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ABSTRACT

Network design problems arise in many different application areas such
as air freight, highway traffic and communications systems. This thesis
concerns the development, analysis and testing of new techniques for
solving network design problems.

We study the application of Benders decomposition to solve mixed integer
programming formulations of the network design problem. A new methodology
for accelerating the convergence of Benders decomposition for network de-
sign is introduced. These acceleration techniques are also applicable to
a much broader class of algorithms that includes Benders decomposition for
general mixed integer programs, Dantzig-Wolfe decomposition for linear and
nonlinear programs and other related procedures.

These methods are specialized to network problems by the development of
very efficient algorithms that exploit the underlying structure of these
models. Computational experience demonstrating the value of these tech-
niques is given.

Another important issue in improving the computational performance of
Benders decomposition for network design and other mixed integer program-
ming models is the selection of a "good" mixed integer programming problem
formulation. We give a criteria for choosing between two mathematical
formulations of the same problem in the context of Benders decomposition.

Since good heuristic methods are important in generating initial starting
points for Benders decomposition, we study the accuracy of heuristic
solution procedures for a particular type of network design problem. Worst-
case performance measures of heuristic network design procedures are pre-
sented. For a restricted version of the network design model, we describe
a procedure whose maximum percentage of error is bounded by a constant.
For a more general version of the problem, we give results concerning the



complexity of finding efficient (polynomially time bounded) heuristics
for the network design problem.
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CHAPTER I

INTRODUCTION

Federal Express currently guarantees overnight delivery of small

s between any of numerous cities in the United States. Of the

f 41 Falcon jets that it maintains, at least one plane leaves

urns to each of about 30 strategically located airports every

Most planes meet in Memphis, Tennessee, where goods are reassigned

ng to their points of destination [18].

This system illustrates the use of Memphis as a "break-bulk"

By aggregating shipments to and from break-bulk centers, and by

g travel distance, this type of distribution system has the poten-

reduce routing costs and improve service. These benefits must be

against costs for owning and operating the centers. Break-bulk

are used in air, trucking, rail and other forms of freight dis-

on.

Choosing the sites and number of break-bulk centers can be modeled

as a special case of the generic mixed integer program:

Minimize

subject to:

cx + dy

Ax + Dy = b

x > O, y Y.

In this formulation x is an n-vector of continuous variables, y is a

k-vector of discrete variables, and Y is a subset of the integer points

package

fleet o

and ret

night.

accordi

center.

reducin

tial to

weighed

centers

tributi
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in k-dimensions. The matrices A and D and vectors c, d and b have

dimensions compatible with those of x and y.

For the general break-bulk problem, each yj is a binary, or in-

k
dicator, variable specifying whether or not center j is opened. xij is

the amount of product k routed from city (junction) i to city (junction)

k
j at per unit cost c.. . d. is the fixed cost for owning a center at

location j. The products k frequently will be distinguished only by

their points of origin and destination. The model might include inter-

mediate transshipment points in addition to the origins, destinations,

and break-bulk centers, and it might permit shipments through more

than one break-bulk center. The constraints of the model, which will

be discussed formally in chapter III, account for demand requirements

between the origin and destination points and specify that no material

is routed through a center that is not opened.

The break-bulk problem also belongs to a more general class of

network model known as the network design problem. In chapter 2 several

variants of the network design problem are discussed. One versions (which

contains the break-bulk problem as a special case) has the following

description: there is a set of nodes and arcs; between every pair of

nodes there is a required flow that must be routed through the network.

Each arc has a capacity which can either be zero or infinity. A con-

struction cost is incurred for setting an arc capacity to infinity. There

are also arc routing costs which are linear functions of the total arc

flow. The network design problem is to select a network (i.e. a set of

arcs with infinite capacity) so that all the required flows are satisfied

and the total construction and routing costs are minimized.
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In addition to the break-bulk problem, the network design problem

includes a wide variety of other applications. For example, models

similar to the above network design variant have been used to locate

concentrators in communications networks (Drinkwater [29]), to locate

bank accounts to maximize float (Cornuejol.s, Fisher and Nemhauser [21 ]),

to design production schedules (Wagner and Whitten [132] and Billheimer

[13 ]) and to locate urban transit stations (Billheimer [13]).

Other variants of the network design problem have been used to

design rail networks (Barbier [7] and Haubrich [117]), highway networks

(Steenbrink [117]) and communication networks (McCallum [85]).

In the succeeding chapters of this thesis we study the solution

of network design problems, which include the break-bulk problem and

other applications. Our goal is to present, analyze and test new techni-

ques for increasing the current capabilities for solving network design

models.

The next chapter is a survey of network design problems and their

solution methods. In this survey, we specify a general network design

model and use it to analyze and relate a large number of network design

papers. The purpose of this chapter is to describe the current uses and

computational capabilities of network design models.

In the third chapter we consider the application of a decomposition

procedure, Benders algorithm, to solve a mixed integer programming formu-

lation of the network design problem. We present a new methodology for

accelerating the convergence of Benders procedure for this type of problem.

In fact, these acceleration techniques are applicable to a much broader

problem setting that includes Benders decomposition for general mixed
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integer programs, Dantzig-Wolfe Decomposition for linear and nonlinear

programs, and related "cutting plane" type algorithms that arise in

decomposition techniques.

After describing this general methodology, we next present

specializations to network problems, developing very efficient algorithms

that exploit the underlying structure of these models. We also describe

other related techniques for improving the performance of Benders decom-

position in solving various network problems such as facility location

and network design. Finally, we describe computational experience

demonstrating the value of our techniques in solving facility location

and network design problems.

In the fourth chapter, we discuss another important issue in the

application of Benders decomposition to network design and other mixed

integer programming models, namely the selection of a "good" mixed integer

programming problem formulation. Two different formulations of the same

problem might be identical in terms of feasible solutions, but might be

distinguishable in others ways. For example, they might have different

linear programming or Lagrangian relaxations, one being preferred to the

other when used in conjunction with algorithms like branch and bound or

Benders decomposition. Geoffrion and Graves [49 ] have shown that proper

model formulation can greatly improve the computational performance of

Benders procedure.

One aspect of this discussion is a criteria for selecting between

two mixed integer programming problem formulations in the context of

Benders decomposition procedure. We discuss the application of this

criteria for solving network optimization problems, and give examples
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demonstrating its usefulness.

In the fifth chapter we consider the use of heuristic techniques

to solve network design problems. In many large scale applications,

approximate techniques are the only methods available for generating

acceptable answers. Also, heuristic solutions are useful as good initial

starting points for Benders decomposition and other procedures that

guarantee optimal ity.

