laj>}iI, jeJ forms a

complete orthonormal basis for the space HS HA cannot be

separated into the tensor product of an element in HS and an

element in HA but it is possible to express every element in

HS @H A as a linear combination of elements that are separable.

Given the above definition of the space HS0 HfA' the

operators in this space can easily be defined. If TS and TA

are bounded linear operators in HS and HA respectively, then
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there is a unique bounded linear operator TS0 TA in HS HA

with the property that

(TS TA)(Is>Ia>) = (TsIS>)'(TAla>) (5.2)

for all Is>eHS, and all la>eHA.

TS TA is called the tensor-product of the operators TS

and TA. Thus if the state of S is described by the density

operator pS and A by PA' one can show in the absence of inter-

actions, the Joint state is given by the operator PS0 PA'

By linearity the operation of the operator TS0 TA can be

extended to arbitrary elements in HS0 HA. Again the most

general operator on HS® HA cannot be written in the form of

the tensor product of two operators as above, but they can

be expressed as a linear combination of such product operators,

and linearity defines their operations uniquely on elements

in HS HA

It is obvious that the above description can be extended

easily to describe a composite system with arbitrarily many

(but finite), instead of two, component systems.

This concludes, for the moment, the characterization of

composite quantum systems. We will discuss the dynamics of
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such systems later when we talk about interactions.

Now we are able to state Theorem 3.1 (a) more precisely.

THEOREM 3.1 (a)

Given an arbitrary operator-valued measure {Q }aA'

where A is one index set on which the measure is defined,

one can always find an apparatus with a Hilbert space HAP

a density operator PA, and a projector-valued measure

{Ha csA corresponding to some self-adjoint operator

= q on HSOHA such that the probability of
A'

getting a certain value q corresponding to Qa as the

outcome of the measurement, is given by,

P(q ) = TrS{PSQ a

TrS+A{PS® PAnl} (5.3)

for all density operators pS in HS; where TrS is the

trace over HS and Trs+A the trace over HS@HA./

* The trace of an operator D over a space H is defined as

Tr{D}=I<filDIfi>, where {Ifi>} is any complete orthonormal

basis of H.. This quantity is independent of the particular

choice of basis.
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Proof.

We already know from Theorem 4.1 and 4.3 that an arbitrary

operator-valued measure {Q }caA with operator-values on the

space HS can be extended to a projector-valued measure {alae A

with operator-values on an extended space H + that contains HS

as a subspace. H+ can be embedded easily in a tensor product

space HS ® HA for some apparatus Hilbert space with enough

dimensions. We will address the question of how many dimen-

sions are required, later. Assume, for the moment, that HA

has enough dimensions such that the dimensionality of the space

HS® HA is greater than or equal to that of H+. If the state

of the apparatus is set initially at some pure state la>, then

the oint state of +A can be described as the tensor product

PS la><al of a density operator pS in HS and the density

operator PA = la><al in HA. Hence for every element Is> in

Hs it can be identified as the element Is>la> in HS0 HA. And

the whole space HS can be identified as the space HS$ Mla>

where Mla> is the one dimensional subspace of HA spanned by

the element a>. Now H = HSa MIa> is a proper subspace of

HS ®HA. The projection operator into the subspace H can be

identified as PH = Iffs® la><al where the set {Isi> } is any

orthonormal basis in Hs. We can form an operator-valued

measure {Qa ela><al} zA with values in the space H. By

Theorem 4.1 and 4.3 there exists a projector-valued measure

{I}a I A on an extended space H+ , which we can take as HS HA
L eA A
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since we have assumed that HA has enough dimensions, such that,

Qa a><al = PHllaPH, for all acA.

Now for an arbitrary density operator PS in HS,

Trs{ SQa} = TrS+A{(PS ® I a><al )(Qa ® a><al )}

= TrS+A{(PS Ia><al )PHIIaPH}

Using the relation, T

Trs{ PSQa }

But ® l a><a 

r{BC} = Tr{CB},

= TrS+A{PH(PS @ la><al )PHII}.

is an operator

PH(PS lIa><al)PH =

in H.

PS @ la><al.

Therefore,

Trs{PsQ } = Trs+A{PSI la><a lI },

for any arbitrary density operator pS./

Note, Q = <a (Qa la><al)la>

(5.5)

(5.6)

Hence,

(5.7)

(5.8)
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= TrA{ (Qa I a><al )(IHS la><al ) }

= TrA{ (PHa PH ) P }

= TrA{PHaPH }

= TrA{PH a}

= TrA{(IH I a><al)n a }
Sa

= TrA{ (IHS PA )II a }

where TrA denotes partial trace over the space HA.

(5.9)

*

EXAMPLE 5.1

We will make use of the operator-valued measure described

* The partial trace of an operator D in H H A over the

apparatus Hilbert space HA is defined as the operation

i Isj ><ai <sj ID sj,> ai><ssj I

where {Isj>}, {ai>} are complete orthonormal bases in HS and

HA respectively.

-- - --
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in Example 3.3 and 4.1, In Example 4.1 we have already found

the projector-valued measure extension {ii3= in the three-i i=l

dimensional extended space H . If we consider the original

two-dimensional Hilbert space H as the system space HS, all

we have to do is to find an apparatus whose state is described

by a Hilbert space HA, and then embed H+ in the tensor product

Hilbert space HS0 HA. Any apparatus Hilbert space of

dimensionality bigger than or equal to two will work (dimen-

sionality of HS HA will be bigger than or equal to four).

Let pA = a><aI where a> is some pure state in HA. Therefore,

the three possible oint states of S+A are {Isi>la>}=1, and

again they span a two-dimensional subspace in HS40HA, namely

HS ®MIa>' where Mla> is the subspace spanned by la>. Choose

any other one-dimensional subspace MS+A of HS® HA orthogonal

to HGMla>,. Then the space HSMIa>V MS+A (=H ) is three-

dimensional and includes HS®Mla> (=H) as a subspace. Hence

three orthogonal projectors {Ni}i=1 can be found in H , so

that they are the extensions of the corresponding operator-

valued measures {Q3i)il (see Example 4.1 for the structure of

the Ni's). Let Id be the identity operator of the space

HS(DHA - {HSMla>v MS+A}) and

II a i® Id for i=1,2,3 (5.10)

3then i (5.11)
then IlS (5.11)

i~~~s DH



- 53 -

TrA{(I @ I a><al )) } = TrA{(IHs 1 a><al )i }

= Qi for i=1,2,3.

and

(5.12)/
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CHAPTER 6

PROPERTIES OF THE EXTENDED SPACE AND

THE RESULTING PROJECTOR-VALUED MEASURE

In this section we will examine the properties of the

extended Hilbert space and the resulting projector-valued

measure. The most important property will be the dimensiona-

lity of the extended space, and it is important for two

reasons. First it will tell us the minimum number of dimen-

sions required of the apparatus Hilbert space. In a communi-

cations context, the apparatus should be considered as a part

of the receiver. If the dimensionality of the extended space

is known, we will have some idea on the required complexity of

the receiver. Secondly, the analysis of the minimum dimen-

sionality of the extended space is absolutely necessary for

the discussion of the realization of generalized measurements

by sequential techniques in Chapter 10.

When very little of the properties of the operator-

valued measure is known, Theorem 4.3 is very powerful. It

will provide an upper bound for the dimensionality of the

extended space whenever the cardinality of the index set, on

which the measure is defined, is given. For example, in

the M-ary detection problem, one tries to decide on one of
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M different signals. The characterization of that receiver

is given by an operator-valued measure defined on an index

set with M elements corresponding the M possible outcomes of

the decision process. That is, we will have M different

M
'measurement operators' {Qi)i=l that form a resolution of

the identity Qi = I. If the density operator of the
i=l

message carrying field is p, the probability of choosing the

k-th message is Tr{pQk}. The detailed properties of the

optimum Qi's depend heavily on the states of the received

field and the performance criterion chosen. Without going

into a more detailed analysis of the communication problem

all we know about the quantum measurement for an M-ary

detection problem is that it is characterized by M 'measure-

ment operators' N{Qiil' It will be under this kind of

situation where Theorem 6.1 is useful.

THEOREM 6.1.

For an arbitrary operator-valued measure {Qi)i=l'

Qi = I, whose index set has a finite cardinality M,i=l
the dimensionality of the minimal extended Hilbert space

min H+, is less than or equal to M times the dimensiona-

lity of the Hilbert space H. That is,

dim{min H+)< M dimH)}. (6.1)/
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The proof is given in Appendix F.

We will later show that there exists a general class of

{Qi} such that the upper bound is actually achieved. So in

the absence of further assumptions on the structures lf the

Qi's, this is the tightest upper bound.

If more structures for the operators Qi's are given, we

can determine exactly how large the extension space has to

be. The following two theorems will provide us with that

knowledge.

THEOREM 6.2.

If the operator-valued measure {Q }IeA has the

property that every Qa is proportional to a corresponding

projection operator that projects into a one-dimensional

subspaces S of H, (i.e. Qa = qlqa><qal where lq >0,

and Iqa> is a vector with unit norm), then the minimal

extended space has dimensionality equal to the cardinality

of the index set A (card {A}), i.e.

dim {min H + = card {A}. (6.2)/

The proof is given in Appendix G.
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THEOREM 6.3.

Given an operator-valued measure {Q }a¢A' let

R{Qa} denote the range space of {Qa}, asA, then

dim {min H+ = I dim {R{Qa}}. (6.3)/
aEA

The proof is given in Appendix H.

Given Theorems 6.2 and 6.3 we can make some interesting

observations.

COROLLARY 6.1.

It is an immediate consequence of the proof of

Theorem 6.3 (see Appendix H) that the statistics of the

outcomes of measurements characterized by some operator-

valued measure {Qa}aeA can be obtained as the 'coarse-

grain' statistics of the outcomes of a measurement

characterized by a set of one-dimensional operator-

valued measures {P ><q By consideringk k sk oik=l,cA
the associated set of one-dimensional operator-valued

measures {Pk} instead of {Q } no additional complica-

tions will be introduced, since the minimal extensions

* Kennedy has observed this result previously. [29]
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of the two sets of measures are exactly the same. In

this sense the two sets {Q}A and {Pk}K are
a aeA k k=1,teA

'equivalent'./

COROLLARY 6.2.

If all of the operators Q are invertible (that is

if each of their ranges is the whole space H) then

dim {min H+} = card {A}dim {HI. (6.4)/

The proof is obvious with Theorem 6.3.

Note that the upper bound of Theorem 6.1 is exactly

achieved when all the Q's are invertible.

COROLLARY 6.3.

The construction of the projector-valued measure

and the extended space provided by Naimark's Theorem

(Theorem 4.1) is always the minimal extension./

The proof is given in Appendix I.

EXAMPLE 6.1.

In example 4.1, the operator-valued measure

{Qi 1si><si}l3= has the property that each operator Qi
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is proportional to a one-dimensional projector. Hence, by

either Theorem 6.2 or Theorem 6.3 the dimensionality of the

minimal extended space should be equal to the cardinality

of the index set which is three. Therefore the extension

given in Example 4.1 is minimal. It is clear from that

example that the projector-valued extension has to be defined

on at least a three-dimensional space./

DISCUSSIONS.

All the theorems in this chapter hold when the dimensiona-

lity of the Hilbert space H is countably infinite (o);

but one has to be careful in interpreting the results.

In Theorem 6.1, the dimensionality of the minimal

extended space min H+ is given as,

* The following is some useful rules for cardinality multipli-

cations:

Finite cardinality indicated by an integer,

Countably infinite cardinality indicated by K ,

Uncountably infinite (or continuum) cardinality indicated by i,

integer-integer = integer,

integer-Ko = Ko,

integer ,
0 -- K0·

KO = K.
K V= 
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dim {min H + < M dim {H}. (6.5)

So if dim {Hi = K , then dim {min H+ I = M-K = K also. This

does not mean min H+ = H. If one examine the proof of that

theorem closely, the minimality statement really means

dim {min H+ - H = K (6.6)

The reason is, besides the space H itself we need

(M-l)dim{H}=(M-1)Ko=K0 number of dimensions for the extension.

(This holds even if M goes to infinity since KO-KO= K.)

The same idea is also true for the result of Theorem 6.2

which states

dim {min H +} = card {A}. (6.7)

In the event that card {A} = Ko, the result should be inter-

preted very carefully. Let A' be a subset of the index set A

such that for all aA', 1 >q. This means for all the aceA-A',

q = 1 and Qa is already a projector which requires no

extension. Hence all the 'extra' dimensions required in

min H+ is for those Qa with acA'. So we have the following

interpretation of the result of Theorem 6.2,
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dim {min H+ - H} = card {A'}- dim {R{ Q }},

(6.8)

where R{*} indicates the range space of the operator in the

brackets. Obviously card {A'} can be finite or infinite.

So the 'extra' dimensions needed to form min H+ from H is

also accordingly finite or infinite.

Similar interpretations should be made for the result of

Theorem 6.3. In Corollary 6.1 we have noted that the exten-

Sion in Theorem 6.3 is structurally similar to that in

Theorem 6.2, so the same interpretation applies. If one

follows the proof of Theorem 6.3, it is easy to arrive at the

following result (which we will not derive in detail),

dim {min H+ - HI

= I dim{R{lim(Qa-Qn )}} - dim {R{ I lim(Q -Q n )}}.
acA n+ a A n a

(6.9)

The result for Theorem 6.2 is a special case of this one./
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CHAPTER 7

APPARATUS HILBERT SPACE DIMENSIONALITY

We are now in a position to make some general comments

about the complexity of the apparatus required at the receiver

of a quantum communication system. Bearing in mind that the

dimensionality of a tensor product Hilbert space HSo HA is

given by,

dim {HSi HA ) = dim {(Hs)dim {HA)}. (7.1)

We can show the following theorem for the minimum dimensiona-

lity of the apparatus Hilbert space.

THEOREM 7.1.

If the system Hilbert space H is first extended

to the space H+ Hf and H+ is a minimal extension, then

the minimum number of dimensions of the apparatus Hilbert

space A required, for a realization of the measurement

described in the sense of Theorem 3.1(a), is given by

the smallest cardinal N such that,

N.dim {HS} > dim {min H+}. (7.2)/
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The proof is obvious.

In the absence of detailed knowledge of the nature of

the operator-valued measure, Theorem 6.1 gives us the following

very useful theorem.

THEOREM 7.2.

For an arbitrary operator-valued measure {Qi}i=l'

kQi = IH' whose index set has a finite cardinality M,

the minimal dimensionality of the apparatus Hilbert

space HA required to guarantee an extension of the

measure to a projector-valued measure in the tensor

product space HS®HA, is equal to M./

Proof.

The inequality in Theorem 6.1 asserts,

dim min H+} < M dim {Hs}. (7.3)

So if we make dim {HA} = M,

dim {HS HA} = dim {Hs}.dim {HA}

= M dim {HS} > dim {min H+}. (7.4)s-
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Hence we can always guarantee an extension. Since we

have shown in Corollary 6.2 that the bound can be achieved

for some classes of measures, M is the minimum dimensionality

that will always guarantee an extension./

The implications of the theorem are very interesting.

One of the sole reasons for our investigations of measurements

characterized by generalized operator-valued measures is that

we hope to improve receiver performances by optimizing over

an extended class of measurements that are not completely

characterized by self-adJoint operators. Theorem 6.1 tells

us that if we are interested in the M-ary detection problem,

all we have to do is to adjoin an apparatus with an M-dimen-

sional Hilbert space HA and consider only measurements

characterized by self-adjoint operators in the tensor product

Hilbert space HS( HA.

The following theorems are immediate consequences of

Theorems 6.2, 6.3 and 7.1.

THEOREM 7.3.

If the operator-valued measure {Q aaA has the

property that every Qa is proportional to a corresponding

projection operator, that projects into a one-dimensional

subspace Sa of H, (i.e. Q = qlqa><q l, where l>qa>O,
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and q,> is a vector with unit norm,) then the minimum

number of dimensions of the apparatus Hilbert space

required, for a realization of the measurement described

in the sense of Theorem 3.1 (a), is given by the smallest

cardinal N such that,

N dim {HS } > card {A}. (7.5)/

THEOREM 7.4.

Given an operator-valued measure {Qa}acA' let

R{Qa} denote the range space of Q, asA, then the

minimum number of dimensions of the apparatus Hilbert

space required, for a realization of the measurement

described in the sense of Theorem 3.1 (a), is given

by the smallest cardinal N such that,

N dim {HS} > I dim {R{Q }}. (7.6)/
aA

The proofs are obvious and are omitted.

EXAMPLE 7.1.

In Example 5.1, we showed how the extended space in

Example 4.1 can be embedded in a tensor product Hilbert space

of HS and an apparatus Hilbert space HA . We noted that the

space HA must be two-dimensional or bigger. The results in
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this chapter confirm that the dimensionality for HA must be

at least two./

DISCUSSION.

Again, one has to be careful when interpreting the results

of this chapter when the dimensionality of the Hilbert space

HS is infinite.

In Theorem 7.1 when both dim HS} = dim {min H+ ) = Ko

(countably infinite), the dimensionality of the apparatus

space will be an integer. In fact, it will be either one or

two. One, when the measure is already projector-valued and

does not need an extension. Two, whenever the measure is

not a projector-valued measure. Hence, if the Hilbert space

H in Theorem 7.2 is infinite dimensional (Ko ), the minimal

extended space is also infinite dimensional (M'Ko = K ).

The 'extra' dimensionality required for the most general

measure is at most (M-l)-KO0= 0 Hence if the apparatus space

is two-dimensional, we can guarantee an extension of any

measure on the tensor product space HS HA.

For both Theorems 7.3 and 7.4, if both dim {Hs}=dim{H+=K 0o,

then again, the dimensionality of the apparatus space required

is two. /
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CHAPTER 8

SEQUENTIAL MEASUREMENTS

SECTION 8.1 Introduction

In this chapter we will discuss the second realization

of generalized quantum measurements as stated in Theorem

3.1 (b). Our interests in sequential measurements originate

from the investigations of the interaction of a system under

observation with an apparatus, and sequential measurements

being performed separately on the system and apparatus,

with the structure of the second measurement optimized

depending on the outcome of the first measurement

In section 8.2, in order to illustrate how one may actually

perform a sequential measurement, we give an example of

a simple binary detection problem . The rest of the chapter

will analyse sequential measurements more mathematically.

* See Appendix J for a more general problem.
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SECTION 8.2 Sequential Detection of Signals Transmitted by a

Quantum System [13]

Suppose -we want to transmit a binary signal with a

quantum system S that is not corrupted by noise. The system

is in state Iso> when digit zero is sent, and in state Isl>

when the digit one is sent. (Let p and p1 be the a priori

probabilities that the digits zero and one are sent, po+P 1 1.)

The task is to observe the system S and decide whether a

"zero" or a "one" is sent. The performance of detection is

given by the probability of error. Helstrom has solved this

problem, for a single observation of the system S that can

be characterized by self-adJoint operator [19]. The probabi-

lity of error obtained for one simple measurement is

Pr [el = [1-i El/-4plpOI<slso>2]. (8.1)2 lob

We try to consider the performance of a sequential

detection scheme by bringing an apparatus A to interact with

the system S and then performing a measurement on S and

subsequently on A, or vice versa. The structure of the

second measurement is optimized as a consequence of the

outcome of the first measurement.

Suppose we can find an apparatus A that can interact
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with the system S so that after the interaction different

states of system S will induce different states of system A.

Suppose the initial state of the apparatus is known to be

lao>, and the final state is af> if S is in state I s>, and

iaf> if S is in state Il>, and la af> la o>. As is shown in

Part II of this thesis, the inner product of the state that

describes the system S+A when digit zero is sent and that

which describes it when digit one is sent is invariant under

any interaction that can be described by an interaction

Hamiltonian HAS that is self-adJoint. That is,

<ss> <SoSls><aolao> <SollS><aollaf>, (8.2)

where sof> and sl> are final states of S after interaction

if a zero or a one is sent. Now suppose

<solsl>l < I<Solsl>l < 1 (8.3)

which implies also

I<solsl>l < <a flaf> < (8.4)

We want to observe S first in an optimal way. The process is

similar to Helstrom's in that we choose a measurement that

is characterized by a self-adJoint operator OS in the Hilbert
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space HS so that the probability of error Pr[eS] is minimized,

and it is given by,

Pr [ = [l-/l-4pLPpp0 sfisfi>12] (8.5)

and the probability of correct detection is,

Pr [CS = [l+/1-4p 1 po|<sfisf>12]. (8.6)

Suppose the outcome is one. The a priori probabilities pl,Po

of apparatus A being in states laf> and laf> has been updated

to Pr[CSI and Pries], respectively.