A major drawback to the use of heuristic algorithms has been the

uncertainty concerning the accuracy of these approximate techniques. A

recent trend in both operations research [21 ] and computer science [39] has

been to analyze heuristics in terms of their worst case performance. That

is, we evaluate a heuristic by its maximum possible error in approximating

the optimal solution. Using this type of analysis, we can guarantee the

performance of a procedure to within prespecified bounds.

Our analysis in this chapter provides worst-case performance

measures of heuristic procedures for network design problems that are

closely related to the break-bulk problem. For some versions of the

network design model, we describe procedures whose maximum percentage of

error is bounded by a constant. For more general versions of this problem,

we derive upper and lower performance bounds for the class of all reason-

able heuristic algorithms (i.e. algorithms whose computation time grows poly-

mially with problem size). These analyses also allow us to give worst-

case bounds for several network design heuristics given in the literature.

Finally in the last chapter we present some concluding remarks

about the various results presented and give suggestions for future work.
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CHAPTER 11

A SURVEY OF NETWORK DESIGN PROBLEMS

2.1 Introduction

The selection of an optimal configuration or design of a network

occurs in many different application contexts including transportation

(airline, railroad, traffic and mass transit), communication (telephone

and computer network), electric power systems, and oil and gas pipelines.

For example, consider a traffic network whose nodes represent both origin

and destination areas for the vehicular traffic of a city and also inter-

sections in the road network. The arcs correspond to streets in the city,

and the arc flows denote the amount of traffic traversing the streets. A

typical network design problem would be to select a subset of the possible

road improvements subject ot a budget constraint. The design objective

would be to minimize the total travel cost for all travelers in the city

network.

In this survey, we will introduce a basic network design model

which frequently occurs in the network literature. Although most real-

world network design problems are more complicated than our general model,

we believe that our basic framework embodies many of the most essential

features of network design problems. Thus, any sophisticated design model

will have to deal with the issues represented in our general framework.

We will discuss a number of network design papers in terms of this

basic model. Although this general framework is applicable to many
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different problem domains, we will concentrate mainly on transportation

network problems since most of the work concerning network design has

focused on these applications. Our goal is to presenta coherent unified

view of these papers and their contribution to the network design litera-

ture. We will review suggested solution procedures, computational

experience, relations between various network models, and potential appli-

cation areas. We also indicate promising areas of research for improving,

solving, and extending the models reviewed in this survey.

Previous survey work in the area of network design problems

includes reports by MacKinnon [76], Schwartz [113], Stairs [116,] and

Steenbrink [118].

2.2 Problem Formulation

In this section we will give a general framework for the network

design problems that will be discussed in this survey.

Our basic network design model has the following description:

we have sets of nodes N and arcs A; between each pair of nodes (k,S)CNxN

there is a required flow R k that must be routed through the network.

fi [j is the amount of required flow between nodes k and on arc (i,j).ij
For each node iN we can write the flow conservation equations:

-Rkk k=i

(2.1)jN jN Rj (2.1)
0 otherwise

(k,,) NxN.
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For each arc in the network we assume there is an initial given

capacity u and a set of possible capacity improvement levels L... ThusIj Ij
we can write the following arc capacity constraints:

fkf.. = f.. < u.. + ..

(k,,)eNxN Ij J - IJ IJ

(i,j)eA (2.2)

R.. s L..
Ij Ij

For example, suppose all capacities are initially zero and an

arc (i,j)'s capacity can either remain zero or be increased to a value

Ki.. Then L - = {OKij) and (2.2) can be represented by:

fij fi < + KYij

(k,k) eNxN (;,j)eA

yij= 0 or 1

where yij is a 0-1 variable indicating the capacity level of arc (i,j).

Our general framework includes two types of costs. The first

kind, denoted by RC j(fij), is the routing cost for arc (i,j) associated

with satisfying the required flow constraints (2.1). In various applica-

tions the routing costs may correspond to travel time, risk of accidents

or any other "costs" which vary with the amount of traffic on the arc.

The second type of cost, the construction cost for the capacity

improvement of arc (i,j), is denoted by CCij(2ij) and includes capital

construction costs, maintenance fees, and any other costs that depend

solely on the arc capacity level.



-16-

In general, our objective will be to minimize the total routing

and construction costs. With the above information, we can state our

general network design problem as:

Minimize RC ij(f j) + CCij ( ij)

subject to: (2.1), (2.2) and any special problem constraints

f. > 0 (i,j)EA

(k,,)cNxN

We will further classify our network design problems according

to their routing cost functions RCij(fij). If, for a particular network

design, all routing cost function functions are linear and every arc

capacity is either zero or infinite (we usually represent an "infinite"

arc capacity value as some sufficiently large number such as the total

amount of required flow in the problem), then we will refer to the model

as a network design problem without congestion costs. This terminology

is chosen to reflect the fact that if an arc is present in the network

(i.e. has non-zero capacity, then any amount of flow can be routed through

it and the marginal cost for routing an additional unit of flow is always

constant, independent of flow conditions in the network.

If a network design model has convex routing cost functions and/or

some finite non-zero arc capacities, then we will refer to it as a network

design problem with congestion costs. These congestion costs are reflected

in the convex routing cost functions (i.e. increasing marginal costs)

and/or the prohibition of additional flow through an arc after a certain
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limit has been reached.

In the following sections we describe and analyze a number of

different problems in terms of this basic network design model.

2.3 Network Design Problems without Congestion Costs

Network design problems without congestion costs often model

underutilized systems such as a communications network where the amount

of information transmitted is always below the capacity of a standard

trunkline. In this case, the arc capacity is effectively infinite.

Another use for this type of system is to gain insight into more compli-

cated networks with congestion costs by studying this simpler network

model. Also network design problems without congestion costs can be used

as subproblems in a procedure for solving more complicated network design

models.

The first network problem that we consider was formulated by

Billheimer and Gray [14]. Initially all arcs have zero capacity. The

arc routing costs are linear functions of the total arc flow. The con-

struction cost required to build an arc with "infinite" capacity is a

fixed charge. The objective is to minimize the sum of routing and con-

struction costs. (We will refer to this network design model as the

"fixed charge design problem.")

Since all arc capacities can only take on discrete values (either

zero or "infinity"), we can formulate the fixed charge design problem as

the following mixed integer program:
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Minimize d.. f.. + c Yi.
( 1,j)£A i j

subject to: (2.1)

f.. < R · y (i,j)sA

IJ -

y.. = 0 or 1.
I J

yij indicates whether or not arc (i,j) is present in the network. d..

is the cost of routing a unit of flow through arc (i,j). c.. is the cost

of adding arc (i,j) to the network (i.e. setting its capacity to

"infinity"). Note that the second constraint is a specialization of (2.2)

to the fixed charge design model.

Note that the above network design formulation gives rise to large

mixed integer programs. For example, a network design with 50 nodes and

200 possible directed arcs will be formulated with 12500 rows, 10000 con-

tinuous variables and 200 binary variables.

Magnanti and Wong [80] (also see chapter 3 of this thesis) applied

Benders decomposition to the above formulation of the fixed charge design

problem. They specify a technique for accelerating the convergence of

Benders procedure. Their computational experience includes satisfactorily

solving networks with 10 nodes and 45 arcs in about 60 seconds of IBM

370/168 computer time.

Since this problem is very complex, Billheimer and Gray propose a

heuristic solution procedure. Each iteration of this procedure consists
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of either deleting or adding an arc to the network so that the total cost

(routing and construction) is reduced. The iterations are continued

until a local optimum is reached where now further addition or deletion

of a single arc reduces the cost of the network configuration.

The heuristic procedure has been tested on a problem with 68 nodes

and 476 arcs. The method reached a local optimum after about 3 minutes

of computation time on an IBM 360/67 computer. It is difficult to judge

the quality of the heuristic's solution since no satisfactory method is

known for optimally solving problems of that size.

It is interesting to see the wide range of network models that

are related to the fixed charge design problem. Many combinatorial

network problems are special cases of it. If all arc construction costs

are set to zero, then the fixed charge design model becomes a series of

shortest path problems. If all arc routing costs are set to zero, the

fixed charge design model becomes a Steiner tree problem on a graph

(Steiner's problem) [28, 56]. The Steiner problem occurs because the

required flows will necessitate that there be a path between every pair

of nodes in some subset of the nodes in the network.

Since the fixed charge design problem contains the Steiner problem

as a special case, we can be confident that it is very difficult to solve.

Karp [65] has shown that the Steiner three problem on a graph is NP-com-

plete. This implies that the Steiner problem is as difficult to solve as

such combinatorial problems as the traveling salesman problem [10], the

maximum clique problem [57] and the 0-1 integer programming problem (see

[65,66] for a full discussion of the various NP-complete problems). In

view of the lack of success in solving any of these problems on a large
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scale, it appears unlikely that there is an efficient algorithm for the

Steiner problem or for the fixed charge design problem. In fact, the

fixed charge design problem itself is NP-complete. (This result follows

from the fact that the Steiner problem is a special case of fixed charge

network design).

If the arc construction costs are all equal and totally dominate

the routing costs (i.e., the optimal network design must be a tree), then

the fixed charge design problem becomes the optimum communication spanning

tree problem defined by Hu [61].

Another special case of Bilheimer and Gray's problem is the fixed

charge plant location problem [30,36]. The plant location problem is

normally associated with the placement of facilities on the nodes of a

graph. The objective is to minimize the sum of the fixed charges for

locating the various plants and the routing costs for servicing customers

from the constructed plants. However, it is possible to convert the plant

location problem to a network synthesis problem. This can be done in the

following way: add a special node to the plant location network. This

node will be the source of all the flow required by the customer nodes.

Also, add a set of special arcs leading from the special node to each

potential plant site (see figure 2.1). A special arc connecting the

special node to a plant site has a construction cost equal to the fixed

charge associated with opening the site. These special arcs will have no

routing costs. Arcs connecting plant locations with customers have no

construction costs. However, they will have a routing cost equal to the

transportation cost from the plant location to the customer. So now the

corresponding synthesis problem is to design the minimum total cost
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CUSTOMERSPOTENTIAL
PLANT LOCATIONS

Plant Location as an Arc Design Problem

(construction plus routing cost) network so that all the flow requirements

between the special node and the customers are satisfied. Thus, the

fixed charge plant location problem is a special case of the fixed charge

design problem.

Viewing the fixed charge plant location problem as a special case

of the fixed charge design model gives us additional insight into the

network synthesis problem. For instance, Billheimer and Gray describe

some methods for partially characterizing the optimal network configuration.

These techniques can be shown to be generalizations of procedures given by

Efoymsen and Ray [301 for characterizing the optimal set of sites in the

plant location problem.
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By using a similar transformation we can show that many other

different facility location problems are special cases of various network

design problems. For example, if we have a capacitated plant location

problem, the node capacity constraint can be represented by a capacity

constraint on one of the "special" arcs added to the network. Since there

has been so much work done in the area of facility location problems (see

[21, 36]), it may be possible to generalize some of these other techniques

in order to apply them to network design problems. The rules given by

Billheimer and Gray and Efroymson and Ray are one example of such a

generalization.

Scott [114,115]1 has introduced another network synthesis problem,

called the "optimal network" problem, that is closely related to the

fixed charge design problem. The arc routing costs in this problem are

all linear functions of the total flow. Arc capacities, which are all

initially zero, can be raised to infinity. The objective is to minimize

total routing cost subject to the usual capacity and flow routing con-

straints and the added constraint that the total construction costs cannot

exceed a given budget.

The optimal network problem can be formulated as the following

mixed integer program:

Minimize d.. f..
(i,j)¢A J J

subject to: (2.1)

fkj < RkQ Yi. (i,j)cA
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( yi j) < BUDGET (k,Q)eNxN
(i,j)EA i IJ -

kP

f.. > 0
IJ -

y..= 0 or 1.
Ij

All variables and constants have the same interpretation as in the formu-

lation of the fixed charge design problem.

Many researchers have considered this problem since its solution

could be useful to the design of various transportation (highway, rail

or air) systems. As noted by Dionne and Florian [27], since these systems

usually have many more operating constraints, "the justification for

studying this problem is that its solution may be used as a measuring

standard for the efficiency of proposed designs."

Boyce et al. [15] utilized a branch and bound algorithm to solve

the optimal network problem. They were able to solve problems with 10

nodes and 45 arcs in 3 to 400 seconds of IBM 360/75 computer time depend-

ing on the value of the construction budget. Hoang [59] presented another

branch and bound procedure that has been modified and improved by Dionne

and Florian [27]. Their procedure produced computation times that were

comparable to the Boyce et al. results. Dionne [26] has shown that the

computation time of the Dionne and Florian procedure increases exponent-

ially with decreasing construction budget. It is believed that the algo-

rithm of Boyce et al. should behave in a similar manner. Geoffrion [48]

has presented another branch and bound procedure that is based on
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Lagrangian relaxation techniques.

In order to address large-scale optimal network problems, several

researchers have suggested using heuristic procedures. Scott [115] and

Dionne and Florian [27] proposed heuristic algorithms that are closely

related to the Billheimer and Gray procedure for the fixed charge design

problem. Dionne and Florian have solved test problems containing up to

29 nodes and 54 arcs. The computational results were very promising with

the average error relative to the optimal solution less than 1%. Compu-

tation times ranged from .1 to 12 seconds on the CDC Cyber 74 computer.