Now we perform a similar second measurement on A,

characterized by an operator 0A in the Hilbert space HA.

A new set of a priori probabilities p -= Pr[Cs], po = Pr[ES]

is used for the states l> and af>. Assuming that we

already have all available information from the outcome of

the first measurement in the updated a priori probabilities

for A, we will base our decision entirely on the second

measurement. The optimal self-adjoint operator OA is chosen

to minimize the probability of error of detection PrIE] in

a process similar to the first measurement, and the per-

formance is,
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we can indicate this whole measuring process diagrama-

tically. When the first measurement characterized by the

operator OS is performed, one of two outcomes will result

we will decide (temporarily) that either the digit "zero" is

sent or the digit "one" is sent. OS being a self-adJoint

operator, possesses an orthogonal resolution of the identity

(and so defines a projector-valued measure on the digits "0"

and "1"). Let II0 be the corresponding projector-valued

measure for the outcome "0O". Then I-No is the measure for

the outcome "l". The probability of getting the outcome "O"

is, P = <sinlOs>, where Is> is the final state of S (either

Isf> or Isl>), and the probability of getting the outcome "1"

is, of course, 1 - P. Diagramatically we can represent this

first measurement by the following tree with two branches.

. Temporarily decide on "0"

I-Iol-p *-Temporarily decide on "1"

Figure 8.1

The transition probabilities are given by P for the branch

zero, "0", and 1 - P for the branch one, 1". If the outcome

is "1", we will perform a second measurement on A characterized

by the self-adJoint operator OA. Associated with 0 A are the

projector-valued measure 1 and I - Nl, for the outcome "1"
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and "0" respectively. However, if the first outcome is "O",

we will perform a different measurement corresponding to O0,A'

and with associated projector-valued measures 2 and I-H2

for "1" and "0" respectively. OA and 0 do not have to

commute. in fact, they do not, for the optimum detection

scheme (the one that minimizes the probability of error) in

this example. Diagramatically we can represent both measure-

ments in the following tree,

0Ott It01 -

decide on "O"

1" ""

decide on "1"

11 t1111 J
Figure 8.2 1 ' 

The probabilities of the different outcome sequences are,

Pr("O","O"} = (<slHols>)(l-<alH2la>)

= <al<sl1 o0 (I-12 ) s> la> (8.7)

Pr{"0 ","l" = (<slllols>)(<aflH21a>)

= <al<slino 0 n12 s>la> (8.8)
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Pr{"l","O"} = (1-<sI o s>)(1-<alHlla>)

= <al<sl(I-Io) (I-H1l)s>la> (8.9)

Pr("l","l" = (1-<sI>os>)(<alllla>)

= <al<sl(I- 0o)@ nls>la>. (8.10)

When the last outcome is the digit "O" ("1"), the receiver

will decide that "O" ("1") was sent.

It is surprising that an optimum measurement for

the binary detection problem can be realized as a sequential

measurement as such. Appendix J gives yet another realiza-

tion for the optimum measurement for a more general binary

detection problem. We are then naturally interested in

characterizing the general class of measurements that can

be provided by sequential measurements.
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SECTION 8.3 The Projection Postulate of Quantum Measurements.

In order to characterize sequential measurements, it is

necessary first to characterize the behaviour of a quantum

system after a measurement has been performed on it.

Von Neumann has provided a rather mathematical and concise

(yet complete) characterization in his book on Quantum

Mechanics 17]. We will here summarize ust those postulates

which are only essential to characterize sequential measure-

ments.

The Projection Postulate

When a measurement corresponding to a self-adjoint

operator A is performed on a quantum system S, the outcome

of the measurement will be one of the eigenvalues of the

operator A, and the resulting state of the system S will lie

in the eigenspace corresponding to that eigenvalue. More

precisely, let {Pi)M=l be the orthogonal resolution of the

identity given by A, such that,

M
Pi= I

i=l

(8.11)
M

and A = aiPi

where each ai is a real eigenvalue of A corresponding to the
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projector Pi. The probability of getting the eigenvalue ai

as the outcome as noted before is,

P(ai) = <sIPi ls> (8.12)

if S was in the pure state Is>,

P(ai) = Tr{pPi} (8.13)

if S was a statistical mixture described by the density

operator p.

Given the outcome is the value ai, the postulate states

that the system will be left in the state,'

Is'> =- Pis> (8.14)
<slPils> 1 /2

if S was in the pure state Is>. The factor <sIPils>1 /2 in

the denominator is for normalization. If S was described

by the density operator p; it will be left in the state

described by the density operator,

p' = PiPPi (8.15)
Tr{PiP}

where the factor Tr{Pip} again is for normalization./
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Julian Schwinger gives a more general statement on the

Projection Postulate in his book on Quantum Mechanics 

where he asserts, given the eigenvalue ai is the outcome,

the system can result in a state that is not entirely in the

eigenspace corresponding to the projector Pi. This however

does not contradict the view of Von Neumann. If one allows

in the Von Neumann postulate, a transformation (characterized

by a unitary operator) due to an interaction with some other

quantum systems, after the measurement has been performed,

the system can result in a state that does not lie in the

eigenspace into which Pi projects. In this sense the

Von Neumann Postulate can adequately take care of all physically

possible situation. The Schwinger formulation really does

not add new dimensions to our problem, and we will not provide

the precise statement of his views here, nor prove its equi-

valence to the Von Neumann statement.
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SECTION 8.4 The Mathematical Characterization of Sequential

Measurements

In this section we will characterize sequential measure-

ments mathematically in terms of the statistics of the outcomes

of the measuring process. The basic concept in the charac-

terization is simple given the projection postulate of

Von Neumann, though the actual mathematics for the most

general characterization can sometimes look very complicated

and formidable. P. A. Benioff has written three papers [5],

[6], [71 recently on the detailed characterization of each

sequential measurements. That characterization is too

complicated and involved for our purposes. We will, in the

following, outline a simple characterization based on

Von Neumann's projection postulate. For our areas of

concern, it will in effect have all the generality of

Benioff' s characterization.

It is important to note that the type of sequential

measurements we are considering involves a decision procedure

at each step of the measurement. To start the measuring

process, a measurement corresponding to a self-adJoint

operator is performed. Then, depending on the outcome of

the first measurement, a decision is made as to what the

second measurement should be. The form of the subsequent



measurements are decided on the knowledge of the outcomes of

the previous measurements. The decision procedures can be

predetermined. That is, one can prescribe, before the start

of the measuring process, the measurements that should be

performed contingent on the various possible outcomes. This

enables us to represent the measuring process in the form of

a tree as in Figure 8.2 in Section 8.2.

do

dI

ao0

d8

Figure 8.3

Figure 8.3 is an example of a typical tree. Each

vertex is labeled by a letter and a numerical subscript,

- 78 -
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(e.g. c2). At each vertex (with the exception of the

terminal verices such as c2 and dl) a measurement correspon-

ding to a self-adJoint operator is performed. The English

alphabet is used to label the chronological order of the

various measurements performed in the process. Thus, the

measurement at any vertex labeled by the alphabet 'c' follows

the measurement at an vertex labeled b, and the measuring

process evolves chronologically from left to right in the

manner in which the tree is drawn in Figure 8.3. Let the

self-adJoint operator corresponding to the measurement at

an arbitrary vertex ai (where a is an alphabet, i an integer)

be labeled as 0 i. Without loss of generality the number of

different outcomes of each measurement can be assumed to be

finite (we will make a comment on the infinite case later),

so that at each vertex the forward progress of the tree

representing all the possible outcomes of the measurement,. can.

be described by a finite number of branches. When the

measurement at a vertex, ai say, is performed, one of several

outcomes may result with certain probabilities and they are

represented by all the vertices on the right of the vertex ai

that are directly connected to it (by directly we mean that

the connection does not go through any other vertex or

vertices). Each of these vertices labels an outcome. For

example, the measurement at vertex bo in Figure 8.3 has three

possible outcomes, namely c, cl and c2. The self-adJoint
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operator Oai corresponding to the vertex ai defines a projec-

tor-valued measure on the set of all possible outcomes,

labeled by the corresponding vertices. If the vertices are;

Bj, J N o+l'... ,MilMai, where Ni < Mai are both

integers, let the projector-valued measures be {PB )J=N

Of course

i p -= I, the identity operator
j=Nai 

M (8.16)

and 0 N J
ai J=N 'OJ

ai

where Bj are the distinct real eigenvalues of the operator

0
mi

When the sequential measuring process takes place , the

state of the system will follow a certain 'path' of the tree.

Since at each measurement, only one of several outcomes can

occur, each of the possible paths the system may follow is

well-ordered in the sense that all the vertices in the path

are connected in the chronological order of the English

alphabets which label them. Each path starts at the initial

vertex a and ends at a terminal vertex. Thus in Figure 8.3

(ao,bl,c4,d8) is a path and (aO,bl,c2) is not. We will use

the labels of the vertices of a path to label the path.

Since different measurements can be performed at different
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vertices, the sequential measuring process can be said to

involve a decision procedure. The operators i 's can be

predetermined, but depending on the previous outcome (which

is probabilistic) a measurement corresponding to one 0 is

chosen. In order to characterize this sequential process

we must specify the statistics of the outcomes. Specifically

we want to know, if the system is in some initial state,

what is the probability of it following a certain path. A

straightforward application of von Neumann's Projection

Postulate will provide the answer.

Let the system be in the pure state Is> originally. We

will determine the probability of it following the path

(ao,bicjdk,..., ) say, where i,j,k,£ are some integers

and is the terminal vertex. When the measurement 0O is

performed, the probability of the system branching to the

vertex bi is < bi> where b is the projector-valued

measure of the outcome bi. By the von Neumann Projection

Postulate, when the outcome bi occurs the system is left in

the state,

Is(bi)> -- bi> (8.17)
<5IPb Is >l / 2 '

In general, given the system is in the state s'> at a vertex

aj, the probability of branching to the vertex k is
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<s"l PkS I''and as a result of such branching the system

will be left in the state

Hence the probability of following a path

is given by,

Pr{ ao,bicj ,dk,... ,'o I s>}

= <slPb i I s><s(b

For arbitrary vertices an,

<sl

= <SII

= <SIl 

Pan I s

am with Bm immediately following an,

'><sl' (n)i Pml S' (an)>

<St I
I s'>

< S Pan t1>1

Pa P Pa Is'>.n m n

PanI s '>

<S I P s> (8.19)

(8.19)

Therefore by induction,

(8.18)

<81 -I ·111 2

- -

(ao.$bi,)cik,",vd

i) I Pci I (bi )><g( c Pdk I S(ci )> . . ·

Pan
7-2* am 
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Pr{ao,bi cjdk' ' s

<SIPb PcP d.. Pd Pb Is><si Pbl Cj dk··· dk Cji

Defining the operators

R(abi cj,d k', 'Q)

= PbiPcj Pdk .. .PB

and Q(aObicjdk .. · t)

)R (ao,b i,

= Pr{pathl Is>}

= <sIQ(ao,bi,c ,..., ) js>

= <s Q(path) s>.

It can be shown easily that,

I Q(path)all paths
= I , the identity operator, and

Q(path) > 0, for all paths.

(8.20)

(8.21)

(8.22)

(8.23)

... $Y -·

So the set of non-negative
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definite operators {Q(path)}all paths forms an operator-

valued measure for the set of all outcome paths of the

sequential measurement. And the measures adequately charac-

terize the statisticl properties of the sequential measuring

process.

* Note that we have only discussed the case when the system

is in a pure state. When it is described by a density

operator in general, the mathematical arguments are

essentially the same but the notations become more compli-

cated. The derivation is omitted here.

�___ __
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CHAPTER 9

SOME PROPERTIES OF SEQUENTIAL MEASUREMENTS

In general, a sequential measurement does not correspond

to a measurement characterized by a self-adjoint operator

in the original Hilbert space of the system. This is because

the operator-valued measure for a path does not have to be a

projector in general. An example is the sequential measure-

meant represented by the tree in Figure 9.1.

D codu

1

aO

Figure 9.1

The operator-valued measures for the path (ao,bo,co) is

Q(a,bo,c o) = PboPcoPbo (91)

Q = 0Pbc P0 P b (9.1)

=2 PboPcobocob 0 (9.2)

If Pb and P
O CO

do not commute,

Q2 Q.

CO

(9.3)
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Hence Q is not a projector-valued measure, and the sequential

measurement does not correspond to any single self-adjoint

measurement on the system alone.

The necessary and sufficient condition that a sequential

measurement must satisfy so that there is a single self-

adjoint measurement on the system alone that would generate

the same measurement statistics, is simple, and is given in

Theorem 9.1.

THEOREM 9.1.

A sequential measurement is equivalent to a

single measurement characterized by a self-adjoint

operator on the Hilbert space of the system if and

only if the operator-valued measure of every path

is a projection operator./

Proof.

Since the measure of each path is projector-valued, by

the theorem in Appendix A, the measures are also orthogonal

and thus form an orthogonal resolution of the identity that

is the spectral family of some self-adjoint operator.

Conversely, if the measure Q of the outcome of a path is

not projector-valued, then it is not orthogonal to all the

measures of the other outcome paths. Hence the measurement
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does not correspond to that of a single self-adjoint operator./

Corollaries 9.1 and 9.2 give two sufficient conditions

that may be more useful.

COROLLARY 9.1.

A sequential measurement is equivalent to a single

measurement characterized by a self-adjoint operator on

the Hilbert space of the system if the projectors {P }

of all the vertices {ai} of each path pairwise commute./

Note. Two projectors from two different paths do not have

to commute.

Proof.

If the projectors for each path pairwise commute among

themselves, then the operator-valued measure Q for each

path can be written as,

Q(aob i',c j., Bl)= Pb PcJ 'P' PcjP bi

bi cj ... Pats (9.4)j~~~ 

Q2 = Q. (9.5)and
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Hence the measure Q for each path is a projector-valued

measure and corresponds to the orthogonal resolution of the

identity given by a self-adJoint operator defined on the

Hilbert space of the system./

COROLLARY 9.2.

A sequential measurement is equivalent to a

single measurement characterized by a self-adJoint

operator on the Hilbert space of the system if the

projectors {P ai of all the vertices ({ai of the

whole tree pairwise commute./

Proof.

If all the projectors in the tree pairwise commute,

then the projectors of all the vertices of each path pairwise

commute. By Corollary 9.1 the theorem is true./

Note that in the examples of Binary Detection in

Section 8.2 and Appendix J, the sequential measurements

satisfy the conditions of Corollary 9.1 but not those of

Corollary 9.2.

Finally, we should be concerned about the number of

individual measurements that is necessary in a sequential

procedure to realize certain measurements. The next
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Theorem 9.2 is obvious but will be useful later. The proof

is omitted.

DEFINITION. The length of a tree is the maximum number of

vertices a single path of that tree connects excluding

the terminal vertices.

THEOREM 9.2.

Any self-adjoint measurement with a finite

number of outcomes M, is equivalent to some sequential

measurement characterized by a binary tree of length N,

where N is the smallest integer such that

M< 2N. (9.6)/
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CHAPTER 10

SECOND REALIZATION OF GENERALIZED MEASUREMENTS

- SEQUENTIAL MEASUREMENTS

In Chapter 9, we gave an example of a two-stage sequen-

tial measurement characterized by a binary tree of length

two (see Figure 9.1). The resulting measurement is of a

generalized form. That is, it is characterized by an opera-

tor-valued measure but not by a projector-valued measure.

In this chapter, we will proceed to characterize several

classes of operator-valued measures that can be realized by

sequential measurements, and prove Theorem 3.1 (b) for

several classes of them. It is important to note that not

all operator-valued measures can be realized by sequential

measurements. For example, the operator-valued measure given

in Example 3.3 cannot be realized by any sequential measure-

ments, since the Hilbert space that describes the possible

state of that system is only two-dimensional. Any non-trivial

measurement must have at least two possible outcomes. If the

operator-valued measure can be realized by a sequential

measurement, the first non-trivial measurement of the sequence

will leave the system in one of two known pure states, and

subsequent measurements will correspond to randomized strate-

gies and gain no new information of the original state of the
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system. It can be easily shown that such sequential measure-

ment has a different performance from the operator-valued

measure described in Example 3.3.

THEOREM 10.1.

If an operator-valued measure is defined

on a finite index set, with values as operators in a

finite dimensional Hilbert space H, (dim {H}=N), and

further the measures Qi} pairwise commute, then it

can always be realized by a sequential measurement

characterized by a tree with self-adJoint measurements

at each vertex. In particular, if M < N, the sequential

measurement can be characterized by a tree of length

two. In general, the minimum length of the tree required

is the smallest integer such that,

> 1 + log MN (10.1)

NOTE. For a source with alphabet size A and output rate of R,

the number of output meassages in the duration of T seconds

* In fact the detection performance of that measure for the

three equi-probable states {(si>3=1 in Example 3.3, is

given by the probability of correct detection Pr[c] = 2/3,

whereas any sequential measurement has performance Pr[c] < 2/3.
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RT
is M = ART Hence, for block detection of M signals generated

in the duration of T seconds the number of steps required is

t 1 + og M
log N

= 1 + RT log A
log N 

(10.2)

And for large T,

T. (10.3)

Therefore, the average number of measurements to be performed

per second, /T, is constant for large T, and

t Rlog A
T log N.

(10. 4)

If the dimension of the Hilbert space N changes with time,

the above expressions still hold by replacing N = N(T). For

N(T) = DT, where D is a constant,

£ -R log A
T · log D + log T

and for large T,

= R log AT logT

(10.5)

(10.6)
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which approaches zero independent of D.

SIGNIFICANCE.

From the construction of the sequential measurement

given in Theorem 10.1 (see Appendix K), one can see that

measurements given by operator-valued measures that pairwise

commute are not particularly interesting in communication

contexts. After the first measurement, the subsequent

measurements do not gain any more information about the

system under observation. This is because the first self-

adjoint measurement is a complete measurement in the sense

that its eigenspaces are all one-dimensional. After the

first measurement is performed the state of the quantum

system is completely determined by the pure state that

corresponds to the outcome eigenvalue. It is easy to see

that there is no mutual information between subsequent

measurements and the initial unknown state of the system.

From the proof in Appendix K, it is apparent that, if one

wishes, the second measurement can actually be replaced by

a randomized selection of outcomes, and the randomized

strategy will give the same measurement statistics. However,

we know that we cannot gain performances by a randomized

strategy. So one single self-adjoint measurement will

perform just as well as the full sequential measurement.

Hence we have the following corollaries.
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COROLLARY 10.1.

If a quantum measurement is characterized by an

operator-valued measure, with the measures of all the

outcomes pairwise commuting, then the measurement is

equivalent to (in the sense that it has the outcome

statistics) as a single self-adJoint measurement

followed by a randomized strategy./

Corollary 10.1 gives us the following very important

result.:

COROLLARY 10.2.

For a measurement characterized by an operator-

valued measure to outperform all self-adJoint observa-

bles, it is necessary that the measures of the outcomes

do not all pairwise commute./

When the Hilbert space is infinite dimensional (but

separable), Theorem 10.1 can be easily extended to handle

the situation. We will only sketch how we can generalize

the theorem in Appendix L. The theorem is stated in the

following.

THEOREM 10.2.

If an operator-valued measure {Qi}il is defined
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on an infinite index set, with values as operators in

an infinite dimensional separable Hilbert space, and

further the measures {Qi pairwise commute, then it can

always be realized by a sequential measurement charac-

terized by a tree with self-adjoint measurements at

each vertex. Sometimes, the length of the tree can be

infinite.

The next theorem discusses the realization by sequential

measurements of a particular class of operator-valued measure.

The conditions that characterize this class will look rather

stringent and we can argue that the realization of such a

narrow class of operator-valued measures is not very useful.

However, it turns out that a large class of quantum communi-

cation problems satisfy these conditions. Exactly how this

theorem can be applied to almost all quantum communication

problems will be apparent after the discussion of equivalent

and essentially equivalent measurements in the next chapters.

THEOREM 10.3.

If an operator-valued measure {Qi}i=l is defined

on a finite index set (i=l,...,M) with operator-values

in the Hilbert space H, and furthermore the measures

Qi's are projector-valued except on a subspace M c H

such that M dim {M} < dim {H}, then it can always be
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realized by a sequential measurement characterized by a

tree with self-adjoint measurement at each vertex./

Hi = im Qin
n-+oo

for all i=l,...,M

where n is

operators,

a positive integer.

and

The Hi's are projection

M

(IH - I IIi)H = M.i=l

Ri = Qi - Hi1. 3 i=l,... ,M. (10.9)

I

Ri = PMi-l

(10.10)

where PM = the projection operator into the subspace M,

and I - the identity operator on the subspace M.