However, our analyses in Chapter 5 indicate the maximum error for such

heuristics could be very large. Further computational tests should be

performed in order to resolved this issue.

It is unlikely that there exists an efficient optimal algorithm

for the optimal network problem since Lenstra, Rinooy Kan and Johnson

[63] have shown that the optimal network problem is NP-complete.

Another group of network design problems without congestion costs

concerns network improvement where we start with an initial feasible net-

work and then attach additional arcs. As in the case of the optimal net-

work problem, there are the usual capacity and flow routing constraints

and also a construction budget for the added arcs.

Ridley [106] suggested a network based branch and bound approach

for these problems. Stairs [116] indicated that Ridley's method has been

used to solve problems containing up to 12 nodes. Goldman and Nemhauser

[53] consider a special case of the network improvement problem where the

objective is to improve the shortest path between a single pair of nodes.

They show how to transform the problem into a shortest route problem on an
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expanded network. Wollmer [126] and Ridley [105] give efficient pro-

cedures for solving special cases of the shortest path improvement problem.

However, these techniques are just special cases of Goldman and Nemhauser's

procedure.

Stairs [116] presented a network improvement problem that is re-

llated to Billheimer and Gray's network synthesis problem. She described

an interactive computer solution procedure which has been successfully

applied to a test problem containing 35 nodes and 10 possible arcs that

could be improved.

Note that our network improvement models are all special cases of

the network synthesis models presented earlier. So it should be possible

to adapt the previously described network synthesis techniques to network

improvement applications.

2.4 Network Design Problems with Congestion Costs

A more complex type of network design problem incorporates con-

gestion costs for the routing of the network flows. These congestion

costs can be represented by i) convex flow routing costs that could

reflect such effects as highway traffic congestion or communication net-

work queuing delays; ii) finite arc capacities that could represent

physical, environmental or political limits on the total traffic that can

pass through an arc.

Some of the models described here have been used to help design

traffic network, rail network and communication network systems. All of

the models that we will discuss are network improvement problems. Unless
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specified otherwise, we assume that the initial arc capacities constitute

a feasible network design solution.

The first type of network improvement problem that we consider

is similar to the uncongested design problems of the previous section.

In addition to the usual capacity and flow routing constraints that must

be satisfied, we must select the arc capacities from a discrete set of

values. Thus, the problem is essentially a combinatorial one as was the

case for the uncongested design problems. Roberts and Funk [107], Carter

and Stowers [19] and Hershdorfer [58] described work in this area.

Hershdorfer utilized a branch and bound procedure with networks containing

up to 12 nodes.

Agarwal [1] considered a different kind of network improvement

problem where the possbile capacity of an arc (i,j) ranges continuously

between zero and some upper bound K... Construction costs are linear

functions of the arc capacity increase. Routing costs are convex piece-

wise linear functions of the flow. The objective is to minimize the total

routing cost subject to all the usual constraints and a construction bud-

get constraint.

Agarwal conducted computational tests on a network with 24 nodes

and 38 arcs that was formulated as a linear program with 667 rows and

19'38 variables. The results were quite discouraging since the simplex

method, Dantzig-Wolfe decomposition and the Boxstep method [83 ] all failed

to solve the problem in a reasonable amount of time. Agarwal concluded

that none of the methods was effective because of the arc capacity upper

bounds present in the problem.
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The difficulty caused by the capacity constraints should not be

surprising. Note that the problem of computing the routing cost for a

particular proposed network solution requires the solution of a difficult

capacitated multi-commodity flow problem [3, 68]. Since the problem of

evaluating a proposed solution is so difficult, it should be expected

that the problem of finding the optimal network improvement solution is

also very difficult. Next we review several models that are similar to

Agarwal's problem and discuss some approaches for dealing with the

difficulty of the embedded routing problem.

Steenbrink [117,118] used a model similar to Agarwal's for the

design of a Dutch roadway network. The capacity of an arc (i,j) is

restricted to be between zero and K... Routing costs are convex but the

construction costs are nonlinear. The objective is to minimize the total

routing and construction costs subject to all the usual flow routing con-

straints.

Steenbrink formulated his model as an optimization problem with

linear constraints and a non-linear objective function. He suggests de-

composing the problem into a master problem and a series of subproblems.

Each subproblem concerns finding the optimal capacity for an arc given the

total flow through it. The master problem is to route the required flows

through the network with a modified flow cost structure. (This master

problem is again a capacitated multi-commodity flow problem). Steenbrink's

heuristic procedure for solving the master problem, as was noted by

Nguyen [95], is closely related to the well-known incremental loading

traffic assignment procedure [84]. So Steenbrink's technique for dealing

with the embedded routing problem is to solve it heuristically.
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Steenbrink applied this method to a Dutch roadway design problem

containing 2000 nodes and 6000 arcs. The heuristic procedure required

about 50 minutes of IBM 360/65 computer time. Due to the size of the

problem, there is no way to evaluate the quality of Steenbrink's solution.

Dantzig et al. [22] consider a network improvement problem identi-

cal to Agarwal's except for a crucial assumption that there is no upper

limit on an arc capacity. (Note that congestion costs are still present

due to the convex routing costs). They dualize with respect to the budget

constraint and then use Steenbrink's decomposition. The master problem

is a convex cost multi-commodity flow problem which can be solved very

efficiently using the Frank-Wolfe algorithm. The procedure required 10.68

seconds of IBM 370/168 computer time on a test problem with 24 nodes and

76 arcs and produced a solution 2.5% away from optimality. In contrast,

the simplex method, implemented on the MPS/360 package, required 40.8

minutes to obtain an optimal solution. The authors also report experience

on a problem with 394 nodes and 1042 arcs which required 5.63 minutes of

computer time.

Note that the use of a convex routing cost function to "represent"

a finite flow capacity constraint greatly improved the computational per-

formance for this type of congested network improvement problem. So,

slightly altering the modelling of congestion avoids a difficult embedded

routing problem.

McCallum [85] described a capacitied network planning problem

concerning the location of circuits in a communication (telephone) network.

This capacitated network is similar to Agarwal's except that between every

pair of nodes only a few paths are allowable as flow routes. Thus, the



-29-

difficult embedded routing problem is avoided. After formulating the

model as a linear program, McCallum used a specialized implementation

of the generalized upper bounding technique to solve problems containing

up to 563 arcs and 1857 required flows between pairs of nodes. The com-

putation time required for a problem of this size was 173 seconds on the

IBM 370/165 computer.