M
The set of projection operators PM, {Hi}=l} forms an

orthogonal resolution of the identity in the space H. That is,

M

PM + Ii I (10.11)i=l H

Let the first measurement on the system under observation

Proof

Let (10.7)

Let

Then

(10.8)

= IM
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be characterized by the projector-valued measures,

{PM' (n{11il} This measurement can have one of M+l outcomes.

Symbolically, it can be represented by the following tree,

1,

fgure ,u.±

If the outcome is represented by a vertex corresponding to

one of the ni's, the measurement can stop. If the outcome

ends up in the vertex corresponding to the projector PM, a

second measurement is required to complete the sequential

measurement process.

The set of operators {Ri}M=l sums to the identity

operator IM in the subspace M, and each of the operators Ri

is non-negative definite. Hence, they form an operator-

valued measure on the subspace M. By Theorems 4.1 and 4.3,

there exists on an extended space H+ M, a projector-

valued measure {P}M such that
1 i=l

M
i Pi = Ift+ (10.12)

itl~i 
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where I+ is the identity operator on H+, and

Ri = PPiPM (10.13)

By Theorem 6.1, the minimum dimensionality of this extended

space H+ required is less than or equal to M times the

dimensionality of the original space M. That is,

min {dim {H+}} < M dim {M}. (10.14)

By assumption,

Hence,

dim {H} > M dim {M}. (10.15)

(10.16)dim {H} > min {dim {H+ }},

and M c ff. (10.17)

Therefore, it is possible to find a projector-valued measure

Mpiil in H such that

Ri PPiPM i=l,...,M (10.18)

M

I Pi = IH
i=1

(10.19)

If the outcome is in the vertex corresponding to PM

after the first measurement, one can perform a second self-

and
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adJoint measurement given by the projector-valued measure

{Pi }M=l as represented by the following tree,

p
1

Pi
:1

r-lgure l±u. d

By the result in Chapter 8, the operator-valued measure for

the path ending in the vertex corresponding to the projector

Pi is

PMPiP M = Ri i=l,...,M.

Hence the operator-valued measure Qi is the sum of the

measures of two paths, one ending in the vertex corresponding

to Pi', the other in the vertex corresponding to Hi.

The whole sequential measurement can be represented by

the following tree in Figure 10.3 (see next page). Therefore

we have a realization of the given operator-valued measure

by sequential measurement. And we have proved a case of

Theorem 3.1 (b)./

(10.20)
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P2

Pi

Pi+i = Qi

Figure 10.3

NOTE.

The condition that M dim {M} < dim {H} can be relaxed

if more structures on the Qi's are given. If we have,

M
I dim {R(Ri}} < dim {H},
i=l

(10.21)

where R{Ri} is the range space of Ri, then by Theorem 6.3

we can always find a projector-valued extension in H.

(If one is dealing with infinite dimensional spaces, caution

should be taken in interpreting the results. Note the

discussions at the end of Chapter 6.)

,.
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The following corollary is a useful consequence of

Theorem 10.3. It will be needed in Chapter 12.

COROLLARY 10.3.

If an operator-valued measure {ii= is defined

on a finite index set (i=l,...,M) with operator-values

in an infinite dimensional Hilbert space , and further-

more, the measures are projector-valued except on a

finite dimensional subspace M, then it can always be

realized by a sequential measurement characterized by

a tree with self-adjoint measurement at each vertex./

Proof.

M dim {M} < X = dim {H}. (10.22)

Therefore, Theorem 10.3 applies./

In Theorem 10.3 we exploited the property of a special

class of operator-valued measures that are projector-valued

except in a finite dimensional subspace. This finite

dimensional subspace is in fact a so-called 'invariant

subspace' for the operator-valued measure. If we explore

the proportions of 'invariant subspaces' for an operator-

valued measure further, we can realize a larger class of
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measures as sequential measurements. In Chapter 12, we will

show that there is a very large class of communication pro-

blems that fall within such a class. Hence the results in

this chapter are very important.

DEFINITION. A closed subspace M in a Hilbert space H is

called an invariant subspace for the operator A if

Ax M whenever x M,((i.e. AM M)./

DEFINITION. A closed linear subspace M in a Hilbert space H

reduces a bounded self-adjoint operator A if both M

and M - H-M are invariant subspaces for A./

LEMMA.10.1. If A is a bounded self-adjoint operator, the

subspace M reduces A if and only if M is invariant

for A.

Proof.

(i) If M reduces A, by definition M is invariant for A.

(ii) If x M, y M, Ax M.

So, (Ax,y) = (x,Ay) = 0. (10.23)

Therefore, Ay e M and M is invariant for A also./
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If a subspace M reduces A, then the problem of charac-

terizing the operator A on H reduces to the problem on M and

M-, and A can be written as,

A = PMAPM + PMLAPMI, (10.24)

where PM P are the projection operators projecting into

M and M respectively. In general, a self-adjoint operator

A can have more than one invariant subspace. For example,

every eigenspace of a self-adjoint operator is obviously an

invariant subspace.

If a set

for a bounded

for ij, and

A

and
N

PM
i=l 1

of orthogonal subspaces {Mi}N are invariant

self-adjoint operator A, so that Mi A Mj = 0,

M *
e Mi = H , then A can be written as,i=l i

N
= illPMi APMs (10.25)

= I, (10.26)

where PMi is the projection operator into the subspace Mi.

For a bounded self-adjoint operator, a useful set of

* Here indicates direct sum.

�
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invariant subspaces is the set of eigenspaces.

DEFINITION. A closed linear subspace M is a simultaneous

invariant subspace of a set of bounded self-adjoint

operators {Ai}- if M is invariant for each operator

Ai, i=l,...,M./

Later in the chapter, we will show how to find a set

of simultaneous invariant subspaces for a set of bounded

self-adjoint operators. Assume for the moment that given

a set of bounded self-adjoint operators, we know how to find

the simultaneous invariant subspaces.

If a generalized measurement given by a set of operator-

valued measures {Qi}i=l is given, we can try to find the

simultaneous invariant subspaces of the Q's. Let a set of

orthogonal subspaces {Mj}j= be simultaneously invariant

for the set of operators {Qi} = Then,

Q Jr PjP J
N

- Qi; (10.27)

whereij Pj for all i,j, (10.28)
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and
N

j=PMj =I H.
j-l c

(10.29)

Since {PMjj is an orthogonal resolution of the iden-

tity, it corresponds to some self-adjoint measurement. Let

the first measurement be characterized by this projector-

valued measure. Then, symbolically it can be represented

by the following initial segment of a tree,

P,a

rilgure ±u. 4

Each of the N set of non-negative definite operators

{Qij}i=l forms an operator-valued measure with values as

operators in their corresponding subspace Mj. That is,

Qij -

M

ilQi = PMji-1~~~~ = IMj
j=l,. . .,N

(10.30)

(10.31)

where IMj is the identity operator in the subspace Mj.
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If the first measurement given by the projector-valued

measure P is performed, the outcome will be in one

of the vertices in Figure 10.4. Suppose the outcome is

represented by the vertex corresponding to the projector

PMj' then the second measurement should be characterized

by the operator-valued measure {Qij i=l Since the operator-

valued measure is defined only on the subspace Mj and, for

the second measurement we can choose any self-adJoint measure-

emnt defined on the entire space H, under suitable conditions,

the second generalized measurement Qiji=l can be realized

by a self-adJoint measurement defined on H, which includes

Mj as a subspace and acts an extension space of Mj. Speci-

fically, if the operator-valued measures satisfy one of the

following two conditions,

(i) M dim {M < dim {H}, or (10.32)

M
(ii) d dim RQ{H, (10.33)

i=l

then it will be possible to find a projector-valued measure

{Pii 1 =l with operator-values defined on the entire space H,

such that when restricted to the subspace Mj will give the

operator-valued measure {Qij)i=l That is,

PMJPiJPMj = Qij l,.,M (10.34)
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M
I PiJ = IH for all J. (10.35)

This means that if the outcome is given by the vertex corres-

ponding to PMj, the rest of the measuring process can be

realized by a second self-adJoint measurement on the system.

If indeed each of the N operator-valued measures {Q il'
ij i=l'

j=l,...,N, satisfies either condition (i) or condition (ii),

then we can guarantee whatever the outcome of the first

measurement is, the subsequent and final measurement can be

a self-adJoint measurement. Condition (i) is of course from

Theorem 6.1 and condition (ii) from Theorem 6.3.

The two stage sequential measurement (self-adJoint)

can be represented by the tree in Figure 10.5.

figure 1u. 

Qi

1' , P1N ~~~"&iN 
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The event corresponding to the operator-valued measure Qi

is then the N possible outcome paths labeled by the projectors

IPMj; PiJ} j=1,...,N as shown in Figure 10.5; and

N

Qi JiPMjQ iPMj

N

j P iJjPMj (10.36)/

Hence we have the following theorem.

THEOREM 10.4.

M
If an operator-valued measure Qi}i=l has a set

of mutually orthogonal simultaneous invariant subspaces

{Mj)j=1 such that

N
V M. = H (10.37)

j=l J

Mi A Mj = 0 all i (10.38)

N

and Qi = Qij (10.39)

where Qi -PMjQiPMJ all i and (10.40)

and furthermore if each of the N sets of operators

M{Qi li= J=,...,N, satisfies either one or both of
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the two following conditions,

(i) M dim {M} < dim {H} (10.41)

M
(ii) I dim {R({Qij .1 < dim {H}, (10.42)

i=l 

then the operator-valued measure can be realized as a

sequential measurement characterized by a tree of length

two with self-adjoint measurements at each vertex./

EXAMPLE.

(1) If the Qi's pairwise commute as in Theorems 10.1 and 10.2,

then they are simultaneously diagonalizable by their eigen-

vectors. These eigenvectors are then one-dimensional

simultaneou invariant subspaces. Such operator-valued

measures satisfy the conditions of Theorem 10.4 and that

is the reason why they permit a realization by sequential

measurements.

(2) The measure in Theorem 10.3 also satisfies the conditions

of Theorem 10.4. The finite dimensional subspace M on which

the Qi's are not projector-valued is again a simultaneous

invariant subspace for the set of measures {Qii=l1 The

projector-valued part of the measures can be realized by a

single self-adjoint measurement. The nonprojector-valued
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part is separated out because it is within a finite

dimensional simultaneous invariant subspace. This in turn

permits a sequential measurement realization, as given in

Theorem 10.3./

A natural question to ask at this point is, 'Do most

operator-valued measures we encounter in Quantum Communica-

tions possess simultaneous invariant subspaces ?'. If the

answer is not affirmative, then sequential measurement will

only be of limited use in the realization of measurements

in Quantum Communications. However we are not yet in a

position to answer this question fully at the moment. In

Chapters 11 and 12, we will consider 'equivalent classes'

of measurements. It turns out that for quantum communication

problems, most of the generalized measurements have equiva-

lent measurements that possess simultaneous equivalent

subspaces. And almost all quantum measurements of interests

can be done sequentially. We will discuss this issue in

detail in Chapter 12.

In lieu of the conditions (i) and (ii), we would like,

in some sense, to find the 'finest' decomposition of the

* By 'finest' decompostion, we mean that the dimensionalities

of the subspaces are as small as possible.
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Hilbert space H into simultaneous invariant subspaces. The

reason for a 'finest decomposition' is simple. If the

dimensionality of each of the subspaces M 's is made as

small as possible, we will have (in a loose sense) more

available dimensions in H for an extension. It is possible

to show that there is a construction procedure to find a

'finest decomposition' and this decomposition is unique. The

main statement is given in Theorem 10.5 and an outline of

the proof is given in Appendix M.

THEOREM 10.5.

For a set of self-adJoint operators {Ta}aI A, it

is possible to find a unique 'finest' set of simultaneous

invariant subspaces {Si}N=l that are pairwise orthogonal

and

N

T i=l Si a Si all aA. (10.43)/

EXAMPLE 10.1.

We will make use of the measure in Example 4.1, except

we will use a Hilbert space H1 with one extra dimension

spanned by the vector f>. Let {si>}= 1 span a two-dimen-

sional subspace of H1 orthogonal to If>. Define

2

Qi = Isi><si I i=l,2 (10.44)
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Q3=3 Is3><s31 + o

o E I f><f .0

3
Then the measurement {Qi } 3 1 can be realized by

sequential measurement given in Figure 10.6./

the following

2

3
IHl

Ho
-j

Figure 10.6

where

(10.45)

rr
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CHAPTER 11

EQUIVALENT MEASUREMENTS

In quantum communications, very often two different

measurements characterized by different operator-valued

measures will yield the same performance. For any given

quantum communication problem (whether it be a detection

or estimation problem), it is possible to categorize the

set of all generalized measurements into 'equivalent classes'

of measurement, so that every measurement of the same

equivalent class will give the same performance.

Let the received information carrying quantum system

be described by the set of density operators {P aA' and

furthermore assume that there exists a set of simultaneous

N
invariant subspaces (Si }i= l such that,

N

Pa = lPSi P Si for all aA, (11.1)

N
and, Pi I . (11.2)

Let {Q}1BB be an operator-valued measure corresponding

to some generalized measurement under consideration, where B

is some index set for the outcome.
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Given the quantum system received is in an arbitrary

state given by the density operator pa, the probability of

getting the outcome B when the measurement is performed is

given by,

Pr[ Ia] = Tr{PaQa}

N

= Tr{ Ps PmP Q}

N

- I Tr{PSiPaPSiQB}

N
- Tr(p aP}SiO PSi)ilTr PP siQPsi}

N

Tr i-{ i p Sia=

= Tr{paQa}

N

0- I 1PSiQaPSi
where

all BeB,

for all BOB.

The set of operators {QB}BeB has the following properties,

Q > 
-3

all BeB. (11.5)

* The identity Tr{AB} = Tr{BA} has been used.

(11.3)

(11.4)
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A N

BoB ScB i=l Si

N

N

ilPSi'HPSi

- I H. (11.6)

There the set of operators {QB}BcB forms an operator-valued

measure corresponding to a generalized measurement which will

give the same performance as the measurement characterized by

the measure {Qa}ICB. In this sense the two operator-valued

measures correspond to 'equivalent measurements', and they

bebng to the same equivalent class of measurements. Note

equivalence is established only with respect to the given

structure of the density operators {p }aeA.

The measurement corresponding to {QB}BeB may have an

advantage over the measurement corresponding to {QB }B B '

since it may have a 'finer' decomposition into invariant

subspaces, and this would facilitate realization by sequen-

tial measurements.

COROLLARY 11.1.

In a M-ary detection problem when all the density
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operators ({Pii= pairwise commute, they are simultan-

eously diagonalizable. If { j>)js J is their set of

orthonormal eigenvectors which spans H, for any

operator-valued measure {Qil the measure,

ji Ij i=l

is an equivalent measurement and the Qi's pairwise

commute. By Corollary 10.1, the measurement is equiva-

lent to a single self-adjoint measurement followed by a

randomized strategy. By Corollary 10.2, this measure-

ment is at best equal in performance to some self-

adjoint measurement. Hence the optimal measurement for

the M-ary detection problem with pairwise commuting

density operators is a self-adjoint operator./

This result has been proved previously by a different

method. [19]
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CHAPTER 12

ESSENTIALLY EQUIVALENT MEASUREMENTS

In Chapter 11 we discussed 'equivalent classes of mea-

surements' in the sense that, when two measurements belong

to the same equivalent class, they will give exactly the

same performance. The decomposition into simultaneous

invariant subspaces is useful in realization of generalized

measurements by sequential measurements, utilizing the

procedure provided by Theorem 10.4. But not all generalized

measurements can be realized in this fashion, so one must,

in these cases, use the realization by adjoining an apparatus

instead. However if the Hilbert space that describes the

states of the information carrying quantum system is infinite

dimensional (but still separable), then given any arbitrary

operator-valued measure, not realizable by a sequential

measurement, it is possible to find a sequential measurement,

the performance of which can be arbitrarily close (but not

equal) to that of the 'unrealizable' measurement. We will

first show this result for the quantum detection problem,

followed by the estimation problem.

THEOREM 12.1.

Given a generalized measurement characterized by
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an operator-valued measure {Qi)i=l for a M-ary quantum

detection problem with a probability of correct detection

Pr[c1]; if the Hilbert space that describes the state

of the received information carrying quantum system is

infinite dimensional (but separable), then for any

arbitrary >O no matter how small, there is a sequential

measurement characterized by the operator-valued measure

{Qi}il that will give a probability of correct detection

of Pr[C2], such that

IPr[C1 - Pr[C2] < . (12.1)/

Proof.

Let the received quantum system be in the state described

by the density operator Pi if the i-th message is sent with

a priori probability Pi. The probability of correct detection

for the generalized measurement {Qi)i=l is,

M
Pr[C 1 ] = PiTr{iQi } (12.2)

Since all the pi's are trace class operators, they are
*

compact operators. Hence they each has a set of eigenvalues

* An operator T is said to be compact if it maps bounded sets

onto sets whose closuresaare compact.

_ __
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associated with a set of complete eigenvectors. We want to

find a finite-dimensional subspace Si such that given a

density operator Pi and > 0 no matter how small,

1 > Tr{P PiPSi} > 1 - (12.3)

If the range of i is finite dimensional, Si can be taken to

be the range space so that the trace is one. If the range

of Pi is infinite dimensional one can find Si by exploiting

the property of Pi as a compact operator, that 'the set of

eigenvalues of a compact self-adjoint operator is a sequence

converging to zero'. Let {X n}n=l be the eigenvalues of Pi,

then

lim XAn = 0 (12.4)
now

00

and I An = i = Tr{pi}. (12.5)
n=l

Hence there is a finite set N of eigenvalues such that

1 > An > 1 - e. (12.6)
non

* For proof, see Segal and Kunze [28].

** See reference [28].
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Let Si be the finite dimensional subspace spanned by the

eigenvectors corresponding to this finite set of eigenvalues.

Then,

1 Tr{PPsiPiPsi

(12.7)= I x > 1 - c.
nN N

MMLet the set of subspaces {Sil=l be so chosen for the set of
density operators {p}i) l It is clear that each subspace

Si is invariant for the corresponding i, since Si is a

finite sum of the eigenspaces of i. Let H - Si = Si. Then,

i=l,...,MPi = PsiPiPSi + P iPiPScSi S i

(12.8)

Tr{Ipi - PSiPiPSil} = Tr{Pi - PsiPiPsi}

= Tr{PscPiPsc} < .
i i

M
S = VlSii=1 i

M
dim {SI < I dim {Si} < .

i=l

(12.9)

(12.10)

So S is finite dimensional and,

and

Let
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Tr{PsciPsc} = Tr{PscPi}

(12.11)

If {Qi}i=l is an operator-valued measure with a probability of

correct detection of Pr[C11], we claim the operator-valued

measure {Qi - PSQiPs + PiPsc } =1 has an error performance

Pr[C2] such that,

IPr[C] - Pr[C 211 < s. (12.12)

We have,

Tr{PiQi } = Tr{PSPiPsi Qi + Tr{PScP P cQ}.
Si i1

(12.13)

But the second term on the right is positive and,

Tr{P ccpiPScQi} < Tr{PsPiPScIH}
i 1 i i

= Tr{P.cPiP c} < .
i i

(12.14)

Therefore,

all il,..,M.



- 122 -

Tr{PiQi} - Tr{PSiPiPSiQi < 

whereas, Tr{PS PiPsQi}

= Tr{Pi U (S-Si) PiPSi U (S-Si)Qi}

= Tr{(PSi+P SSi)Pi(P Si +PSS)Qi}

= Tr{PSi PiPsiQi } + Tr{P iPssiQi}

+ Tr{PSiPiPs-siQi + Tr{Ps_si PiSiQi .S-ii i

Since Si is invariant for Pi, PSi commutes with Pi

PS PS S = 0. Hence, the last two terms in the aboveSi S-Si

equation are zero. And since both Pi and Qi is nonnegative

definite, the second term is nonnegative. Hence,

0o < Tr{PiQi} - Tr{PSPiPsQi}

= Tr{PiQi} - Tr{PSiPiPSiQi - Tr{Ps_siPiPs_siQi}

< for all i=l,...,M. (12.17)

(12.15)

(12.16)

and
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Therefore, IPr[C1] - PrEc2 3I

M

I Pi(Tr{PiQi} - Tr{PsPiPsQi} - Tr{PipiPc})I

=PilTr(PiQi} - Tr{PsPiPsQi} - Tr{piPsc}

M
< j1 Pi = . (12.18)

i=l

The operator-valued measure {Q^il can be realized as a

two-step sequential measurement. The first measurement will

have two branches. The projectors corresponding to them are

{PS and I-Ps=Psc}.

Given the outcome is the vertex corresponding to P$

the second measurement has to have the same result as the

operator-valued measure {PsQiPs}i=l But this measure is

a resolution of the identity of a finite dimensional space

S; and by Theorem 6.1. it permits an extension to a projector-

valued measure in any infinite dimensional space that

contains S as a subspace. The original Hilbert space H can

be taken to be that subspace, so that the second measurement

is realizable by a self-adJoint measurement associated with

the projector-valued measure {Ri i=l such that

M

i IfH, (12.19)il
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PSQiPS = PsHiPs all i=l,...,M. (12.20)

When the outcome is in the vertex corresponding to the

projector PSc (this would happen only with very little

probability, less than e), the second measurement can be

done by a random selection of one of the M messages with

probability Pi, i=l,...,M. Or we can consider the whole

event to be an outright error and call it an erasure as in

an erasure channel.

The sequential measurement can be represented schema-

tically by the following tree./

M outcomes

bilitv < 

Figure 12,1. Sequential measurement modeled as
an M-ary erasure channel
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Hence we have shown that given any arbitrarily small

M
> O, we can find a sequential measurement {Qi}il that

will have performance within of that of a given generalized

measurement {Qi}i In this sense we call the two measure-

M iM
ments, {Qii=l and {Qi} l essentially equivalent measurement.

If we omit the first stage of the sequential measurement

M
and only perform the self-adJoint measurement {ni}i=l' the

performance will not change very much since the resolving

power of the first measurement is small anyway. The

performance

M
Pr[C3] = piTr{ipini} (12.21)

has the property

IPr[C ] - Pr[C3]1 < . (12.22)

So the single self-adJoint measurement is also essentially

equivalent to the generalized measurement; and we have the

following theorem.

THEOREM 12.2.

Given a generalized measurement characterized by

an operator-valued measure {Qi}=l for a M-ary detection
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problem with a probability of correct detection of

Pr[C1], if the Hilbert space that describes the state

of the received quantum system is infinite dimensional

(but separable), then for any arbitrarily small >0,

there is a self-adjoint measurement that will give a

performance of Pr[C 3 1, such that

IPr[C1] - Pr[C3 ]I < . (12.23)/

The proof is straight forward and is omitted.

From the proof of Theorem 12.1, it can be easily seen

that the condition that the Hilbert space is infinite

dimensional is not absolutely necessary. Whenever the

dimensionality is 'big enough', Theorem 12.1 will hold.

The exact dimensionality depends both on the operator-valued

measure and the set of possible density operators, in a

conceptually straight forward but mathematical complicated

way. Though it is certainly within the realm of the mathe-

matics developed in this thesis to state this exact dimen-

sionality, the result is omitted due to its complexity and

dubious usefulness.

SIGNIGICANCE.

From Theorem 12.2, we see that for each generalized
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measurement we can find a conventional observable that will

give essentially the same detection performance, if the state

of the system is described by an infinite dimensional space.

In optical communication, the natural Hilbert space that

should be used is the space spanned by the photon number

states {n>}n 0 which is infinite dimensional. A very impor-

tant question then arises - 'In optical communications

should we consider generalized measurements at all ?' One

can argue that since in detection problems conventional

observables will do almost just as well, generalized measure-

ments should not be considered. However, in some cases, the

optimal measurement is a generalized measurement. Although

there are observables that give performances arbitrary close

to it, none actually achieves it.

* In a loose mathematical language, one can say that, 'If

we consider the performance (Probability of error) as a

form of weak topology on the set of all observables, that

set is not a closed set. The optimum measurement may not

be in the set, hence sometimes it will not be feasible to

find an optimum measurement within the set of observables.
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We will now prove an equivalence of Theorems 12.1 and

12.2 for the estimation problem. The conditions in

Theorem 12.3 are only sufficient but not necessary, but

they are general enough that most problems satisfy these

conditions or can be approximated by them.

THEOREM 12.3

Given a measurement characterized by a generalized

resolution of identity {Fa)} C for a complex parameter

estimation problem, with a mean square error of I, if

the Hilbert space that describes the state of the

received quantum system is infinite dimensional (but

separable), then for arbitrary small > 0, there is a

self-adjoint measurement that will give a mean square

error of I2, such that

IIl - I21 < (12.24)

if the following (sufficient) conditions are satisfied,

(i) the probability density function for the

complex parameter a, p(a) has a compact support

S~_C ,

* The support of a complex function f on a topological space

X is the closure of the set {x : f(x) 0}.
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(ii) p(a) is continuous,

(iii) the 'modulation' is uniformly continuous, that

means, if a sequence {ai} converges to a, the

sequence of density operators {pai} also con-

verges to p, in trace norm, i.e.

Tr{Ip i- pa 1}1 *+ 0 (12.25)

and if a - ail < 6, then Tr{Ipa - Pal < 

for all values of a S,

(iv) the generalized resolution of the identity

{F }acC has a (weakly) and uniformly continuous

first derivative, that is

G - d F (12.26)a da a

has the property that for any operator A with

Tr{JAI} < X, and a sequence {ai} converges to a,

Tr{AG i} Tr{AGai, (12.27)

and given any > 0, there exists 6 > 0 such

that ai - al < 6 implies

JTr{AG }I - Tr{AGa} < (12.28)
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for all a, ai and A. /

The proof is given in Appendix N.

The performance measure in Theorem 12.3 does not have

to be the mean square error. It can be any measure m(a,a'),

which is uniformly continuous in both variables a, and a'

on the support S of p(a).

The uniform continuity conditions make the proof much

simpler, but one probably can prove the same theorem by

requiring the integrand to be measurable. The fact p(a) has

compact support is used to show that a finite number of ai's

(M) are required to approximate the continuous range of

a S, and thus it becomes a M-ary detection problem. Almost

every density function p(a) has all the probability confined

to a bounded region. Even if it does not have compact

support, the tail of the function can be truncated to make

the support compact.

I = f f Tr{p G ,} l-a' 2 p(a)d 2 a'd 2 a.
S aa
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EXAMPLE 12.1

We will now give an example of a ternary detection

problem where an operator-valued measure characterizes the

optimal measurement. Though we can find self-adjoint

measurements that will perform arbitrarily close to the

optimal performance, none actually achieves it.

Consider an infinite dimensional Hilbert space H that

is the union of an infinite number of two-dimensional

co
orthogonal subspaces {Sj}j such that

00oo

H = V S. (12.29)
j=l

For each subspace Si, let three vectors [s1 >1=l1 have

the same symmetry as those in Example 3.3 (see Figure 3.1).

Consider the three density operators,

= S><s i=1,2,3 (12.30)
j=l 2 ,2,3.

The optimal measurement is given by the operator-valued

measure

00 
= 2 j S> 1 i=1,2,3 (12.31)

ji - 31 =l
which gives a probability of correct detection of 2/3.
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Since the density operators have non-zero eigenvalues

(though diminishing) for all the subspaces, we cannot

truncate the density operators by making a first measurement

to project it into a finite dimensional subspace without

losing some small but non-zero performance.
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CHAPTER 13

SIMULTANEOUS GENERALIZED MEASUREMENTS

Thus far in this thesis, we have extended the notion of

quantum measurements to what we call generalized measurements.

In the conventional view of measurements being observables

corresponding to self-adjoint operators, there is the concept

of simultaneous measurable quantities. Two quantities are

said to be 'simultaneously measurable' if and only if the

self-adjoint operators corresponding to them commute. Thus

the quantities A, B are simultaneously measurable if and

only if [A,B] AB - BA = 0. Equivalently if the projector-

valued measures {i}ie and {Pj}jeJ are the resolution of

the identities of A and B respectively, they are simultaneous-

ly measurable if and only if there is a third projector-

valued measure {Rk keK such that

(i) H i = I Rk for all iI, (13.1)
kcKi

and for disjoint subsets {Ki}i K of K, so that U Ki = K,
ieI

and also,

(ii) Pj = C Rk for all jsl, (13.2)

kcj
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and for disjoint subsets {K'}jJ of K so that

U K' = K. (13.3)

Note both conditions (i) and (ii) are simultaneously

satisfied if and only if the measures {Hi }, {Pj} pairwise

commute. That is,

niPj - P i = 0 all iJ. (13.4)

Now that we have extended to generalized measurements,

the notion of simultaneous measurements has to be modified.

In order to determine if two operator-valued measures

correspond to simultaneously measurable quantities, it is

more illuminating to look at their respective projector-

valued extensions. It is obvious that if on a common extended

Hilbert space H , the respective projector-valued measures

commute, then we can say the two operator-valued measures

are simultaneously measurable. This definition however,

though basic, is not very useful sometimes, since it requires

an examination of the projector-valued measures on a common

extension space. Without much mathematical difficulties, one

can define simultaneous measurability directly on the opera-

tor-valued measures themselves, which is the thrust of
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Theorem 13.1.

THEOREM 13.1.

Two generalized measurements, characterized by

the operator-valued measures {Si}i Iel {Tj }jeJ are

simultaneously measurable if and only if there is a

third generalized measurement, characterized by the

measure {Qk} k sK' such that,

(i) Si = E Qk (13.5)
icKi

for all i, and disjoint subsets {Ki}i I of K so that

U Ki = K, (13.6)
ili

and

(ii) T = Qk (13.7)
j eK3

for all jj, and disjoint subsets {K'} of K so that

U K! = K. (13.8)/
jeJ J

The proof is given is Appendix 0.
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As we have noted in the proof in the Appendix, we can,

without loss of generality, require for simultaneous mea-

surability that there is a measure {Qi}iI! ,j$J such that

Si = e Qij all iel (13.9)

Tj = Qi all JJ. (13.10)

In some sense the measurement {Qij} is a finer grain measure-

ment than both the measurements {Si} and {Tj}, and the

outcome statistics of the latter two being obtained from

the {Qij} measurement by coarse-graining over its outcome

statistics.

When the measures {Si}, {Tj} pairwise commute, they are

always simultaneously measurable and is easy to find {Qij}.

If we define,

QiJ = SiTJ all i, (13.11)

{Qij} will satisfy all the necessary conditions for simul-

taneous measurability.

In the next theorem we will give a sufficient though

not a necessary condition for the simultaneous measurability
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of two operator-valued measures.

DEFINITION. The anticommutator of two operator A, B is

defined as

[A,B] = AB + BA. (13.12)/

THEOREM 13.2.

Two operator-valued measures {Si }iI, {Tjj }J are

simultaneously measurable if all anticommutators of the

form [Si,Tj] are non-negative

[Si ,T 
a

= SiT j + TS i > 0i i i-

definite,

all i, .

that is,

(13.13)/

Qij 2 [S Tj ] > 0

i Qij
jEj

- 2 (SiT + TSi) = I.jJ2 i 
JEJ

So {Qij} is an operator-valued measure with,

Si = ij
= J

Tj = I Qij

all i

all j

Proof.

Define (13.14)

(13.15)

(13.16)

(13.17)
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Hence {Si}, {Tj} are simultaneously measurable./

In general it is not so easy to find the 'finer grain'

measurement {Qij}. In Appendix P, we provide a generally

very useful construction for the measure {Qij}.

SIGNIFICANCE OF RESULTS.

We have shown that two simultaneously measurable gene-

ralized measurements correspond to a single 'finer grain'

generalized measurement. Hence, by considering sumultaneously

measurable generalized measurements, we will not get better

performances for quantum communication problems. It is

always sufficient to consider single generalized measurements,

since this class also encompasses simultaneous generalized

measurements.
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CHAPTER 14

AN ALTERNATE CHARACTERIZATION OF

GENERALIZED MEASUREMENTS

SECTION 14.1 Introduction

So far in this thesis, we have been characterizing

generalized measurements with operator-valued measures.

When the operator-valued measure corresponding to a parti-

cular measurement is given together with the quantum state

of a system, the statistics of the outcome of that measure-

ment is uniquely specified, in the sense that the probability

density function (or distribution function) for the outcome

is given by Equation (2.12) in Chapter 2. However, we can

equivalently specify the measurement statistics by giving

the mean and all higher order moments of the outcomes.

Through the moment generating function (or characteristic

function) the probability density can be specified uniquely.

The specification of moments instead of probability densities

provide an alternate way of characterizing generalized

quantum measurements. The operator-valued measure charac-

terization is independent of the particular quantum state

of the system. It is universal in the sense that Equation

(2.12) in Chapter 2 will give the correct probabilities if
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we use the correct quantum state for the system in the

equation. So to characterize generalized measurements using

all order moments of the outcomes, the characterization should

also be universal, such that the specification will be correct

for all possible quantum states of a system. In the next

section we will propose such a characterization which turns

out, is equivalent to the characterization by operator-valued

measures. We suspect this new characterization can be more

useful sometimes, most likely in estimation problems, since

moments are involved explicitly.
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SECTION 14.2 Another Characterization of Generalized Quantum

Measurements

Suppose we have a quantum system in an arbitrary quantum

state Is>, and a generalized measurement is to be performed

on it. Without loss of generality, assume the outcome is a

real number X. We will characterize the generalized measure-

ment by a sequence of bounded self-adjoint operators {An}n=o

where A = I identity operator, and the n-th order moment

of the measurement statistics is given by

E{An} = <AnlS> n=o,l,2,... (14.1)

where E{*} denotes taking expectations. If the state is

described by a density operator p,

E{%n } = Tr{pAn}. (14.2)

A trivial example is when there is a self-adjoint

operator A such that An = An, for all n, then the measurement

is simply the one characterized by the operator A.

Not every sequence of self-adjoint operators corresponds

to a generalized measurement, however. For example, when A2

is not non-negative definite then the second moment of the
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outcome can have negative values which is absurd. So a

necessary condition for a sequence of operators to correspond

to a generalized measurement is its even indexed operators be

non-negative definite, i.e.

A > 0 n even. (14.3)
n -

In the next section, we will give a necessary and

sufficient condition on the sequence {An} so that it charac-

terizes some generalized measurement. It is obvious from

the previous discussion of generalized measurements that there

must exist on an extended Hilbert space H H, a self-adjoint

operator A corresponding to a conventional measurement such

that,

An = PHAnPH all n (14.4)

if {An} corresponds a particular generalized measurement.

Whenever such an operator A exists on some extended

space H , we are willing to say that {An } characterizes a

generalized measurement. Then the necessary and sufficient

condition for the sequence {An} to characterize a generalized

measurement is the same as the condition for {An} to have

an extension A that satisfies equation (14.4). When we
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have the observable A defined on an extended Hilbert space

H + , the measurement can be realized by embedding H+ into a

tensor product Hilbert space of H and some apparatus space

as in Chapter 5.
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SECTION 14.3 The Necessary and Sufficient Condition for the

Existence of an Extension to an Observable

We will now give a necessary and sufficient condition

for a sequence of self-adJoint operators to have an extension

of the type discussed in the last section.

THEOREM 14.1

Suppose {An} , n 0,1,2,..., is a sequence of

bounded self-adjoint operators in a Hilbert space H

satisfying the following conditions:

(i) for every polynomial

p(X) a+ + a2 + ... + ann (14.5)

with real coefficients which assume non-negative values

in some bounded interval -M < X < M, we have

a0A0 + aA 1 + a2A2 + ... + a nAn > 0; (14.6)

(ii) Ao = I. (14.7)

Then there exists a self-adjoint operator A in an exten-

sion space H+ such that
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An =PHAnH n=0,1,2,... (14.8)

Furthermore, one can require H be minimal in the sense

that it be spanned by elements of the form Anf where

feH and n=0,1,2,...; in this case, the structure

{H , A, H} is determined to within an isomorphism, and

we have

|DAlI < M. (14.9)/

The proof of this Theorem is given in reference [10].

The bulk of the proof will be omitted here, but we will note

a particular part of the necessity proof here, because it

correlates this formulation of the generalized measurement

with what we have been considering earlier -- the operator-

valued measure characterization.

Let us observe that if A is a self-adjoint operator

UIAII < M on a Hilbert space H+_ H, A will have an orthogonal

resolution of the identity, such that,

A = XI-M dEX, (14.10)

where {Ex} is a projector-valued measure and
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An = M dEX 0,,2, . (14.11)

When we project An back into the subspace H, we have

_ M
PHAnPH = M kndPHEXPH

= M XndFk = An (14.12)

where {FX - PHEAPH} is, in general, an operator-valued measure.

Hence we see that if a sequence of bounded self-adJoint

operators satisfies the condition of Theorem 14.1, there

always will be an operator-valued measure so that the sequence

of operators can be represented in the form of Equation (14.12).

DISCUSSION.

We have provided two essentially equivalent characteri-

zations of generalized measurements. It is purely a matter

of convenience to choose one particular characterization over

the other. Since the moment characterization involves the

powers of the eigenvalues of the measurement more explicitly,

it may be more useful in quantum estimation problems. From

the characterization of sequential measurements however, it

seems the operator-valued measure characterization is more

convenient.
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CHAPTER 15

CONCLUSIONS TO PART I

We have provided two realizations of generalized

measurements. The first realization involving an apparatus,

guarantees a realization for every operator-valued measure.

The second method of realization by sequential measurements,

however provides realization only for several restrictive

classes of generalized measurements. But we have shown in

Chapter 12 that for a large class of detection and estimation

problems, one can find sequential measurements with arbitrary

close performances to the operator-valued measures. A very

striking and important result from Chapter 12 is that, under

reasonable assumptions, in both detection and estimation

problems, generalized measurements can be replaced by self-

adjoint observables, with arbitrary close though sometimes

not equal performances.

From the characterization of sequential measurements, we

have noted the important fact that measurements characterized

by commuting operator-valued measures can at most perform as

well as self-adjoint observables. In general, they correspond

to a single self-adjoint measurement followed by a randomized

decision.
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Simultaneous generalized measurements are shown to be

equivalent to a single 'finer grain' generalized measurement.

Hence, there would not be any possibility of improving

performances by considering such measurements.

Finally, a different approach of characterizing

generalized measurements is proposed. It is possible that

this characterization will be more useful in estimation

problems.
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PART II

THE ROLE OF INTERACTIONS IN

QUANTUM MEASUREMENTS
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CHAPTER 16

INTRODUCTION TO PART II

In part I of this thesis, we characterized quantum

measurements with a rather abstract mathematical language.

Specifically, we claimed that every quantum measurement

corresponds to some self-adJoint operator n a Hilbert

space (which can be larger than the original Hilbert space

that describes the state of the system). Equivalently, we

said that quantum measurements can be characterized by

operator-valued measures defined on the system Hilbert

space. At various instances (most notably in the discussion

of sequential measurements), we have also assumed that the

converse is true -- that every operator-valued measure can,

in principle, be physically realized as a measurement. This

view is similar to the more popular notion that the set of

all measurable quantities forms a von Neumann algebra

* The more widely used concept in physics literature is that
the set of all physically measurable quantities form a
von Neumann algebra generated by the set of all self-adjoint
operators corresponding to the conjugate coordinates of the
system, with each member of the algebra being a bounded
function of the not necessarily commuting coordinate-operators:
For example, the von Neumann algebra generated by the positive
operator X and momentum operator P is the set of all bounded
operators on the space of square integrable functions L2(X,v)
where is the Lesbe ue measure. For more details see
reference [211.
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Actually, to date, there is no systematic realization pro-

cedure to implement abstractly characterized measurements.

In fact, frequently, the set of quantities the experimenta-

lists know how to measure physically is only a very small

subset of the set of all abstract measurements . Some of

these measurements are performed on the system alone. An

example is photon counting in the direct detection scheme of

optical communications . Other measurements, however,

are performed with the aid of an apparatus which interacts

with the system under observation, the final measurement

being made on either the apparatus or the composite system.

An example is heterodyne detection in optical communications

[21], where a local oscillator field optically interferes

with the received field, before the combined field is

detected by means of an energy measure. Many measurements

fall within this second category, and frequently, the final

measurement is performed only on the apparatus, and the

interaction plays the important role of transferring informa-

tion from the system to the apparatus.

If we are faced with the problem of trying to physically

realize a certain abstract measurement that does not

* For example, in many cases, the only known physically

measurable quantity is the energy of the system.
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correspond to any known implementable measurement, it would

be fruitful to consider different apparatuses that are

'compatible' with the system under observation. Hopefully

we know how to measure some quantities in these apparatuses,

and by an interaction between one of them and the system,

brought about by some 'suitable coupling', information about

the state of the system is tranferred to the apparatus, such

that, by performing a physically realizable measurement on

the apparatus, we would obtain the same information about

the system as the abstract measurement. Hence, the task of

realizing the abstract measurement is now being transformed

to the task of finding an appropriate interaction to transfer

the information from the system to the apparatus. While

we cannot guarantee that any interaction can be brought

about by some physically realizable coupling, this method is

potentially superior to most ad hoc procedures, and is

certainly a possibility well worth considering.