2.5 Network Design Problems with User Equilibrium Routing

In the network design problems with congestion costs discussed

in the previous sections, all flows were routed according to a "system

optimal" policy which minimized the total routing cost of all flows. In

this section we consider problems where the flows are routed according

to Wardrop's "Principle of Equal Travel Times" [122]. That is, the

traffic is assigned so that the path or paths actually used between each

origin and destination will have the smallest travel costs. (Under certain

circumstances [9,78] the user equilibrium routing problem can be trans-

formed into a system optimal routing problem). The user equilibrium

routing (UER) policy has been demonstrated to be a useful method of model-

ing behavior in transportation systems [35].

We begin by describing a major difference between network design

problems (with congestion costs) that have UER and those with system opti-

mal routing. For a network with system optimal routing, the addition of

an arc to the network never increases the total flow routing costs. Since

we can always choose to use the previously determined flow routing pattern,

the total routing cost can never increase and will usually decrease.
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Somewhat surprisingly, for a network with UER, the addition of an arc

can lead to an increase in the total flow routing costs. This phenomenon,

known as Braess' paradox [16,90], indicates that great care should be

used in evaluating proposed improvements to a network with UER. Kn6del

[69,90], described an actual situation in an urban street system where

such a phenomenon occurred.

Leblanc [71] considered a network design with UER where all arcs

can have either zero or infinite capacity. The objective is to minimize

total routing costs subject to all the usual constraints and a construc-

tion budget. The branch and bound solution procedure proposed for this

model has solved a network problem containing 24 nodes, 76 arcs and 5 arcs

that could be added to the network. Computation time was about 136 seconds

on the CDC 6400 computer.

Morlok and LeBlanc [89] address the same network design problem

but with a heuristic procedure. The technique is based on marginal

analysis of the traffic flows. The heuristic procedure essentially solved

the same 24 node problem in 17.8 seconds of Cyber 70 computer time.

Ochoa and Silva [98] and Chan [20] also discuss similar types of

network improvement problems.

Barbier [7,116] considered a problem similar to LeBlanc's except

that the objective is to minimize the total routing and construction costs

without a budget constraint. His heuristic procedure for obtaining pro-

posed solutions has been used to study additions to the Paris rail net-

work. Computational experience includes analyzing a network with 36 nodes,

over 30 arcs and over 50 candidate arcs. Steenbrink [118] reported that

Haubrich used a revised version of Barbier's method to study the Dutch
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rail network. Haubrich's procedure solved a design network problem with

about 1250 nodes and about 8000 arcs in less than 40 minutes of IBM 360/

75 computer time.

2.6 Conclusion

In this chapter we have reviewed a large number of network design

problems and their proposed solution techniques. Table 2.1 summarizes this

information.

There still remains a great deal of work to be done on network

design problems. Most of the network design problems without congestion

costs that we have considered are known to be difficult (NP-complete)

combinatorial optimization problems. All of the known exact solution

techniques are limited to small and medium sized networks. In order for

these models to be useful in applications such as transportation planning,

large-scale problems will have to be solved. Branch and bound methods

appear inadequate for this task.

Recent work by several authors (see chapter III for a summary of

this research) has shown that Benders decomposition could be a useful tool.

Another promising approach is to use heuristic algorithms as appro-

approximate solution techniques. Further work is required in evaluating

the accuracy and reliability of these procedures. For example, see [62,

39, 67] and chapter 5 of this thesis for work in analyzing heuristics for

various network optimization problems.

Also, recent advances in large scale system methodology, such as

list processing techniques and network flow algorithms, may have some

impact on the size of problems that can be solved practically. The reader
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TABLE 2,1

AUTHORS

1. Billheimer

and Gray [14]

2. Magnanti and
Wong [80]

3. Boyce et
al [15]

4. Hoang [59]

5. Dionne and
Florian [27]

6, Scott [115]

7. Ridley [106]

8. Stairs

9. Agarwal

[1161

[1]

10. Steenbrink

[117,118]

ARC CAPACITY
VARIABLES/
CONGESTED OR
UNCONGESTED
PROBLEM

r 

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Continuous/
congested

Continuous/
congested

SOLUTION
ALGORITHM

Heuristic

Benders
Decom-
position

Branch
Bound

Branch
Bound

and

and

1) Branch and
Bound

2) Heuristic

Heuristic

Branch
Bound

and

Interactive
Computer
System

1) Simplex

Method
2) Dantzig-

Wolfe De-
composition

3) Boxstep

Special de-
composition
with a

heuristic

(# of nodes in test network,
# of arcs, Comp. time,
Machine)
COMPUTATIONAL EXPERIENCE

(68 nodes, 476 arcs,
180 seconds, IBM 360/67)

(10 nodes, 45 arcs,
60 seconds, IBM 370/168)

(10 nodes, 45 arcs,
200 seconds, IBM 360/75)

(8 nodes, 20 arcs, ?, ?)

(29 nodes, 54 arcs,
12 seconds, Cyber 74)

(10 nodes, 45 arcs,
60 seconds, IBM 360/65)

(12 nodes, ?,?,?)

(35 nodes, ?,?,?)

(24 nodes, 38 arcs,
840 seconds, CDC 6400)
for simplex method

(2000 nodes, 6000 arcs,
2880 seconds, IBM 360/65)
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TABLE 2,1 (continued)

AUTHORS

11. Dantzig
et al [23]

12. McCallum

[85]

13. LeBlanc

[71]

14. Morlok

and LeBlanc

[89]

15. Barbier
[7,116]

16. Haubrich
[118]

ARC CAPACITY
VARIABLES/
CONGESTED OR
UNCONGESTED
PROBLEM

Continuous/
congested

Continuous/
congested

Discrete/
congested

Discrete/
congested

Discrete/
congested

Discrete/
congested

SOLUTION
ALGORITHM

Special de-
composition
with Frank-
Wolfe decom-
position

General
Upper
Bound in

Branch
Bound

ized

g

and

Heuristic

Heuristic

Heuristic

(# of nodes in test network,
# of arcs, Comp. time,
Machine)
COMPUTATIONAL EXPERIENCE

(394
340

nodes, 1042 arcs,
seconds, IBM 370/168)

(?, 563 arcs,
IBM 370/165)

(24 nodes, 76
135 seconds,

(24 nodes, 76

18 seconds,

(36 nodes, 8

?,?)

173 seconds,

, arcs,
CDC 6400)

; arcs,

Cyber 70)

arcs,

(1250 nodes, 8000 arcs,
2400 seconds, IBM 360/65)
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may consult a recent report by Magnanti [77] for a survey of these new

advances.