Thus the role of interactions in quantum measurements

will be the central theme of our discussions in Part II of

this thesis. The importance of interactions in quantum

measurement has been discussed by many authors (for example,

* Here, by compatible, we mean that the apparatuses can be

coupled to the system by some known or conceivable ways.

_
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[17], [22], [4]). However little attention has been given to

the problem of implementing arbitrary quantum measurements.

d'Espagnat [22] and recently Yuen [4] have made some

progress along these lines.

Interactions are also important in sequential measure-

ments. The effectiveness of sequential measurements hinges

on a very crucial nature of the self-adjoint measurement

being performed at each step. Invariably, at each step, in

order for the subsequent measurements to gain any information

about the original state of the system, the previous measure-

ments must all correspond to self-adJoint operators that have

degenerate eigenspaces. Otherwise if one of the previous

measurements is a 'complete' measurement (i.e. if each of

the eigenvalues of its associated self-adJoint operator,

corresponds to only a single eigenvector), after that measure-

ment the system will be in a known pure state, and the

outcome statistics of any subsequent measurements will only

depend on this state rather than the original state of the

system; hence no further information can be gained. Sometimes

the dimensionality of the Hilbert space is too small for any

'incomplete' measurement. For example if the system is two-

dimensional, any measurement on this system must either be

a complete measurement or a trivial measurement that gains

no information (e.g. the measurement corresponding to the
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identity operator). We encounter such a situation in

Section 8.1, where an apparatus is brought to interact with

the system, so that part of the information is transferred

to the apparatus for the second measurement. Hence, via

interactions one can use the apparatus (or many apparatuses)

as an information buffer for future measurements.

In Chapter 17, we will examine several classes of mea-

surements where interactions are involved. In particular,

we address the problem of the physical realization of an

abstract measurement, by specifying the interaction required

to transform the joint state of the system and apparatus,

such that after the interaction, by performing a known

implementable measurement, the outcome statistics are

identical to the abstract measurement. The interaction will

be characterized by specifying the unitary transformation U

which summarizes its effects. Then in Chapter 18. interactions

will be studied in detail and the unitary operator U is

further used to find the interaction Hamiltonian HI, which can

then be expressed in terms of the generalized coordinates of

both the system S and the apparatus A. This expression will

suggest what coordinates of S and A should be coupled

together and how they should be coupled together.

Chapter 19 takes into account of the constraints of
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physical laws and eliminates those interactions that are not

'allowable'.
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CHAPTER 17

SPECIFICATION OF THE INTERACTIONS REQUIRED

FOR REALIZATION OF QUANTUM MEASUREMENTS

In this chapter we will investigate the properties of

two very common classes of measurements, both involving the

use of an adjoining apparatus. By examination of the inter-

actions that take place before the measurements are made, we

will give specific suggestions for physical realizations of

abstract measurements. The two classes of measurements are,

(I) The system S under observation is brought into

interaction with an apparatus A, and then a self-

adjoint measurement is performed on A alone. /

(II) The system S under observation is brought into

interaction with an apparatus A, and then two self-

adjoint measurements are performed, one on S, the

other on A./

* We can also consider the class of measurements when the

final measurement is performed on S alone, but that class

is equivalent to the class considered above by symmetry.
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Whenever there is not any known implementation of an

abstractly characterized measurement, it will be fruitful to

consider measurements of classes (I) and (II). If there is

a set of quantities we know how to measure on A (or both A

and S), we will try to implement an interaction between A

and S, such that, afterwards by measuring one (or more) of

the measurable quantities on A (or on both A and S), we

would essentially have measured the desired abstract measure-

ment. After finding a compatible apparatus with known mea-

surable quantities, the important step is to find the inter-

action required and decide whether there is any coupling

between A and S that will bring about that interaction. We

thus have the following problem for the measurements in

Class (I), (the problem is useful for detection problems. A

modified problem for estimation is given later in the

chapter.).

PROBLEM (I).

Given a measurement abstractly characterized by

the operator-valued measure {Qi}iel' find

(i) an apparatus with a Hilbert space HA,

(ii) a density operator A for the apparatus,

(iii) an interaction between S and A, whose sole effect

is summarized by a unitary transformation U on the
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Joint state of S+A,

(iv) a measurable observable on A alone that is charac-

terized by the projector-valued measure {i}isi'

which forms a resolution of the identity on the

space HA, i.e. i i IHA, (so the set of measures

{Pi iIHS}il is a resolution of the identity

of the space HS@HA such that I Pi = I .), and

such that

(v) Qi = TrA{PAU PiU}

= TrA{PAU (Ii IHs)U} for all ies.

(17.1)/

DISCUSSION.

By the result in Chapter 5, one can find the apparatus

space HA and the density operator PA* Since the measurement

is being performed on the apparatus, the apparatus space HA

must have dimensionality greater than or equal to the dimen-

sionality of the minimal extension space H+ of the measure

{Qi}. Let {Ri}ieI be the projector-valued extension of {Qi}

* The fact that an interaction can be summarized by an

unitary transformation will be discussed in the next chapter.

__
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on the space HSE HA. Hence we want to find an apparatus U

such that

Ri - U'PiU all i. (17.2)

Ri and Pi are then said to be unitary equivalent. A

necessary and sufficient condition for the two measures {Ri}

and {PiI to be unitary equivalent is,

dim {R{Ri}} = dim {R{Pi}} all il, (17.3)

where R{'} denotes the range space of the operator in brackets.

If the above condition is satisfied, then there will be

a set of isometric mappings from each of the range spaces

R{Ri} onto the range spaces R{Pi} for all i, and by combining

these mappings we can specify the unitary operator U. (Note

that unless all the range spaces are one-dimensional, the

isometries and thus the unitary operator U will not be

unique. )/

We have a similar problem for measurements of Class (II).

Notice in both classes (I) and (II), we implicitly assume

that neither the system nor the apparatus is destroyed by

the interaction. And, after the interaction, parts of the
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composite system can still be identified as the system and

the apparatus. In Class (II) we have a slightly more strin-

gent assumption. We assume,that S and A are in some sense,

uncoupled after interactions, and measurements on S will not

affect the state of A or vice versa (although the measurement

statistics of the two subsystems will be correlated due to

the interaction). We thus have the following problem for

the measurements of Class (II).

PROBLEM (II).

Given a measurement abstractly characterized by

the operator-valued measure {Qi)iei, find,

(i) an apparatus with a Hilbert space HA,

(ii) a density operator PA for the apparatus,

(iii) an interaction between S and A, whose sole effect

is summarized by a unitary transformation U on

the oint state of S+A,

(iv) two measurable observables, one on S alone and one

on on A alone, characterized by the respective

projector-valued measures (N{mmM' {})ncN' S

that the set of projectors {P Em n}mM, nmn m n meM,neN

is a projector-valued measure defined on HS® HA.

That is,

I = IH (17.4)
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I I = I (17.5)
n

and

I Pmn = IHS® HA' (17.6)

and also such that,

(v) Qi TrA{PAU PmnU )

AA m n

for all i and the corresponding m, n./

(Again, this problem is for detection).

DISCUSSION.

This is almost identical to Problem (I) except in the

necessary and sufficient condition, the set P mn is the one

defined for this problem./

In the discussions of detection problems, the eigenvalues

of the observables merely serve as labels of the outcomes.

But in estimation problems, the cost functions also depend

on the magnitude of the eigenvalues, and both Problems (I)

and (II) have to be modified.
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PROBLEM (I)-a.

We assume by the extension technique described in

Part I, we have already found an apparatus space HA,

the density operator PA' and an observable B on HS® HA

which is our desired measurement. (If the original

measurement is a generalized measurement, we assume that

B is found to be its observable extension on HS @HA.)

Our problem now is, given a quantity C we know how to

measure on the apparatus, can an interaction be found

such that after the interaction, the measurement C gives

the same statistics as the measurement B without the

interaction. Again the necessary and sufficient condi-

tion is for B and IHS C to be unitary equivalent. That

is, there exists a unitary operator U such that

B = U (IHs C) (17.8)

For two operators to be unitary equivalent, their

spectra must be identical. This means if {EA}

and {E0} are their respective spectral measures,

* The spectrum of an operator B is the set of all seC, such

that the operator (B-XI) does not have an inverse.

** That implies the spectral multiplicities (i.e. the degree

of degeneracy of each eigenvalue) must also be identitical.
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E = U EU for all X. (17.9)/

PROBLEM (II)-a.

Again this problem is similar to Problem (I)-a.

If B is the abstract observable to be measured, and C

and D are the two measurable observables on S and A

respectively, the problem is to find a unitary operator

U such that

B = Ut(COD)U (17.10)

and the conditions on the spectra will be the same ./

Thus in this chapter, we have been able to provide a

summary of the interaction required by specifying the unitary

transformation that results. In the next chapter we will

show how this unitary transformation is related to the inter-

action Hamiltonian. Hopefully, from the structure of the

interaction Hamiltonian, we know how to couple S and A to

bring about the interaction desired.

* The subject of unitary equivalence has been extensively

studied in mathematics. For more information, the reader

should refer to analysis texts like [10], [11], [20].
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CHAPTER 18

THE INTERACTION HAMILTONIAN

SECTION 18.1 Characterization of the Dynamics of Quantum

Interactions

When two systems S and A interact, the evolution in time

of their joint state is given by an interaction Hamiltonian

HI, defined on the same tensor product Hilbert space HS HA

on which the unperturbed Hamiltonian Ho HS® IHA + IHS HA

acts. HS and HA are the Hamiltonians of S and A respectively.

The dynamics of the interaction are then determined by

replacing Ho with H = Ho + HI in the Schrodinger Equation

for the joint state,

Sat s+a> = H}s+a»>>. (18.1)

The formal solution to this equation is,

Ist+at>> = V(t-t o ) st °+at ° >> (18.2)

where V(t-to ) is a unitary operator and is defined as

i
V(t-t) exp{-zH(t-to) (18.3)0 0~~~~~~~~~(83
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It is easy to verify that

V(T)V(T') = V(T+n') (18.4)

and hence {V(T)) is a one-parameter unitary abelian group

The dynamics of the interaction described by Equation (18.2)

is in the Schrodinger Picture, where the state of the system

evolves with time. In the Heisenberg Picture the states

remain constant in time but every observable A evolves as

A(t) = t(t)A(O)U(t). (18.5)

The two pictures are completely equivalent and we will use

them interchangeably.

Sometimes, when we wish to describe the sole effect of

HI, it is convenient to remove the time dependence associated

with the free Hamiltonians HS and HA from the equation. This

is accomplished by a unitary transformation on the states,

sI+a>> = exp{ (Hs® IHA+IH HA)t}ist+a>> (18.6)

* It can also be shown easily that V(T) is continuous in the

weak topology (i.e.<x[V(T)jy> is continuous for all t and

all x, y HS OHA).
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where the subscript I denotes the states change with time only

due to the interaction. This type of description is called

the Interaction Picture representation. And Equation (18.1)

then becomes,

ih I stI+atI> > H I(t)' s
t+at>> (18.7)

where Hi(t) exp{(HS IHA+IHs +I A)t Iexp~ T SH HS H At

exp{-(H IH A+I HA)t}. (18.8)

The formal solution to the interaction problem is well

known in time dependent perturbation theory [231,[24],[25],[26],

used often in scattering and quantum field theories;

st +at>> = U(t,to)s tI+a t>> (18.9)

i t
where U(t,to) - T exp toHI(t)dt ' (18.10)

U(t,to) is a unitary operator and T is the time ordering

operator.

Equations (18.7), (18.9) and (18.10) can be combined to

give the following differential equation for the two-parameter

unitary transformation U(t,s);
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a (t,s) = - Hi(t)U(t,s) (18.11)

where

U(t,s)U(s,u) = U(t,u)

(18.12)

U(t,t) = I for all t.

Hence {U(t,s)} is a two-parameter unitary group. In general,

unlike the one-parameter unitary group V(T) in the Schrodin-

ger Picture, U(t,s) does not depend on only the time differ-

ence T=t-s, unless HI commutes with H. In that case,

HI(t)=HI for all t and U(t,s)=exp{-4.HI(t-s)}.

If the Joint state of S+A is described by a density

operator PS+A, the time evolution of pt+A is given by,

Pt = V(t-t ) t(t-t )
PS+A oPS+A V ( t- tS+A 0 (18.13)

and in the Interaction Picture,

t

PIS+A
- U(t,to) toIS+U (t,to) (18.14)

Thus far we have only been considering conservative

interactions, those where the Hamiltonian is constant in

and
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time. With a little modification of the relevant equations,

nonconservative interactions can easily be characterized.

Suppose the interaction Hamiltonian HI(t) is time varying,

the Schrodinger Equation that describes the evolution of

states, can be obtained from Equation (18.1) by replacing

the time constant Hamiltonian with a time varying one,

ih-ls+a>> - H(t)ls+a>> (18.15)

where H(t) = H0 + HI(t).

The solution is of the form of Equation (18.9)

Ist+at>> = W(t,t )stO+at>> (18.16)

where W(t,to) = Texp{- t It )

In the Interaction Picture, W(t,t ) is replaced by,

t 
WI(t,to) T exp{-i ft HI(t')dt'} (18.17)

where HI(t) = exp{i. H 0t}H (t)exp{--H 0 t}.

Thus, we can see that the effects of an interaction for

a duration of time, can always be characterized by a unitary



- 169 -

transformation. In the next section we will see that, if

we are given the unitary transformation, can we find the

interaction Hamiltonian.
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SECTION 18.2 The Inverse Problem for Finite Duration of

Interaction

In the last chapter, we attempted to specify the inter-

actions required for the realization of quantum measurements.

That specification is in the form of a unitary operator

acting on the tensor product space HS HA. However, it is

very difficult to come up with suggestions for the right

coupling between S and A to bring about the interaction by

looking at the unitary operator. In this section we will

try to find the interaction Hamiltonian (or Hamiltonians)

that would give such a unitary transformation. Since this

is the inverse of the problem in Section 18.1 of finding

the unitary transformation from the interaction Hamiltonian,

we call this the 'inverse problem'. We will only consider

finite duration interactions in this section. The infinite

duration case will be left for Section 18.4.

PROBLEM 18.1. (Schrodinger Picture, Conservative Interactions)

Suppose during the time interval from to to tf

the resulting transformation on the joint state of S+A

in the Schrodinger Picture is given by the unitary

operator U. The transformation U deviates from that

effected by the free Hamiltonian H0 because of the

interaction Hamiltonian HI. Desire to find HI./
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SOLUTION AND DISCUSSION.

We assume here that from the time - to t, S+A is

evolving according to the free Hamiltonian. Then the inter-

action Hamiltonian HI is 'turned on' at the time to, and

continues to affect the system S+A until tf. The 'turning

on' of the interaction presumably does not affect the states

of S+A in any way outside that predicted by the Schrodinger

Equation.

The solution to this problem is well known. Since

the one-parameter unitary group defined in Equation (18.3) is

continuous by the famous Theorem of Stone given in Appendix Q,

there exists a self-adjoint group generator H > 0 such that

i
V(T) = exp{-- HT}

(18.18)

and V(tf-t o) = J.

In fact, H can be written as the limit,

H = lim T {t/(t-to)-I}. (18.19)
t+ it

The interaction Hamiltonian is then given by

HI = H - H0 (18.20)
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If the free Hamiltonian for the apparatus HA is not

known, then

HI + IHS HA = H - HSIHA' (18.21)

In general, there is no unique decomposition into HI and

IH @OHA. However if we make the additional assumption that

HI has finite trace (trace class), then there is a unique

HA given by,

HA = lim {<siIH - HS IHASi>} (18.22)

where {Isi>}=l is any orthonormal basis in the space HS

(which we assume here to be infinite dimensional). This

results because with HI being trace class, <silHIJsi> must

vanish as i+o, leaving

HA = lim <SilIH @ HAlsi>

= lim <silIHsISi>HA = HA' (18.23)

Trace class interaction Hamiltonian is very important

since they represent a big class where time dependent and

time independent perturbation theories converge. (See

references [20], [27].)
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PROBLEM 18.2 (Interaction Picture, Conservative Interactions)

If we are given the resulting unitary transformation U

in the Interaction Picture, there is no known guaranteed

procedure to directly find HI. If H is known, then one can

transform the problem into one in the Schrodinger Picture

by specifying the unitary transformation in that picture as,

U' = exp{-1 H0 (tf-t o )}U, (18.24)

and make use of the solution of Problem 18.1. There is

however a method that one can work directly within the

Interaction Picture and probably come up with a time constant

HI. But that is a particular case of the general nonconser-

vative interaction problem which will be discussed next./

We will work entirely in the Interaction Picture for

nonconservative interactions. The mathematics in the

Schrodinger Picture is entirely similar, and only requires

putting in the correct quantities in this problem.

PROBLEM 18.3 (Nonconservative Interactions)

Given a unitary operator U which summarizes the

effect of a nonconservative interaction between S and

A in the Interaction Picture, desire to find an inter-
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action Hamiltonian (or a class of interaction Hamilton-

ians), which can be time varying such that it will give

the transformation U in the duration from 0 to T./

SOLUTION AND DISCUSSION.

By the Spectral Theorem given in Appendix B, there

exists a L2-space of functions defined on a domain X with

the measure i, such that L2(X,i) is isometric to the space

HS OHA, and I : U -+ exp{if(x)} where f(x) is a real-valued

function defined on X, and I is the isometric mapping. Let

g(t) be any square integrable function in the interval (0,T).

fljg(t) 2 dt

11 g(t) 2

hg(t) =
for O<t<T

(18.25)

otherwise

1g(t)I 2 fTg(t) 2 dt.

hg(t)

hg(t)

= 0

= i

t<O

t>T.

u (x,t) = exp{if(x)h (t)}.
g g

Then u (x,0)
g

Let

where

Then

Let

(18.26)

(18.27)

= 
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Ug(x,T) = exp{if(x)}. (18.28)

If I-1 is the inverse map from the L2-space onto HSHtfA,

I 1 ug(x,t) + Ug(t) which is unitary with

rI t < 0
U (t) = (18.29)

U t > T.

The interaction Hamiltonian in the Interaction Picture

is simply,

I -{f(x)hg(t) = H(t) (18.30)

and it satisfies Equation (18.17), and in the Schrodinger

Picture,

Hg(t) = exp {i H t}Hg(t).exp{-' Hot}. (18.31)I~(t - xp h I h 0

Hg(t) in general will not be constant in time. If it is,

then it is a solution of Problem 18.2./

Note the upper time limit T can be a.
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PROBLEM 18.4 (Impulsive Interaction)

Let HI(t) = 6 (t)HI. (18.32)

i H t i H t

Then H I (t) = 6(t) eTr Hie 1Tr

= 6 (t)H I. (18.33)

The unitary transformation occuring around t=O is,

t=oI

U(t) = : 
U = e T I

(18.34)

t=O+

If we are given U, HI can be found by Equation (18.19).

H = lim T{Ut - I. (18.35)I it+
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SECTION 18.3 The Inverse Problem for Infinite Duration of

Interactions

Sometimes, it is very difficult to 'turn on' an inter-

action at some time t=to, without affecting the state of

the system. In such a situation, it is desirable to provide

the coupling for the interaction long before the information

carrying part of the system arrives, so that interaction

will start gently but will be essentially going on from the

period of time of - < t < 0. At time t=O, the final mea-

surement is made. The resulting transformation in the

Interaction Picture for the duration (-O,0) is by Equation

(18.10) equal to,

U(O,-) - lim U(O,t). (18.36)

i
If x> is the state of S+A at t=O, exp{-h Ht} x> is its

state at an arbitrary time t. After removing the dependence

on the free Hamiltonian the state in the Interaction Picture

is exp{h Ht}-exp{-h Ht}lx>. In the infinite past, S+A is

then in the state,

Ix_> = lim exp{ h H0t}.exp{-h Ht}lx> (18.37)
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or Ix> = lim exp{. Ht}exp{-H 0 t}lx_, >
t-- e

(18.38)

The limit exists only for certain conditions on H0

and HI. However, that issue is not important to us, since

we are only interested in the 'inverse problem', where 

is already given.

If the limit

_ lim exp{i Ht}exp{- Ht}
t+-oo

(18.39)

exists, it is in general an isometric operator and it satisfies

the following equation,

H = H O. (18.40)

This can be easily shown as follows,

d (eitHeitHo) = ieitH (H-H0)eitH0. (18.41)

Since if the limit a exists, the derivative in Equation (18.41)

* For detailed discussions, see references [20],[25],[26],[27].