The network design problem with congestion costs and discrete

arc capacities, is even more difficult than the uncongested case and

appears to be a formidable problem. For a network with congestion costs

and continuous arc capacities, there have been some successful efforts.

Although the embedded multi-commodity routing problem poses difficulties

for some versions of this problem, Dantzig et al. and McCallum have

successfully avoided this obstacle. Utilizing special problem structures

in formulating their mathematical programs, they were able to apply linear

and convex programming techniques to solve problems whose size is of

practical interest. It would be interesting to see if these techniques

could be used to solve other versions of network design models with

congestion costs.

Thers are also other kinds of basic network design models that

could be explored in future research. For example, Yaged [128] and

Zadeh [130] considered network design problems with concave objective

functions. Soukoup [119], Newell [93], Bansal and Jacobsen [6], and

Rothfarb and Goldstein [131] have also explored various other network

design models.

Another promising area for future research is to extend these

network design problems to more dynamic situations. The basic models

considered here are all static in that the network is optimized for a

single time period with all changes to the network made instantaneously.

There are several types of time-varying elements that could be

incorporated into network design problems. One kind of model of this
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nature involves networks where the required flows between nodes can be

time-varying. For example, in an urban transportation system or a com-

munications network, the traffic demands could vary greatly according to

the time of day or season of the year. Gomory and Hu [54] and Oettli

and Prager [991 have investigated this kind of network problem.

Another type of time varying design problem concerns network

improvements that must be sequenced over a number of time periods. In

most real situations the network can only change gradually over a given

time span. Ochoa-Rosso [97], Funk and Tillman [38] and Yaged [129] have

considered this type of problem.

The third type of time-dependence is related to the previous two

and concerns the changes in traffic demands when the network is modified.

For example, the evolution of a transportation network will influence the

development of the surrounding geographic region. Therefore, future

traffic demands by region will be dependent on changes to the transporta-

tion network in previous time periods. See Frey and Nemhauser [37] and

Los [75] for examples of this type of problem. Also MacKinnon [76] dis-

cusses these last two types of time-dependent problems in his survey-.
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CHAPTER III

AN ACCELERATION TECHNIQUE FOR

BENDERS DECOMPOSITION

3.1 Introduction

As we noted in Chapters I and II, the break bulk problem and

other network designs problems can be formulated as mixed integer pro-

gramming problems. Motivated by recent successful applications of

Benders decomposition to mixed integer programs t by Florian et al [33],

by Richardson [104], and particularly by Geoffrion and Graves [49], who

study industrial products distribution, we viewed this algorithm as poten-

tially useful for our applications. Our early computational experience,

however, indicated that straightforward adoption of Benders algorithm

converged too slowly and required the solution of far too many integer

programming problems. This led us to consider mechanisms for improving

the algorithm. Our intention was to reduce the number of integer programs

to be solved. In this chapter, we report on the results of this study.

Rather than cast our development solely in terms of the network

design problems, we consider a broader minimax setting that includes

Benders Decomposition for general mixed integer programs, Dantzig-Wolfe

Decomposition for linear and nonlinear programs, and related "cutting

plane" type algorithms that arise in resource directive and price

tSee Florian and Nguyen [35], Noonan and Giglio [96], and Armstrong
and Willis [2] for successful application to nonlinear programs.
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directive decomposition. This will allow us to explore the full generality

our techniques. In the next section we review the essential properties of

these cutting plane, or relaxation, algorithms in this minimax setting.

In section 3.3, we describe an acceleration technique for reducing

the number of iterations of the relaxation algorithm. We accomplish this

by choosing judiciously from the possible cuts that could be generated at

any iteration to obtain "strong" or "pareto-optimal" cuts. In Benders

Decomposition this selection process involves a choice, made by solving

a linear program, from the multiple optimal solutions of another linear

program.

In the next section, we specialize this general methodology to

facility location and network design problems, developing very efficient

algorithms that exploit the underlying structure of these models. Since

the linear program for generating cuts in these applications is the dual

of a network optimization problem, multiple optimal solutions will be

commonplace, thus providing an excellent opportunity for applying out pro-

posed methodology.

Section 3.5 describes our computational experience with several

p-median location and network design problems. Our results on p-median

problems (up to 33 nodes) show that Benders algorithm equipped with our

methodology finds solutions known to be within 10 per cent of optimality

in ten or fewer iterations. The standard implementation usually provides

no better solutions within twenty-five iterations and solutions 10 percent

farther from optimality within ten iterations. We obtained similar com-

parisons for network design problems, though in this case the error bounds

are generally not as tight.
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The final section describes possibilities for using the strong

cut methodology in conjunction with other techniques for solving mixed

integer programs. It also points out possibilities for further investi-

gat ion.

3.2 Benders Decomposition and Minimax Optimization

3.2.1 Minimax Problems

Two of the most widely-used strategies for solving large scale

optimization problems are resource directive decomposition and Lagrangian

relaxation. Several papers in the mathematical programming literature

(see, for example, Geoffrion [43] and [44], and Magnanti [ 77]) point

out the central importance and unifying nature of these solution techniques.

The techniques are not only applied directly; their use is, at times, com-

bined with other approaches as when Lagrangian relaxation is embedded

within the framework of branch and bound for solving integer programming

problems (Fisher and Shapiro [32], Geoffrion [46]).

Since Benders algorithm, the focus of our analysis, is but one

manifestation of resource directive decomposition, we shall consider a

broader, but somewhat more abstract, minimax setting that captures the

essence of both the resource directive and Lagrangian relaxation approaches.

We study the optimization problem

v = Min Max{f(u) + yg(u)} (3.1)
yEY uU

where Y and U are given subsets of Rk and Rm , f is a real valued function
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defined on U and g(u) is an m-dimensional vector for any uU. Note that

we are restricting the objective function f(u) + yg(u) to be linear-

affine in the outer minimizing variable y for each choice of the inner

maximizing variable u.

The relation between Benders decomposition and the minimax problem

can be seen by considering the general mixed integer program:

Minimize cx + dy

subject to: Ax + Dy = b

x > O, yY.

In this formulation x is an n-vector of continuous variables, y is a

k--vector of discrete variables, and Y is a subset of the integer points

in k-dimensions. The matrices A and D and vectors c, d and b have dimen-

sions compatible with those of x and y.