= Qx *>
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is zero as t + -, which implies, as t + -)

eitH(H _ H )e-itHO = 

eitHlHe itH0

He itH -itH

= eitHH 0 e-itHO

eitH -itHOH

(18.43)

(18.44)

Hence, as t - we have,

HQ = QH0. (18.45)

In the inverse problem is given as the transformation

due to the interaction, and carries states in the infinite

past to states at t=O in a one-to-one fashion and the

inverse map can be found so that

H = H - 1

H = H 1
I 0

(18.46)

- H0. (18.47)

or

or

(18.42)

or
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CHAPTER 19

CONSTRAINTS OF PHYSICAL LAWS ON THE FORM OF

THE INTERACTION HAMILTONIAN

SECTION 19.1 Introduction

In Chapter 18, we have described several methods of

getting the interaction Hamiltonian from a given unitary

transformation. Not every interaction Hamiltonian corres-

ponds to a realizable interaction. We can narrow down the

classes of Hamiltonians we have to consider by studying

the constraints different physical laws impose on them.

For example, in a collision type interaction, an interaction

Hamiltonian that does not conserve linear momentum is

clearly not admissible.
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SECTION 19.2 Conservation of Energy

We will first consider the constraints of the Law of

Conservation of Energy on the interaction Hamiltonian 301.

Assume at some initial time t=0, the system S and the

apparatus A are not interacting and they evolve according

to their free Hamiltonian H0. If s°+a°>> is the joint

state at this time, the energy of the system at this point is

ES+A = c<s°+a° H0 s 0a>> (19.1)

After some initial contact time t>0 say, the systems

interact, and the joint state evolves according to the full

Hamiltonian H=H0+HI. For any t>tc

Iat+st>>

where

= tla°+ aO>> (19.2)

i
Ut = expE-i Ht}. (19.3)

The energy of the combined system S+A at time t>t is then
c

Et = <<st+at Hla t + s t>>

= <<s°+aO°UtHUt Iat+st >>. (19.4)
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Since H is

with them.

the generator of the unitary group Ut it commutes

Hence,

Et+A = <<s°+a°IHIa°+s°>>

= <<s°+a°!HOla°+s°>> + <<s°+a°lHIa°+s °>>

E + <<sO+aOlHIiaO+sO>>.
S+A (19.5)

The law of conservation of energy requires

t = E0
S+A S+A for all t. (19.6)

Hence this implies,

<<s°+aIHIa°+s°>> = 0. (19.7)

If we allow the joint system S+A to have any state in

Hs HA, the fact that HI has to be a self-adjoint operator

together with Equation (19.7) imply HI 0 identically.

This means if energy has to be conserved, no nontrivial

interaction can occur.

There are several ways to impose conditions on HI such

that Equation (19.7) will be satisfied.
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Condition (1).

(i) Restrict the interaction to be a 'local' interaction.

That is the interaction only takes place appreciably when

the physical distance of S and A is within certain boundaries.

And require,

(ii) at time t=O before any interaction takes place, the

allowable states of S+A to be within a linear subspace

MS+A_ HSo HA, which in some sense does not fall within the

boundaries of the interaction.

That means for a state Is°+a°>> in M+A

<<a0 +s°HIs 0 +a°>> = 0. (19.8)

In this case the interaction will finally take place

at some time t=tc since S+A will evolve according to the

free Hamiltonian, which eventually carries them into the

region of interaction. It is clear then that, MS+A cannot

be an invariant subspace of H Otherwise, the action of

H0 can never carry any state in MS+A outside it. Hence the

condition for nontrivial interaction to take place is,

[H0 ] S 0 (19.9)'Ms+A
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where PS+A is the projection operator into the subspace MS+A.

Figure 19.1 is a pictorial description of the process.

B

HA

) X J. vvW rrA EL . ' % 4 % L 1. L &AU A V O

Figure 19.1

At t=O, la°+s 0>> C MS+A. Hence,

<<s°+alPM S+a°+s°>>
S+A

at t = t > tc = 'contact! time.
c

Iat+st>> . exp{- Ht}. la°+s°>>
>> xp

= Vtla°+s°>>. (19.11)

The probability that S+A will be found in the subspace

MS+A at time t is,

Pr{S+A in MS+A} = <<st+atPMs+Aat+st>>

=1 (19.10)

V% 1 1 44-ir ^ i i vvn v%4- A-i i + ^ W
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= <<s+aoIVpM Vtla°+s° > > (19.12)
S+A

Therefore, the 'probability current' that will be crossing

the boundary BB' is,

a {Pr{S+A in MS+ A }at S+A

a <s°+a°lVtp Vtla°+s°>>
_ t t MS+A

-i <st+at I[HOPM lat+st>>. (19.13)
S+A

Obviously if [HO,PMS+A] = 0, there will be no probability

current going into M where the interaction takes place.
S+A

Note that HI =0 in M+A. Hence MS+ and M areS SA'" S+A S+A

invariant subspaces of HI (but not of H0). Therefore, for

nontrivial interaction to occur,

[H0 ,HI] # 0. (19.14)

Condition (2).

If we are willing to consider time varying Hamiltonian,

we can have an interaction Hamiltonian H(t) such that,
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: 0 t=O

HI(t)' = t~o (19.15)

1 0 O t>O.

The energy E+A = <<st+atIHo+Hi(t)at+st>> will not be

constant in general and energy is either pumped in o out

of the combined system S+A.

Condition (3).

In discussions of scattering in physics, one often

encounters what is called 'adiabatic switching'. The inter-

action Hamiltonian is assumed to have the form

HI(t) e-IlItHI. (19.16)

Hence interactions start at some time t 0. There is no

interaction as t --. But as t approaches t = - , the

interaction becomes appreciable. Then the system S+A is

assumed to be observed at large times (at t a ). By

passing to the limit as t 0, one can get a conservative

interaction result and it can be shown that the energy of

the system at t = - is equal to the energy at t = +. There

is a lot of subtle problems involved in this view. For more

information, one should refer to physics literature on

scattering, e.g.



- 187 -

SECTION 19.3 Conservation of an Arbitrary Quantity

Suppose there are two quantities, characterized by the

self-adjoint operators QS of the system S and QA of the

system A, the sum of which is conserved during and after an

interaction. This means if at+st>> is the state of S+A at

time t, the quantity

<<st+atiQlat+st>> » Q> (19.17)

is conserved, where

Q QS IA+ IHS QA.' (19.18)

If la°+s0>> is the state at t=O when no interaction takes

place,

<Q>t = <<s°+aolVtQVtla +s>>, (19.19)

where Vt is given by Equation (18.3). The conservation law

for the quantity Q states that <Q>t is constant in time.

That is,

d<Qt = <<so+aold (VtQVt)ao+s0>> = 0
-dt t dt tVt) a
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= <<sO+a IV { [H,Q] }Vt I a+s°>>

= <<st+atl [H,Q]at+st>> . (19.20)

Hence, if we allow the state of S+A to be any state in

HS HA, a necessary and sufficient condition for the quantity

Q to be conserved is

[H,Q] = 0. (19.21)

Since the quantities QS and QA are individually conserved in

the absence of interactions,

[HA'QA =

[HsQs =

0

0,

implying [H0,Q] = 0, (19.22)

and hence together with Equation (19.21)

[H I ,Q ] = 0. (19.23)

If {Si}=l are the eigenspaces (invariant subspaces) of Q,

the Hamiltonians can be written in the form,

and
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M

H = PS HPi
i=l i Si

M

= HPS i
i=l i

(19.24)/
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SECTION 19.4 Constraints of Superselection Rules

When the system under observation admits certain symmetry,

not all self-adjoint operators are measurable, ever in prin-

ciple. For example if the system admits a rotation symmetry

(around the z-axis say), then the system is (by definition of

symmetry) indistinguishable from a rotated version of the

same system. This implies no measurable quantity can be

changed by this rotation. The rotational group around the

z-axis is represented by the unitary transformation

U(e) = ei eJz

where Jz is the z-component angular momentum, and is the

angle rotated. If A is any measurable quantity, it will not

be affected by this rotation. That is

eieJJz-A.e-iJz = A (19.25)

which implies,

[Jz,A] = 0. (19.26)

Hence, all measurable quantities must commute with the 'super-

selection' operator J.
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In an arbitrary quantum system, any superselection rule

can be represented by a superselection operator B like J,

and every measurable quantity must commute with it. When

there are more than one superselection rules with super-

selection operators {Bi}M=1, a first requirement is of course

for the Bi's to pairwise commute, and every measurable

quantity must commute with each of them. In fact, we can

find a maximal superselection operator B that contains all

the eigenspaces of the Bi's, so that any operator commuting

with B commutes with all the Bi's. So there is the need of

considering only one superselection operator at a time.

When there is a superselection rule, the density opera-

tor which represents the state of a system is not always

unique. Let {Pk}k=l be the resolution of the identity of

the maximal superselection operator B. If A is the measur-

able quantity to be measured on the system with the density

operator p, the n-th moment of the outcome statistics is

given by

Tr{Anp}. (19.27)

* If one takes the von Neumann algebra view of measurable

quantities, as long as the bases operators of the algebra

commutes with B, the whole algebra will commute with B.



[An,B] = 0

Therefore

and

K
An = PkAnpk

k=l
(19.29)

K
Tr{Anp} = Tr{( P kAnP )p}

k=lk k

K
= Tr{PkAnPkp}.

k=l
(19.30)

Using the identity Tr{AB} = Tr{BA},

K
Tr{Anp} = Tr{AnPkpPk}

k=l

K
= Tr{An PkpPk}

k=l

= Tr{Anp},

where

(19.31)

K

P I PkPPk P in general.
k=l

(19.32)

Since both the density operator p and any obser-

vable A have to commute with a superselection operator B, it

is necessary that the unitary transformation U that summarizes

the interaction to commute with B also.

But
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all n. (19.28)
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CHAPTER 20

CONCLUSIONS TO PART II

We have given suggestions for the implementation of abstractly

characterized measurements. we did o by considering the possi-

bility of activating an interaction between the information carrying

system and an apparatus, such that when an implementable measurement

is performed on the composite system afterwards, the outcome statistics

will be the same as the abstractly characterized measurement. Proce-

dures for finding he required interaction Hamiltonians were given.

This Hamiltonian is expressed as a mathematical function of parameters

of the system and apparatus. Though this does not specify exactly how

to perform a certain measurement experimentally, it provides clues

as to what are the relevant quantities that should be actively involved

in the experiment. Hopefully, the experiementalist can by observing

the form of the interaction Hamiltonian, relate the abstract measurement

to one he knows how to implement experimantally.
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APPENDIX A

THEOREM

If P is an operator and if {Pj) is a family of

projections such that Pj = P, then a necessary and
j

sufficient condition that P be a projection is that

Pj i Pk whenever j#k, or, in different language, that

{P}j be an orthogonal family of projections. If this

condition is satisfied and if, for each , the range

of Pj is the subspace M, then the range M of P is

YMj ./

Proof.

See reference [16].
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APPENDIX B

SPECTRAL THEOREM [10]

Every self-adjoint transformation A has the

representation

A = dEX

where {EX} is a spectral family which is uniquely

determined by the transformation A; E commutes with

A, as well as with all the bounded transformations

which commute with A./

SPECTRAL THEOREM [20]

For every self-adjoint operator A, there exists

a measure space (,) and an isometry I of H into

L2(Q,p) such that

I : A = mf

where f is a measurable real-valued function on Q., and

mf is multiplication by f./
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APPENDIX C

THEOREM 4.1 (Naimark's Theorem)

Let Ft be an arbitrary resolution of the identity

for the space H. Then there exists a Hilbert space H+

which contains H as a subspace and there exists an

orthogonal resolution of the identity Et for the space

H+ such that

Ftf P Et f

for each fH where PH is the projection operator into H. /

Proof.

Consider the set R of all pairs p of the form

P = {A,f},

where A is an arbitrary real interval and f is an arbitrary

vector of H. On R we define a function (p1,P2) such that

if Pl={Al,fl} and P2={A2,f2}, then

* This proof is extracted from reference [91.
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(PlP2) = (F lnA 2flf 2).

We show that the function (p1,P2) is positive-definite.

Indeed,

'(P1P 2) = (FAl r 2 f l' f 2)

- (flF nA2f2 )

= (F Al A2f2,fl)

- '(p 2 ,pl)

and, on the other hand,

n n

I k (Pi'Pk ) ik = I
i,k=l i,k=l

(*)

If the intervals hi (i=l,2,...,n) are pairwise disjoint, then

n n

i,k=l i(F Akfi'fk) k = il(FAififi)lii12

> 0 (**)

If the intervals Ai((i=l,2,...,n) are pairwise disjoint and

the intervals A1 and A2 coincide, then the sums in the right

member of (*) fall into two parts. One part, with indices

(Air)Ak i'fk ~k'
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from 3 to n, is of the form (**), and the other part, with

indices 1 and 2, satisfies

2

i,=l FAin Akf i 'k)ik =

2

i =(Flfi'fk)k

2 2

ii (i Iifi I kfk)
(FA il k=lk

> 0.

The case with arbitrary intervals Ai (i=1,2,...,n) can

be reduced, with the aid of additional partitions, to the cases

already considered. Hence, if A1lnA2=0, then

(F(Alu2) nA3fg) = (F(lA3) (2nA3)fg)

= (F1 fg) + (Fn f,g).

Thus, t(P 1,P 2) is a positive-definite function on R.

Using the method described earlier we imbed R in a Hilbert

space H+.

Not desiring to introduce new notations for those elements

B of the space H + which are subsets of R by the construction

described earlier, we agree on the following: if an element p
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of R belongs to B then we write p instead of B.

We indicate the scalar product in the space H+ by the

symbol +, and have

(PlP2)+ (P1,P2 )

We now consider elements of H+ of the form {I,f},

I = [--,-]. By means of the equation

({I,f},{I,g})+ = (FIf,g) = (f,g),

we can identify the pair {I,f} with the element f from H.

The element P k{I,fk} of the space H+ is identified with
k=l

the element I kfk of the space H. Thus, H can be
k=1 +

considered as a subspace of the space H+.

We now solve the following problem: find the projection

of the element {A,f} of the space H+ on the subspace H. We

denote the projection to be found by {I,g}. For each h of H,

({A,f} - {I,g},{I,h})+ = 0,

or ({A,f},{I,h})+ - ({I,g},{I,h})+ = (FAf,h) - (g,h)
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= (F&f - g, h) = 0,

g = FAf,so that

PH{A,f = {I,FAfI. (** *)

The theorem will be proved if it is established that the

operator function E+, which is defined by

EA{A',f} l {A A',f } (***)

for each element of the form {A',f}CH+ is an orthogonal

resolution of the identity for the space f+ , since then (***)

can be expressed in the form

+ f
PHE f = P E {I,f}

= PH{Af}

= FAf

= PH{An I,f}

= {I,FAf}

for each feH.

It is evident that E+ is an additive operator function of

an interval. Furthermore, the two equations

(E {, = E{A ,f} = {Ann)A' ,f} = E {A',f},A = A A 

i.e.
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(E~{A' f}A =({,ArA' f} {A"{g)

= (FAn,I nAirf,g)

= (F A, n iAn " f ,g)

= ({,f,E+{ A ? ,g})+,

imply that E is a projection

evident that E{A' ,f = {A',f)

operator. Finally, it is

Since the family of all elements of the form {A' ,f

is dense in H+, the extension to H+ by continuity oftthe

operator E defined by formula (****) is an orthogonal

resolution of the identity for the space H. The theorem

is proved. /

and



- 202 -

APPENDIX D

THEOREM 4.2

(a) If U(s) is a unitary representation of the

group G in the Hilbert space H , and if H is a subspace

of H+ , then T(s) = P U(s)/Ht is a positive definite

function on G such that, T(e) = IH. If moreover, G

has a topology and U(s) is a continuous function of s

(weakly or strongly, which amounts to the same since

U(s) is unitary), then T(s) is also a continuous function

of s.

(b) Conversely, for every positive definite

function T(s) on G, whose values are operators on H,

with T(e) = IH, there exists a unitary representation

of G on a space H+ containing H as a subspace, such that

T(s) = PHU()/H for all sG, (D.1)

and the minimality condition for the smallest possible

H+ , is given by,

t / means the operator is restricted to operate on elements

in H.
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fH+ =V U(s)H t (minimality condition) (D.2)

This unitary representation of G is determined by the

function T(s) up to an isomorphismtt so that one can

call it "the minimal unitary dilation" of the function

T(s). If moreover, the group G has a topology and T(s)

is a (weakly) continuous function of s, then U(s) is

also a (weakly, hence also strongly) continuous function

of ./ttt

Proof.

(a) T(e) = PH U (e)/ = P/H I H .

and T(s) = PH -1H = (P(s)/H (P= T(s))/)

we have I I {PH (t-ls)h(s),h(t)}
seGteG H

= I I {U(t)*U(s)h(s),h(t)} = II U(s)h(s)11 2 > 
s GteG se G

t U(s)H means the set of all elements U(s)f, for all feH.

tt An isomorphism between two normed linear spaces H1, and H2

is a one-to-one continuous linear map M : H1+ H2 with

MH1 = H2 .

ttt This proof is adapted from reference [12].
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(b) Let us consider the set Hf, obviously linear, of the

finitely non-zero functions h(s) from G to H, and let us

define on H a bilinear form by

<h,h'> = (T(t s)h(s),h'(t)) > 0
s t

where h = h(s), h' = h'(s).

Using Schwarz's inequality,

I<hh>I < <h,h> < <h,h'>,

that the h's for which <h,h>=O form a linear manifold N in H.

It also follows that the value of <h,h'> does not change

if we replace the functions h,h' by equivalent ones modulo N.

In other words, the form <h,h'> defines in the natural way

a bilinear form (k,kt) on the quotient space H0 =H /N. Since

the corresponding quadratic form (k,k) is positive definite

on H+, lkl11=(k,k)1 / 2 will be a norm on H+ , by completing H+

with respect to this norm we obtain a Hilbert space H+.

Now we embed H in H+ (and even into H) by identifying

the element h of H with the function h=6e(s)h (where 6 e(e)=l

and 6e(s)=0 for se), or more precisely, with the equivalence

class modulo N determined by this function. This identification
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is allowed since it preserves the linear and metric structure

of H. Indeed, we have

<6eh,6eh'> = I (T(t-ls)6e(s)h,6 e(t)h')H
s t

= (T(e)h,h')H

= (h,h')H.

Now we set, for h=h(s)eH and aG,

ha = h(a s).

We have obviously (h+h') = h +h', (ch) = cha, h = h,

(hb)a = hab, and furthermore,

<h a> = (T(t- s)h(a-ls),h'(a-lt))
s t

= I I (T('-1a)h(a),h'(T))
a T

= <h,h'>.

Therefore hen implies haeN and consequently the transformation
^ ^

h--ha in H generates a transformation k-ka of the equivalence

classes modulo N. Setting U(a)k = k a' thus we define for
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+ +
every aG a linear transformation of H0f onto Ho, such that

U(e) = I, U(a)U(b) = U(ab), and (U(a)k,U(a)k') = (k,k').

These transformations on H, forming a representation of

the group G.

For h,h'eH we obtain (setting 6a(s)=6e(a-ls))

(U(a)h,h')H = <6ah,6eh'>

1
= I (T(t-ls)Sa()h,e(t)h') H

= (T(a)h,h') ,

and hence T(a) = pr U(a) for every aG.

Ah "+

Let us observe next that every function h = h(s)sH can

be considered as a finite sum of terms of the type 6 (s)h,

i.e. the type (6 (s)h) for aG, and hence every element

k of H0 can be decomposed into a finite sum of terms of the

type U(a)h for aeG,hsH. This implies (D.2)

The isomorphism of the unitary representations of G

satisfying (D.1) and (D.2) is a consequence of the relation

(U(s)h,U(t)h') = (U(t) U(s)h,h')
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= (U(t- )U(s)h,h')

= (U(t-ls)h,h')

= (T(t-ls)h,h'),

which shows that the scalar products of the elements of H of

the form U(s)h, U(t)h' for s,teG, h,h'cH, do not depend upon

the particular choice of the unitary representation U(s)

satisfying our conditions.

It remains to consider the case when G has a topology and

T(s) is a weakly continuous function of s. Let us show that

U(s) is then also a weakly continuous function of s, i.e. the

scalar valued function (U(s)k,k') is a continuous function of

s, for any fixed k,k' H+ . Since U(s) has a bound independent

of s (in fact, IIU(s)11=l), and since, moreover, the linear

combinations of the functions of the form 6ah for asG,heH,

(or, to be more exact, the corresponding equivalence classes

modulo N) are dense in H+ , one concludes that it suffices to

prove that

(U(s)6oh,6Th')

is a continuous function of s for any fixed h,h'eH and ,TsG.
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Now, this scalar product is equal to

(U(s)U(a)h,U(T)h') = (U(T-lsa)h,h ' )

= (T(T-lso)h,h'),

and this is a continuous function of s because T(s) was

assumed to be a weakly continuous function of s.