We can reformulate this program in the equivalent form:

Minimize Minimize{cx + dy}.
yEY x > 0

(3.2)

Ax = b-Dy

For any fixed value of y, the inner minimization is a linear program. If

it: is feasible and has an optimal solution for all yYt, then dualizing

gives the equivalent formulation

1These assumptions can be relaxed quite easily, but with added compli-
cations that cloud our main development. See Garfinkel and Nemhauser
[42] or Lasdon [70] for a review of the algorithm in full generality.
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Minimize Maximize{ub - uDy + dy}
yEY ueU

which is a special case of (3.1) in which U {ueRm: uA < c}, f(u) = ub

and g(u) = d - uD. This reformulation is typical of the resource directive

philosophy of solving parametrically in terms of complicating variables,

like the integer variables y of a mixed integer program.

The minimax problem (3.1) also arises when dualizing the constraints

g(u) > 0 of the optimization problem

Maximize f(u)

subject to: g(u) > 0 (3.3)

ueU.

The resulting optimization problem is the Lagrangian dual, a form of the

minimax problem in which Y is the nonnegative orthant, or more generally

the convex subset of the nonnegative orthant for which the maximization

problem over U is finite valued.

3.2.2 Solving Minimax Problems by Relaxation

For any given yY, let v(y) denote the value of the maximization

problem in (3.1); that is,

v = Min v(y)
yEY

where v(y) = Max{f(u) + yg(u)} (3.4)
u£U
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Since v(y) is defined as the pointwise maximum of linear-affine functions,

it is convex, though generally nondifferentiable. Consequently, whenever

the set Y is convex, the minimax problem can be viewed as a convex program.

There has been a great flourish of activity recently in modifying and

extending algorithms of differentiable optimization to solve this class

of problems (see Dem'yanov and Malazemov [25 ]1, Lemarechal [73 , Mifflin

[ 88], Wolfe [125] and the references that they cite). An alternative

solution strategy that applies even when Y is not convex is a relaxation

approach. Rewrite (3.1) as

Minimize z

subject to: z > f(u) + yg(u) for all uU (3.5)

yeY, zR

and form a relaxation

Minimize z (3.6)

subject to: z > f(uj) + yg(ui) (j = 1,2,..., K)

yeY, zR

where each u is an element of U. The solution y , z of this "master

problem" (3.6) is optimal in (3.5) if it satisfies all of the constraints

of that problem; that is, if v(yK) < zK If, on the other hand, v(yK)> z

and uK+ 1 solvest the "subproblem" (3.4) when y = y , then we add

Z > f(uK+1) + yg(uK+l)

tAs before, to simplify our discussion we assume that this problem
always has at least one optimal solution.
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as a new constraint, or cut as it is usually called, to the master problem

(3.6). The algorithm continues in this way, alternately solving the master

problem and subproblem.

When applied to problems (3.2) and (3.3), this algorithm is known,

respectively, as Benders Decomposition and Dantzig-Wolfe Decomposition or

generalized programming. The master problem is an integer program with

one continuous variable when Benders algorithm is applied to mixed integer

programs; it is a linear program when Dantzig-Wolfe decomposition is applied

to nonlinear programs. The convergence properties of the relaxation algo-

rithm are well-known, although usually stated in the context of particular

instances of the algorithm, (see, for example, Benders [ 11 ], Dantzig [22]

and Magnanti et. al. [ 79 ]). If the subproblem is a linear program then

the point uj in (3.6) can be chosen as extreme points of U and the algorithm

terminates after a finite number of iterations. If the set U is compact

and the functions f and g are continuous, then any limit point y Y, if

one exists, to the sequence yK K>1 is optimal in (3.1). Neither of these

convergence properties depends upon structural properties of Y. Neverthe-

less, the structure of Y does determine whether or not the master problem

(3.6) can be solved efficiently.

3. 3 Accelerating the Relaxation Algorithm

A major computational bottleneck in applying Benders Decomposition

is that the master problem, which must be solved repeatedly, is an integer

program. Even when the master problem is linear program as in the appli-

cation of Dantzig-Wolfe Decomposition, the relaxation algorithm has not
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generally performed well due to its poor convergence properties (Orchard-

Hays [ 101 ], Wolfe [1241). There are several possibilities for improve-

ment:

(i) making a good selection of initial cuts, i.e., values

of the uJ, for the master problem;

(ii) modifying the master problem to alter the choice of

yK at each step;

(iii) formulating the problem "properly"; and

(iv) if there are choices, selecting good cuts to add to

the master problem at each step.

In a number of studies of mixed integer programs, Mevert [87]

found that the initial selection of cuts can have a profound effect upon

the performance of Benders algorithm. Geoffrion and Graves [49] have

reported similar experience with facility location problems.

There have been several proposals to alter the master problem for

Dantzig-Wolfe Decomposition. Nemhauser and Widhelm [ 91 (see also O'Neill

and Widhelm [100]) show that scaling the constraints of the master problem

to find the "geometrically centered" value of yK at each step, can be

beneficial. Marsten, Hogan and Blankenship [83 ], see also Marsten [82],

have had success in restricting the solution to the master problem at each

step to lie within a box centered about the previous solution. Holloway

[ 60 shows how to select among multiple optima of the master problem to

obtain better convergence.

Model formulation is an important topic which can greatly effect

the computational efficiency of Benders decomposition. In chapter IV we



-44-

consider the question of problem formulation in some detail.

In many instances, as when Benders decomposition is applied to

network optimization problems, the selection of good cuts at each itera-

tion becomes an issue. In network applications, multiple optimal solu-

tions to the subproblem (3.4) are the norm; equivalently, degenerate

solutions to its dual problem

Minimize{dy + cx : Ax = b - Dy, x > O}

are to be expected because the shortest route, transhipment and other

network optimization problems are reknowned for their degeneracy. In

the remainder of this paper, we introduce methods and algorithms for

choosing from the alternative optima to (3.4) at each iteration, a solution

that generates a cut that is in some sense "best."

Example 3.1

To illustrate the possibility of selecting good cuts to add to

the master problem, we consider the following simple example:

Minimize x3 + y

subject to: -xl X3 + 2y = 4

- + x +5y = 4
2 3 5Y

x1 > 0, x2 > 0, x3 >0

y > 0 and integer.

The equivalent formulation (3.5) written in terms of the linear program-

ming dual obtained when y is fixed is:
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Minimize z

subject to: z > y

z > 4-y

z > 4-4y

y > 0 and integer.

(3.7)

The constraints correspond to the three extreme points u = (0,0), u = (1,0)

and u3 = (0,1) of the dual feasible region U.

Suppose that we initiate the relaxation algorithm with the single

cut z > y in the master problem. The optimal solution is z = y = 0. As

y = y = 0, both the extreme points u2 and (and every convex combination

of them) solves the subproblem:

Minimize

subject to:

(4-2y)u1 + (4 -5y)u2 + y

(Ul ,u2) U.

Stated in another way, both the second and third constraints of (8) are

most violated at z = y = 0.