This finishes the proof of the theorem./
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APPENDIX E

THEOREM 4.3

Let {Fl} be an operator-valued measure on the

interval 0 < X < 2, then there exists a projector-

valued {El} in some extended space H+ c H such that

Fl = PHEX/H for all ./

Proof.

The integral

T(n) = 02ein dF n=0 ,+l,...

exists and defines an operator function T(n) on the abelian

integer group z, such that T(0)=I, T(-n)=T(n)+ and

= 12 le i(n-m)d(FXhn,h m)

nm

= r20 r I(F(dX)hn hm)
n m

= f2w(F(dX)[einhneemlh m )
n m

> 0,

E (T(n-m)hn,h m )n m
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the last integral denoting the limit of the sums

y((F(Xk+l)-F(Xk))IeinXkh ,einXkh ),
k n n 

where =<X<...<X<... =2w

and max (k+l k) + 0.

Hence by part (b) of Theorem 4.2, there exists a unitary

operator

U = fw eixdE

on an extended space H +cH such that

T(u) = PHU(n)/H n=0,+l,...

f2e inXd(Fh,h') = fe inXd(EXh,h')i.e. h,h'EH

and EX is a projector-valued measure, and can be chosen so

that it satisfies the same condition of normalization as {Fx}

i.e. E = E+ E0 = , E20 = I Then the equation

implies

FX = PHEi/H./
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APPENDIX F

THEOREM 6.1

For an arbitrary operator-valued measure {Qi} i=l'
M
i Qi = I, whose index set has a finite cardinality M,

i=l
the dimensionality of the minimal extended Hilbert

space min H, is less than or equal to M times the

dimensionality of the Hilbert space H. That is,

dim min {H < M dim{H}./

Proof.

The minimality condition of Theorem 4.2 is,

min H+ = n=U(n)H

where,

U(n) = 2e JnldE.,

with J=/-IT and {El} is a resolution of the identity. For

a finite set of the Qi's the integral becomes the sum,

M
U(n) = I eJniQi,

i=l
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where the i 's are M distinct real numbers chosen arbitrarily.

Let,

2i Mi = M i = 1,...,M.

Then
M 2wn

U(n) = exp{j- -i}Qij=l

U(M) = U(O)

= IH

U(M+t) = I exp{j 2(M+) i}Qi

= exp{j2 Mi}Qi
M i

= U(t)

Hence, with this choice of i's the unitary group U(n)

repeats itself every M increments on the index n, and the

minimality condition has become,

min H = V U(n)H
n=O

M-1 2M-1
= {nV (n)H}V{nVM U(n)H}V...n=0 n=MM
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M-1 M-1
= {nV U(n)H} V {n V U(n)H} V ...

M-l
= VU(n)Hn=O

Since U(n) is a unitary operator, each of the spaces

L - U(n)H, n=O,l,...,M-l, has dimensionality equal ton
dim {H}. (Note LO=H). Any two of these spaces Ln, Lm, for

nim may not be orthogonal. But if we assume that they are

indeed orthogonal we can arrive at a union bound for

dim {min H+ }.

M-l
dim {min H+ } = dim {VU(n)H}

M-l
= dim { VoLn}

M-l
< I dim {L n
n=O

= M dim {H}./
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APPENDIX G

THEOREM 6.2

If the operator-valued measure {QaaaA has the

property that every Qa is proportional to a corresponding

projection operator that projects into a one-dimensional

subspaces Sa of , (i.e. Qa = q lq ><q , where l>q >0,

and Iqa> is a vector with unit norm), then the minimal

extended space has dimensionality equal to the cardinality

of the index A (card{A}), i.e.

dim {min H+ = card {A}./

Proof:

Let the projector-valued measure { a}aA be the minimal

extension of the operator-valued measure {Qa}mcA on the

minimal extended space min H , such that,

PHnaPH = QU

qa lqa ><qal l>qa>0

and I N = IH+
olcA 
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I Qm = IHaeA

Each projector Ra projects into a subspace S of min H+

We will show if min H+ is minimal, S is a one-dimensional

subspace.

Assume S is not a one-dimensional subspace for some a.a

Let {fa}Ka be a complet orthonormal basis for this S so

that Ka is an integer bigger than one (since Sa is by

assumption multidimensional). Then,

Ka

Ra I IrS><fal

Let P fja> = Ig> for all k,

where the vectors Igk>'s are no longer orthogonal nor have

unit norms in general.

Hence,

Qa PHRaPH

Ka

kl Igk><gkIkZl

= q a Iq ><qx I 
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Each of the vectors Igk> must be proportional to Iqa>,

otherwise one can easily see that Qa is a nonzero operator

over more than one-dimension by simply orthogonalizing the

set K{gk}K=l and expressing Qa in these coordinates.

Hence we have,

I = gk qa>

where gak is a complex number,

and Qa = q Iq>< qa

Ka 2

- il gl 21q><q1

which implies,

qa k1 gkI
k l

Now let

a1/2 K
1 > q 0 gk If, >a qa k-l k k k

<hj hs> = -1/2 Ka g1an 1 q 1gal

and Ph> =-1/2 Ka k
k=l
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q-1/2 a1gkla2q >

k=l

= q/ 2 q >

Therefore,

PH Ih><h IPH = q1Iq><q

Since Ih > is a linear combination of vectors in S ,

i I h><hI is also an extension of Q orthogonal to other

n ,, a'Ma. Furthermore Na projects into a one-dimensional

subspace, which means that the operator-valued measure with

N replaced by , is an extension of the operator-valued

measure Q and has an extended space with a smaller dimen-

+
sionality than min H , which is the minimal extended space

by assumption. Hence we have arrived at a contradiction.

Therefore for the minimal extension space, every projector-

valued measure projects into a one-dimensional subspace S

Since

Ia Imin H+
acA

min H -US , Sfor aa'a£A a a a
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Therefore,

dim {min H+ } = dim {S }
aEA

A

= 1
aceA

= card {A}.



- 219 -

APPENDIX H

THEOREM 6.3

Given an operator-valued measure {Qa }acA let

R{Qa} denotes the range space of {Q a, aA, then,

dim {min H+} = I dim {R{Q }}./
aA a

Proof.

We will first prove,

(i) dim {min H+} < I dim {R{Q }}
acA a

then we will show,

(ii) dim {min H+} > dim {R{Q }}
_ a!A a

so that the two quantities on each side must be equal.

(i) Since each Qa is a nonnegative-definite self-adJoint

operator there exists for each Qa an orthogonal set of

vectors {Iqk>}kal, such that Qa is diagonalized by these

vectors, and where Ka is an integer larger than zero.

That is,
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Q = kl qkq k><q k,

and 1 > q>k 

The set of vectors k>} klaAspans In fact we

have,

I = 
acA

q k k k
aeA k=1

Therefore the set of one-dimensional operators,

k{P q lqa ><q laK, is a generalized resolution of
k k k k=l,acA

the identity in H, and each is proportional to a one-

dimensional projector. It is clear that an extension for

the set {Pk lKaA is also an extension for {QaaA' since

each Q can be obtained by summing over Ka of the operators

in the former set. But by Theorem 6.2 we know the dimensiona-

lity of the minimal extension space for the set of one-

klaeA and it is equal to thedimension operators .P kkrl,mC¢A'

cardinality of the index set,

dim {min H+ } for {Pk} a = aA =

a A k=l

a- 
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But K is the number of dimensions over which Qa is nonzero.

That is K is the dimensionality of the range space of Qa,

K = dim {R{Qa)).

Since an extension for the resolution of the identity

{Po)KalacA is also an extension for the resolution of the

identity {Qa)a}A it is clear that the dimensionality of

the minimal extended space for the Qa's is upper bounded by

the dimensionality of the minimal extended space for the

Pk's. Hence,

dim (min H + for {Q )A

< dim min H }for {P}Ka
k kl,a¢A

= K

= I dim {R{Q a).
acA

Now we will show the other inequality.

(ii) We wish to prove,

dim min H+} > I dim {R{QG))
acA
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Let the projector-valued measure {H aEA be the minimal

extension of the operator-valued measure {QaacA on the

extended space min H , such that,

Qa = PHanPH

n = Imin H+acA

Since the projectors na are all orthogonal to each other

(see reference [ for the proof), the minimal extended

space is simply the union of all the subspaces the projectors

a 's project into. Hence the dimensionality of min H+ is,

dim {min H+} = I dim {R{ }}.
acA a

Let us assume that,

dim {min H+ < I dim {R{Q }},
asA

then there exists an a such that

dim {R{ I}} < dim {R{Qa}}

= dim {R{PHnaPH} }
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<dim {R { I}}

which is a contradiction. Therefore the inequality (ii) is

true. Putting (i) and (ii) together we have proved the

following,

dim {min H+) = I dim {R{Q}}./
aeA

In the proof above, it is assumed that every Qa

has a complete set of eigenvectors . Though there are cases

when this assumption is incorrect, for all practical purposes,

it provides a heuristic proof of correct results. The

following is an alternate proof that does not depend on this

assumption and leads to the same conclusion.

Alternate proof of Theorem 6.3

For each aeA we have

Qa PHaPH

where Ir is a projection operator.

* Strictly speaking, in an infinite dimensional Hilbert space

only compact operators are guaranteed to have a set of

somplete eigenvectors.
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Assume for the minimal extension

dim R{Qa}} < dim {R{N }1

for some acA. We have

Q = R{Qa }Qa P R{Qa }

R{Q I} PH 1aPHPR{Qa}

PHPR{Q I} a PR{Q}I P H.

Let Sa be the closure of the range of na when restricted to

R{Qa} ,

S = 11 {R{Q }}.

Then dim {Sa} < dim {R{Qa}} < dim {R{lla}}

and S C R{H } = range space of Hl,

implying PS n = PS 
a a

Hence,
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Qa= PHPR{Qa a 

PHPR{Q }S P R{Qa }P H

PHR{ Q } PS R{Q} P H

PR{Q PHPS PHPR{Q 
a a a

= PHPS PH'
a

Therefore PS is a projection operator and together with the
a

* other Ha 's, a'#a is a projector-valued extension of the

operator-valued measure {Qa}asA. But

dim {R{PS }} = dim {Sa} < dim {R{Ha}}

by assumption. Hence the set {Ha}asA is not a minimal

extension. And for a minimal extension, we must have,

dim {R{Qa}} > dim {R{(all) for all acA.

It is easy to show that

dim {R{Qa}} < dim {R{fla1} or all aA.
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So for the minimal extension we will have the equality

dim {R{Q a} = dim {R{N }}.

and dim {min Ht+}= I dim {R{N })
aEA

= dim {R{Qa}}./
acA
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APPENDIX I

COROLLARY 6.3

The construction of the projector-valued measure

and the extended space provided by Naimark's Theorem

(Theorem 4.1) is always the minimal extension./

Proof and Discussion.

The proof of Naimark's Theorem in Appendix C is a proof

by construction. That is, a construction for the projector-

valued measure {R } is actually given for any arbitrary

operator-valued measure {Qa}. We will show that the resulting

extended space in this construction is indeed minimal. First

we will sketch another proof of Theorem 6.1 using Naimark's

Theorem.

In Naimark's Theorem the extended Hilbert space H+ is

spanned by the set of pairs {p = (A,f) for all subintervals

A in the interval I = (0,2] , and all f}. If we have M

Qi's where M is a finite number, we can pick M points {i} 1

in the interval (0,2w] where F changes values. Let these

points be

O = l0 < 1 < 2 < . < M = 2w

The points (Ai} = 0 divide I into M subintervals,
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Now the M sets of pairs p = (Ai,f), all feH}M=l are ortho-

gonal to each other, since the inner products between any

two pairs, one from each set is by definition,

= (FAinjff)h)

= (F0f,h)

= 0 for any f,heH, iJ.

Furthermore these M sets of pairs span H. Individually

each of these sets consists of elements of the form (Ai,f)

for all feHt, so each has at most dimensionality equal to

dim {H}. Hence we have

M
dim {H < I dim {H} = M dim Hi}.

which is Theorem 6.1.

Now for the interval Ai that contains the point Xi,

FAi = Qi' We can show that the dimensionality of the subspace

spanned by the set {(Ai,f), all feH} is equal to dim{R{Qi))}}.

A, i-lix I i=l'...'9M.

{ (,.If 2 (Ai 9h) )
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Let Si be the range space of Qi. For any vector f orthogonal

to all elements in Si, the square of the length of the vector

(Aif) is,

{(Ai'f)2(i'f)} = (F Aif)

= (Qif,f) = 0

Hence for all f L Si, (Ai,f) = 0 is a trivial zero

element. Whereas for gS i,

((A i g ) ,( h i g )} = (Qigg) > 0

by virtue that g is in the range space of Qi. Therefore,

dim {(Ai,f), all feH) = dim {R{Qi}}

+ M
and dim {H } = = dim {(Ai,f), all feH}

M
= I dim {R{Qi}}.

The above condition satisfies the minimality condition

given by Theorem 6.3. Hence the construction in Naimark's

Theorem (Theorem 4.1) gives the minimal extension./
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APPENDIX J

SEQUENTIAL DETECTION OF SIGNALS TRANSMITTED BY A

QUANTUM SYSTEM (EQUIPROBABLE BINARY PURE STATE) [ 14

Suppose we want to transmit a binary signal with a

quantum system S that is not corrupted by noise. The system

is in state Is > when digit zero is sent, and in state ISl>

when digit one is sent. Let the a priori probabilities that

the digits zero and one are sent each be equal to one-half.

The performance of detection is given by the probability of

error. We try to consider the performance of a sequential

detection scheme by bringing an apparatus A to interact with

the system S and then performing a measurement on S and then

on A, or vice versa. The structure of the second measurement

is optimized as a consequence of the outcome of the first

measurement. Previously in chapter 8, we considered the

case in which the Joint state of S and A can be factored into

the tensor product of a state in S and a state in A. In

general, the oint state of S and A does not factor, and we

now wish to treat this general case.

Let the initial state of A before interaction be lao>.

If digit zero is sent, the Joint state of S+A before interaction
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is Iso>lao>. If digit one is sent, the state is Isl>lao >.

The interaction between S and A can be characterized by

a unitary transormation U on the Joint state of S+A.

Isf+af> > = uIls >la>

'sf+af>>, = Ulsliao>.

By symmetry of the equiprobability of digits one and zero,

we select a measurement on A characterized by the self-adJoint

operator OA such that the probability that it will decide a

Zero, given that zero is sent, is equal to the probability

that it will decide on one, given one is sent. Let 10o> and

J11> be its eigenstates. Then f{1 i> 1i=l,2 spans the Hilbert

space, HA. Let {lj>J=12,2 be an arbitrary orthonormal basis

in the Hilbert space, HS' Then the orthonormal set

{lfi>lJ> 1i=l,2 is a complete orthonormal basis for the tensor
J=1,2

product Hilbert space A ® HS Then

J=1,2

iS+al>> il 2bijJi>l*>
J=1,2
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where aij and bij are complex numbers. Since unitary trans-

formations preserve inner products,

<<sl+aflI a+so>> i= 2 bia
i=,2 ijij
J=1,2

= <S11 So>

If we perform the measurement characterized by OA, the

probabilities that we shall find A in state I|o> and |1>,

given that digit one or digit zero is sent, are

PrElo>lo]

PrEl 0l>10]

Pr[ O>ll]

Pr[l, 1>1o]

But by symmetry

= Iaojl2
j=1,2

J=1,2

= 1 Ibji2
3=1,2

= Iblj l2 .
J=1,2

we choose Pr[I*o>IO] = Pr[LI1>I 1

PrE[ll > 1 ] = PrE[l 1 >ll11

Given as a result of the measurement that we find system A
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to be in state Io > , we wish to update the a priori probabi-

lities of digits one and zero. Using Bayes' rule, we obtain

Pr[Ol Io> ]
Pr[io0>1O] Pr[O]

Pr[ o0>]

Pr[C] 2

Pr[ 0>] = Pr[I10>1o ] Pr[O] + Pr[cJ0>l1] Pr[l]

= 21{Pr[j >1o] + Pr[ 1>1IO]}

2

-'. Pr[O I0o>] = Pr[lo 0>o]1

J-1 ,2

Pr[lj Io>]
j=1,2

j=1,2

I aoj I

Ibo 0 I

lalj I2

Given that the outcome is I >, the system S is now in

well-defined states. If zero is sent,

2

2
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sf> = -=1,2 °J J

{ 121aoj121/2
:1,2 °

If one is sent,

I b 1w>
Isf> =l ° j

(1,2 boj 12j1/2
-1,2

After the measurement on A we have a new set of a priori

probabilities and a new set of states for the system S. We

choose a measurement on S characterized by the self-adJoint

operator 0S such that the performance is optimum. From

previous calculations in chapter 8, the probability of error,

given Io>, as a result of the first measurement, is

Pr[sll 0O>] = 1 l-[-Pr[Ol 0t>] Pr[lP ro>]f<sIf J /2o

cflsf> = J1.2 ..j

3=1,2 J1, 2 bo

.- PrC[s IIo> ] = ½ { l .- , 3b joj 2 /2

By symmetry
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Pr[e =>1 2 [1-1-41 2 b°lja 1

211 1 J12 12}2 J=l,2' I 1j2,2

Minimizing Pr[e], subject to the inner product constraint,

I bijaij = <11 o >,
i=l,2
J=1,2

yields

Pr[e]opt 2 [[ ' S o 2]

This is the same result that was derived for the case when

the oint state of S+A can be factored into the tensor

product of states in S and A.
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APPENDIX K

THEOREM 10.1.

If an operator-valued measure iIi=, is defined

on a finite index set, with values as operators in a

finite dimensional Hilbert space H (dim {H} = N), and

further the measures {Qi} pairwise commute, then it

can always be realized by a sequential measurement

characterized by a tree with self-adjoint measurements

at each vertex. In particular, if M < N, the sequential

measurement can be characterized by a tree of length two.

In general, the minimum length of the tree required is

the smallest integer such that

log N

Proof.

(i) Let us prove the case for M = N first. Note that the

case M < N can be made to correspond to M = N by difining

-0 for i = M+1,...,N.
Qi 

~~~~~N N
So {Qii is an operator-valued measure and Q = IH'

i=.
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Since the Qi's pairwise commute, on a finite dimensional

Hilbert space H, they are simultaneously diagonalizable by

a set of complete orthonormal eigenvectors {Ibj >}Jl where

N is a finite integer (equals to dim {HI). That is,

N

Qi = I qjlbj><bjl for all i=l,...,M
j=l

with q > 0 for all i, , and

N i
I q - 1 for all J (K.1)

(Ibj><bj)(|bj,><bjI) = 6,lbj><bj for all ,J'.

Let us perform first, on the system, a self-adJoint

measurement characterized by the projector-valued measure

{Ij = bj><bj } N

The possible outcomes can be modeled by the N branches of

the tree of length one in Figure K.1.

h_ 

ao0

bN Figure K.1

_1

b 2

b 3
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Suppose the outcome of the first measurement is bj, let

a second self-adjoint measurement be performed. Let the

projector-valued measure for this measurement be

{Pi i><ci= where ci> is a complete orthonormal

basis of H. The N possible outcomes of the second measure-

ment can be modeled by the N branches of the 'subtree' in

Figure K.2.

ij
1

jci
2

ci
i

ci
N

Figure K.2

By the results in Chapter 9, the operator-valued

measure Rji for each path, (i.e. each path (ao,bj,cJ) for all

i, J) is given by

R = P.

= b><bjlcJ><cl b j ><b j l

= bj >l<b jlcJ>12<bjl. (K.2)



- 239 -

Let {li>}i= be any arbitrary complete orthonormal basis

and let

1Ib > = I (q) I .
i=l 3

By equation K.1,

N

<bj I> = qi = 1.

Then, <bjCji2 =2 j for all i.

But, since lbj> and bj> are both unit norm vectors, there

exists a unitary transformation Uj (which is not unique)

such that

It:> = Uj jl> 

So if we choose the second self-adjoint measurement such that

Ic> = Uj F> for all i,

the operator-valued measure for the path (ao,bj,cJ) is from

equation (K.2),
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Jbj><bjJcJ> 2<bj = bj > <bJUcUj Ji> 2 <bj

= Ib ><bIj 1c > 2 <bj I

= qJlb><bj I.

Let us perform such second measurement on all outcomes

bj, and identify each outcome i in the index set of operator-

valued measure {Qi i as corresponding to the set of all

paths (ao,bj,c j) j=l,...,N ending in the vertices ci, j=

with a subscript i. Then the operator-valued measure of the

sum of all these paths are,

N N

1 Rj i 1qi bj><b jl = Qi for all i

The sequential measurement can then can characterized by the

tree in Figure K.3 (see next page). Hence, we have realized

the generalized measurement given by the operator-valued

measure QiIil by a sequential measurement.

(ii) We will now prove the theorem for the case when M > N.

The method to construct the sequential measurement is similar

to the case when M < N, except in general the sequential

measurement must have more than two steps. Let {Qi}i=l be

a set of operator-valued measures such that they pairwise
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1
C,

gives Qi

commute and M > N = dim {H}.

Since they commute, they are simultaneously diagonali-

zable by a complete orthonormal basis {bj>}j=l, such that,

N
Qi = lqj b ><bj 

J~t
i=l,. .. $M

qj > 

M

i q 1i=l 

for all i,j

for all J.

a0

and

with

- - -

1

I
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As in Part (i), let us first perform the self-adJoint

measurement corresponding to the projector-valued measures

(ij bj.><bj. j=, so that the initial part of the tree

that characterizes the sequential measurement is again given

by Figure K.1.

For each of the N one-dimensional subspaces spanned by

the N vectors {bj>}=l, we can define a resolution of the

identity given by the Q's, since

M

i qj lbj > <b [ = lbj><bjl

= Ij

- the identity operator of the j-th

one-dimensional subspace spanned

by bj>.

So the set of one-dimensional positive operators

i Mi{qjb><bj}=1 is a resolution of the identity. Whenever

anyone of these {q}l equals zero, we can delete them from

the resolution of the identity without loss of generality.

If the number of nonzero q for some , is smaller than

N = dim {H}, it is obvious we can perform a second self-

adJoint measurement at those vertices in exactly the same
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fashion as given by the proof of Part (i), and we will

proceed accordingly. The problem is when the number of

i
nonzero q exceeds the number N = dim {H}. By Theorem 6.2

an extended space of dimensionality equal to the number of

nonzero q is required. Certainly the original Hilbert

space with less dimensions will not suffice. Let the number

of nonzero q be Mj so that N < M < M. We will group the

set of Mj positive operator {q Ilb><bj|} into N subsets

(groups). For obvious reasons, we like each subset to have

as few members as possible. The minimum for the maximum

number of members in each of these N subsets if we try to

group the M operators as evenly and so optimally as possible,

is given by the smallest integer N such that

NNj > M.

Symbolically we can indicate the partition by Figure K.4.

Partition into N subsets
Maximum number of mem-
bers in each subset is

NJ.

Total
of one
sional
tors = M.

J- ~ .t·
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For each of these N subsets, if we sum the operators

within the subset, we will get a single one-dimensional

operator. Then the N resulting one-dimensional operators

(one from each subset) form a resolution of the identity and

has a projector-valued extension on an N-dimensional space.

So it is possible to perform a second self-adJoint measure-

ment exactly like the one given in Part (i) indicated by

Figure K.2, to 'separate' these N subsets (of outcomes). The

process is symbolically indicated in Figure K.5.

rJ nihnBt 1

cJ subset {2}

ci subset {i}

cJ subset {NI

If N N we can 'separate' each of the subset of

members into their individual members by performing a third

measurement. The nature of this third measurement is

exactly analogous to the second measurement, the construction

of which is given in Part (i). Then we can identify the

measures {Qi} by summing the measures for the appropriate

paths as in Part (i). But the tree now has length three

b i
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instead of two.

If Nj > N we have to 'separate' each subset that has

more than N members into N finer subsets, and can be done

by a reiteration of the procedure already described. This

'separation' process is repeated (by measuring a sequence

of self-adJoint measurements) until the number of members

in each subset is less than N. Then the final measurement

corresponding to the second measurement of Part (i) is

performed. And the measures Qi's are identified by summing

over the measures of the appropriate paths.

It is from the above construction that if 0 < M < N

we only need a tree of length two. For N < M < N2 we need

a tree of length three. In general the minimal length of

the tree required is the smallest integer such that,

> 1 + log N /log N'
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APPENDIX L

When the Hilbert space is infinite dimensional (but

separable), Theorem 10,1 can be easily extended to handle

the situation. We will only sketch how one can generalize

the Theorem.

Since the operator-valued measures (still defined on

a finite index set) pairwise commute, they are simultaneously

diagonalizable. It is then possible to find an infinite

number of finite dimensional orthogonal subspaces {Sk}kkl

of H such that if {Pk}kl corresponds to the projection

operator into these subspaces,

Qi i= ilk ipk for all i
i=l

and, I Pk = IH'
k=l

Given this decompostion we can then separate the sequen-

tial measurement into an infinite number of steps. For

example, the one can separate the resolution of the identity

in the first subspace S1 from the rest of the subspaces by

performing a first measurement corresponding to the binary

projector-valued measure P1 and IH - P1 as in Figure L.1,
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S 1;
P

-S IH-P1
Figure L.1

If the outcome is in the vertex corresponding to S1 we can

make use of the construction in Theorem 10.1 to 'separate'

the measures further by sequential measurements. If the

outcome is in the other vertex, we can devise a second

measurement (just like the first one) to separate S2 from

the rest of the subspaces. Eventually, we would be able to

'separate' the whole space , although we may have to use

a sequential measurement with infinite length. However with

a udicious choice of subspaces {Sk}, we can guarantee that

with probability close to one, that the measurement will

terminate after a finite number steps. This fact will be

apparent later after Chapter, 12.

There is yet another way to construct a sequential

measurement for the infinite dimensional case. If we are

willing to perform a self-adJoint measurement that has an

infinite number of possible outcomes, we can immediately by

the first measurement separate the measures into one-dimen-

sional subspaces as in Theorem 10.1. Now there will be an

infinite number of second level vertices. But because of
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von Neumann's Projection Postulate only one of these vertices

will be the outcome and that is all we have to deal with in

the second measurement. This will enable us to guarantee

for all possible situations, the sequential measurement will

have a finite number of steps.

When the operator-valued measure is defined on an

infinite index set, the situation will not differ from the

first index set case, except for the fact that there will

be an infinite number of outcomes at the final measurement

of each path (instead of finite number). Hence we can state

the following general result.

THEOREM 10.2.

If an operator-valued measure {Qi}til is defined

on an infinite index set, with values as operators in

an infinite dimensional separable Hilbert space, and

further the measures Qi} pairwise commute, then it can

always be realized by a sequential measurement charac-

terized by a tree with self-adjoint measurements at

each vertex. Sometimes, the length of the tree can be

infinite./
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APPENDIX M

In this Appendix we will prescribe a procedure to find

the 'finest' simultaneous invariant subspaces of a set of

bounded self-adjoint operators {Ta}aeA.

DEFINITION. A partially ordered system (S,<) is a non-empty

set S, together with a relation < on S such that

(a) if a < b and b < c, then a < c

(b) a < a./

The relation < is called an order relation in S.

DEFINITION. If B is a subset of a partially ordered system

(S,<), then an element x in S is said to be a lower bound

if every yB has the property x<y. A lower bound x for

B is said to be a greatest lower bound if every lower

bound z of B has the property z<x./

Similar definition can be given for the least upper bound.

DEFINITION. A partially ordered set S is a lattice if every

pair x,yeS has a least upper bound and a greatest lower

bound, denoted by xvy, and xy, respectively. The
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lattice S has a unit if there exists an element 1 such

that x<l, for all xS, and a zero if there exists an

element 0 such that 0<x, for all xeS. The lattice is

called distributive if

x (yv z) = (x^y) v (x Az) X,Y,ZcS,

and complemented if for every x in S, there exists an x'

in S such that

xv x' = 1,

x AX' = 0./

DEFINITION. A Boolean algebra is a lattice with unit and

zero which is distributive and complemented./

For example, the family of all subsets of a set S with

inclusion as order relation is a Boolean algebra. If A, B

are subsets of S, A<B if and only if AB. The unit element

is S, and the zero is S, the empty set.

AAB AB, AvB AUB.*

* For more about Boolean algebra, see reference [201.

-
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We have noted that every bounded self-adjoint operator has

a unique resolution of the identity, which defines a projector-

valued measure on the Borel measurable sets of the real line.

Furthermore, the projector-valued measures of any two Borel

sets commute. Consider then the family of projection

operators {PaBc B that are measures of all Borel measurable

sets B on the real line R. If we define the relation

(i) P1P2 = P1 implies the order relation P <P2

(ii) Pl^P2 P1P2

and (iii) P 2 v P+P2 -PP2

for every pair of projection operators in this family, then

this family of projectors forms a Boolean algebra . If we

consider the subspaces {So}aBB of the Hilbert space H that

are the range spaces of this family of commuting projectors

{PB}lBB and define the following relations,

(i) S <S2 if S C SS (partial order by inclusion)
81 82 f 82

(ii) S vS least subspace of H that contains S ,S
(1 )2 1 2

(iii) S S greatest subspace of H contained in both.
1 2
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Then the system {{SB}BeB,} is a Boolean algebra.

Consider then for each bounded self-adJoint operator

T, aeA, the corresponding Boolean algebra of subspaces

{ B'_}', EaA.

Each of the subspace S is an invariant subspace of Ta. To

find the simultaneous invariant subspace of the set {Tl}aeA,

one can then in some sense fine the intersection of all the

Boolean algebras of subspaces. Specifically one forms the

family of all subspaces {Sy}Y¥G, such that

S = A a
y aCA 6a

for all possible combinations of {B} 's.

The family of subspaces {S }y G have corresponding

projection operators that pairwise commute and in fact

{{S },c} is a Boolean algebra (the detail proof is simple but

tedious and is omitted).

To find the 'finest' decomposition of H into the subspaces

{Si}N=l (where N can be a finite integer or the countable

infinity K) we only have to single out the subspaces Si} in
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{Sy}yeG, such that the null space {O}, is the only subspace

in the algebra {Sy} that is included in each of the subspaces

Si. This is possible because {{S },C} is a lattice, which

has a partial ordering. If the null space {0} is deleted,

each of the subspace Si is a 'local' greatest lower bound,

for a total-ordered subalgebra of {S} .

It can be shown easily that Si, i = 1,...,N are pairwise

orthogonal subspaces, that is,

PS P S 6 iJ PS for all i,ji j -
N

and ilSi = I'

N
or I PS = If.i=l i

Since by definition each of the Si is invariant for all T ,

acA, the set {Si}i=l is then simultaneously invariant for all

T 's. Furthermore, it is unique. Hence, we have the following

* One can view {Si}i=l as the 'atoms' of the measure space

{l, {Sy} ,}, where is the dimensional counting measure,

defined as (Sa)=dim{S }=Tr{PS}. (A set Sic{Sa} is called

an atom if (Si)$O, and if Sa Si, then either (S )=P(S i )

or P(Sa)=O.)
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theorem.

THEOREM 10.5

For a set of self-adJoint operators {T }aeA, it is

possible to find a unique 'finest' set of simultaneous

invariant subspaces {Si}Nil that are pairwise orthogonal

and

N
Ta= P SiTPSi for all aeA./

Note. There is a pathological situation when all the Ta has

a simultaneous degenerate eigenspace Si, such that every

subspace of Si is also a simultaneous invariant subspace.

The construction provided in the Appendix will only single

out the unique Si but does not decompose Si further into

'finer' subspaces. The finer decomposition (which is never

unique) is unnecessary because this case is unimportant in

communications. It corresponds to a measurement first

resolving the subspace Si and followed by a randomized

strategy which we know cannot improve performances.
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APPENDIX N

THEOREM 12.3.

Given a measurement characterized by a generalized

resolution of identity {F }a C for a complex parameter

estimation problem, with a mean square error of I1, if

the Hilbert space that describes the state of the

received quantum system is infinite dimensional (but

separable), then for arbitrary small > 0, there is a

self-adJoint measurement that will give a mean square

error of I2, such that

II1 - I21 < 

if the following (sufficient) conditions are satisfied,

(i) the probability density function for the

complex parameter , p(a) has a compact support
*

S SC,

(ii) p(a) is continuous,

(iii) the 'modulation' is uniformly continuous, that

means, if a sequence {ai} converges to a, the

* The support of a complex function f on a topological space

X is the closure of the set {x : f(x) 0}.
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sequence of density operators {p i} also con-

verges to pa, in trace norm, i.e.

Tr I pai
- I -+ O

and if la - ail < 6, then Tr{jPi - P < for

all values of a C S.

(iv) the generalized resolution of the identity

{F }aC has a (weakly) and uniformly continuous

first derivative, that is

G d Fa da a

has the property that for any operator A with

Tr{lA I} < , and a sequence {ai converges to a,

Tr{AG } - Tr{AG }),

and given any > 0, there exists 6 > 0 such

that Iai - al < 6 implies

ITr{AG i) - Tr{AGa} < 

for all a, ai and A./
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Proof.

The mean square error I is,

I1 = f Tr{p G ,} a-a' 2p(a)d2d 2 (N1)
S

We will try to show that there is a self-adjoint measurement

Mcharacterized by the projector-valued measure {H i}. such

that when the measurement is used instead, the output will

be one of the M finite number of discrete points {ai}, and

has a mean square error of

M 2 2

I2 I iTr{p a ita-al p(a)d a (N.2)2 i=l a a i

with I1 - I21 < .

The general philosophy in the proof hinges on the fact that

the integral I1 in Equation (N.1) can be approximated by

discrete sums over the index set of and ', with arbitrary

accuracy, in the sense of a Riemann type sum. With this

transition the problem becomes a 'pseudo-detection' problem,

and Theorem 12.2 applies.

The proof will be divided into four parts.
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Part (i). The function la- a'12 is continuous on a

set S, hence it is also uniformly continuous on S.

uniformaly continuous by assumption. Therefore the

in Equation (N.1) is also uniformly continuous.

Let fI p(a)d 2 ad2 ca' = d 2 at' = K < 
S S

compact

G , is

integrand

(N.3)

(since S is compact). For a B > 0, there exists a 61 > 

such that for all a', a" S and a' - a"I < 61)

ITr{p PG, } I a-a" 2 - Trtp G ,}lIa-a'1 } < K'a aIT

(N.4)

Define the neighborhoods for all a s S,

V61(a) = {a' : la-a'1<6 161 -
(N.5)

Then the set of open sets {V6 (a)} as is an open cover of S,

and since S is compact, there exists a finite subcover,

{V6 (ai)} Mi=l such that

M

u v (ai) = S.i=l 1
(N.6)

The sets {Vl1(ai)} are not disjoint, but we can form disjoint
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subsets {V6 (ai) } from them by arbitrarily assigning the

overlapping parts to one of the sets, such that

A

V 8 (ai) nv 6 (a) = 0 for ij

Ml^
U V6 ( i)

i=li
and

Let

= S.

= ^
~ V ( )dF .(ci) c

Ml
I3 - IS ilZ

Tr{p Q ,
cx ail

, 2p(ca)d 2a.

(N.9)

I1 - I3

Is {fl Tr{pG, } a-a' 12d2 a'
S /s a

M1
1 Tr{paQI
i'=l

} a i, I}

.p(a)d 2 aI

< f I Tr{pG, }l a-a' 
S

2d2 a d c' Tr{p Q a } Ia-a, 21

.p(a)d2a

C 2 2 E-1Kp(c)d2 a'd = .

(N.7)

Define

(N.8)

< I
S

(N. 10)
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The last inequality is implied by Equation (N.4).

Part (ii). Similarly since p and 1a-a'I2 are both uniformly

continuous on S, given any > 0, there exists a 62 > 0 such

that if we form the sets {V ( )}M211 we have
62 i 

II3 - I41 < (N.11)

where 14 is defined as

M2 M1 2iI4 id i4lTrPai Qi , }lai ai Pr{Vd (a)}

where Pr{V62 (a) jV(ai)p() d a. (N.12)

Note we can use the same neighborhood here as in Part (i) by

forming neighborhoods of size 6 = min (61,62) and use the

same set of {= } and 14 becomes

M M 2
14 = ,lTr{PiQ i ai-ai Pr{V 6 (ai)}.

(N.13)

Part (iii). Observe that 14 looks like the probability error

expression for M-ary detection problem with a slightly

different cost function. By the same method used in Theorems

12.1 and 12.2, it is easy to show that there exists a projec-

tor-valued measure, {H i}i=l such that,



- 261 -

II4 - I51 < 

where

(N.l14)

M M

I5 i1 il Tr{p i ailai-ai, Pr{V (ai)}.
1=1 -- i=l L 62

Part (iv) If we use the self-adJoint operator characterized

M
by the projector-valued measure { }.i as measurement, the

mean square error is,

M 2 2

I2 S i C Tr{ ia a p(a)d ax
S i=l

(N.15)

But 15 is a Riemann type sum of the integral I2, and for

small enough partition size 6 for the V(a i) 's

1I2 - 51 

From Part

(N.16)

(iii)

II5 - I41 < .

From Part

(N.17)

(ii)

114 - I3 < (N.18)



From Part

Therefore,
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(i)

II2 < £.

(N. 19)

(N.20)/

II3 -Ili <c

- Ill



- 263 -

APPENDIX 0

THEOREM 13.1

Two generalized measurements, characterized by

operator-valued measures {Si }ie, {Tj}JeJ are

simultaneously measurable, if and only if there is

third generalized measurement, characterized by th

measure Qk}keK' such that,

the

a

e

(i) Si = Z Qk
ieKi

and disjoint subsets

UKi= K,
ise

(ii) Tj = Qk
J

for all il

{Ki}i£I of K, so that

and

for all J e

and for disjoint subsets {Kj}jej of K so that

U K' = K./
JcJ J



- 264 -

Proof:

(i) Necessity.

If {Si}iil , {Tj}I J are simultaneously measurable, there

exists on an extended space H+2 H, two commuting projector-

valued measures i } i l, {PJ } J , such that,

Si PHniPH

Tj = PHPjP H
and

for all i

for all J.

Since {Hi} {Pj} are simultaneously measurable, there exists

a third projector-valued measure {Rk} kK' such that

(i) Hi = Z Rk
i Ki k

and disjoint subsets

UKi= K,
i¢!

(ii) Pj = E Rk
JeKj

and disjoint subsets

for all i!

{Ki}iel of K, so that

and

for all jej

Kj JI of K, so that

U K = K.
j J



There fore,
Si H i PH

PHRkPH

ieKi

= Q k
iCK i

and similarly,

Pw e Qks

where k is defined as PHRkPH' In fact, without loss of
generality we can form all possible products of the form

Rij = HiPj

and then Hi = Ri
3cJ

Pj = Z Rij
3 i 

giving Si = Z Qi

T = Z Qi
3 i 1l J

where
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Qij PHRIJPH'
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Hence, the condition given in the theorem is necessary.

(ii) Sufficiency.

Let {Rk}keK be a projector-valued extension for the

operator-valued measure {Qk}kcK. Then the two projector-

valued measures defined as

Ri - RkkeKi

and Pj = Z Rk
kcKj

commute and are simultaneously measurable. Hence, the condition

in the theorem is also sufficient./
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APPENDIX P

PROBLEM

Given two simultaneous measurable operator-valued

measures {Si} Z, Tj}ja, desire to find a third

measure {Qij i ,jcJ' such that,

Si = Qi for all i I
jej

T = E Qij for all JcJ./
ic 

Construction:

To find Qll' we would like in some sense, to find the

'biggest' possible operator Q11 such that S1 = S-Qll, and

T1 = T1-Qll are still nonnegative definite*. (Since

S1 = Ql is a measure and should be positive, likewise T1).
s1 j

S1 - T1 = S1 - T1 is a bounded self-adjoint operator,

therefore by the spectral theorem for bounded self-adjoint

operators there exists a spectral measure {EX} such that,

* An operator A is bigger than the operator B, A>B if and

only if A-B>O. The order relation > provides a partial

ordering and Qll is the maximal element.



S1 - T1 = S - T1

1

= fo dE

1 1
S1 = /OXdEl

^ 0
T1 = -f -lAdE

so that, Q = s 11 - 1 1
1

S1 - foAXdEx

Ao 0
T1 - T1 = T1 + f-:XdE .

Now that we have a basic construction for Qll' it is possible

to generalizedby induction to find any arbitrary QiJ.

Suppose we are given Qij for all

to find the Qi'j' operator.

i<i', j<j', we desire

Si -= Si - QiiJj' i'j

TJ, T - Z Qij

QIJ' is then the biggest operator such that

SI, - Qi' > 0,it 1:. 
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Hence,

Define
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and T., - Qi'j' > 0,

and can be obtained by the previous procedure for Q11 ' By

induction all the {Qij can be found.
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APPENDIX Q

STONE'S THEOREM [10]

Every one-parameter group {Ut} (-<t<o) of unitary

transformations for which (U,f,g) is a continuous

function of t, for all elements f and g, (i.e. Ut is

weakly continuous), admits the spectral representation

Ut = 1 eiXtdEX

where {Ex} is a spectral family./
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