2 2
Adding the second constraint gives the optimal solution z = y = 2

to the original problem as the next solution to the master problem. Adding

2 2
the third constraint gives the nonoptimal solution z = y = 1 and requires

another iteration that adds the remaining constraint of (3.7).

In this instance, the second constraint of (3.7) dominates the third

in the sense that

4-y > 4-4y

whenever y > 0 with strict equality if y > 0. That is, the second constraint

provides a sharper lower bound on z.
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To identify the dominant cut in this case, we check to see which

of the second or third constraints of (3.7) has the largest righthand side

value for any y > 0. In terms of the subproblem this criteria becomes:

from among the alternate optimal solutions to the subproblem at y = 0

choose a solution that maximizes the subproblem's objective function when

0y 9=y > 0.

Before extending this observation to arbitrary minimax problems,

we formalize some definitions.

We say that the cut (or constraint)

z > f(u1 ) + yg(u)

in the minimax problem (2) dominates or is stronger than the cut

z > f(u) + yg(u)

if

f(ul) + yg(ul) > f(u) + g(u)

for all yeY with a strict inequality for at least one point yY. We call

a cut pareto optimal if'no cut dominates it. Since a cut is determined

by the vector ucU, we shall also say that u dominates (is stronger) than

u if the associated cut is stronger, and we say that u is pareto optimal

if the corresponding cut is pareto optimal.

In the previous example, we showed how to generate a pareto optimal

cut by solving an auxiliary problem in terms of any point y > O. Note

that any such point is an interior point of the set {y : y > 0}. This set,

in turn, is the convex hull of the set Y = {y : y > 0 and integer}. The

following theorem shows that this observation generalizes to any minimax
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problem of the form (3.1). Again, we consider the convex hull of Y,

denoted YC, but now we will be more delicate and consider the relative

interior (or core) of yC, denoted ri(YC), instead of its interior. The

result will always be applicable since the relative interior of the convex

YC is always nonempty. For notation, let us call any point y contained

in the relative interior of yC, a core point of Y.

Theorem 3.1: Let yO be a core point of Y, i.e.,yO ri(YC), let U(/) denote

the set of optimal solutions to the optimization problem

Max{f(u) + g(u)} (3.8)
u£U

and let u solve the problem:

Max{f(u) + yg(u)}. (3.9)

uU (y)

Then u is pareto optimal.

Proof: Suppose to the contrary that u is not pareto optimal; that is,

there is a uU that dominates u. We first note that since

f(u) + yg(u) > f(u° ) + yg(u° ) for all yY (3.10)

it is true that

f(u) + wg(u) > f(u° ) + wg(u° ) for all wYC. (3.11)

To establish the last inequality, recall that any point wY C can be ex-

pressed as a convex combination of finite number of points in Y, i.e.
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w X=> y : EY}

where Xy > 0 for all yY, at most a finite number of the Xy are positive,

and {Xy : yY} = 1.

Also note from the inequality (11) with y = y, that u must be an

optimal solution to the optimization problem (3.8), that is, GEU(y). But

then (3.10) and (3.9) imply that

f(G) + yg(a) = f(uo ) + yOg(uO). (3.12)

Since u dominates u° ,

f(u°) + g(u°) < f(G) + g(a) (3.13)

for at least one point yY. Also, since yE ri(YC) there exists (see

[54, Theorem 6.4]) a scalar > 1 such that

w - e y + (l-e)?

belongs to yC. Multiplying equation (3.12) by and multiplying inequality

(3.13) by (1-e), which is negative and reverses the inequality, and adding

gives:

f(u) + wg(u° ) > f() + wg(G).

But this inequality contradicts (3.11), showing that our supposition that

u0 is not pareto optimal is untenable. This completes the proof. E
When f(u) = ub, g(u) = (d-uD) and U = {uRk : uA < c as in Benders

Decomposition for mixed integer programs, problem (3.8) is a linear program.

In this case, U(/) is the set of points in U satisfying the linear equation
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u(b-Dy) = -dy + z

where z is the optimal value of the master problem (3.6). Therefore to

find a pareto optimal point among all the alternate optimal solutions

to problem (3.8), we solve problem (3.9) which is the linear program:

Maximize {dy + u(b-DyO)}

subject to: u(b-Dy) = z - d (3.14)

uA < c.

We should note that varying the core point y might conceivably

generate different pareto optimal cuts. Also, any implementation of a

strong cut version of Benders algorithm has the option of generating pareto

optimal cuts at every iteration, or possibly, of generating these cuts only

periodically. The tradeoff will depend upon the computational burden of

solving problem (3.9) as compared to the number of iterations that it saves.

In many instances, it is easy to specify a core point yO for

implementing the pareto optimal cut algorithm. If, for example,

Y = {y R k : y > 0 and integer} then any point y > 0 will suffice; if

Y = ysRk : yj 0 or 1 for j = 1,2,..., k then any vector y with

C) <yj < 1 for j = 1,2,..., k suffices; and if

k

Y = {ysRk : >yj < p, y > 0 and integer}
j=l -

as in the inequality version of the p-median problem, then any point y with

o > O and I y suffices. particular,
y > 0 and < p suffices. In particular, p > then = 

j=l 2.



is a core point.

One particular version of the

mention. Suppose that U is a product

that f and g are additively separable

preceding theorem merits special

of sets U = U x ... xU and

over the sets U; that is,

J

f(u) = j(u(j))
j=1

and

J

g(u) = gj (u())

where u = u( 1) u( 2)'... u

notation u(j) distinguishes

for any yY, the subproblem

(j) is a partition of u with u(j) U . The

this vector from the component u. of uEU. Then
J

(3.4) separates as:

J

v(y) = v. (y)
j=l J

where for each j

v.(y) = Max f(uj) + y(u()) I.

u (j) £U

(3.15)

Since for any u(j) 

-50-

Uj

j ( (j)) igj (U (j))(Vj(L
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the vector u belongs to U(y), meaning that the sum over j of the lefthand

sides of these expressions equals the sum of the righthand sides, if and

only if

f (u(j)) + gj(u()) = vj()

for all j. That is, choosing u to be one of the alternate optimal solutions

to (3.8) is equivalent to u(j) being an alternate optimal solution to

(3.15) when y=9. Consequently, finding a pareto optimal cut decomposes

into independent subproblems, as recorded formally in the following corollary

stated in terms of the notation just introduced.

Corollary 3.1: Let y be a core point of Y, and for each j = 1,2,..., J

let U(y) denote the set of optimal solutions to the optimization problem

Max j (u(j))+ ygj( (j

u (j) sU

and let u (j), solve the problem:(i) j

Max j((j)) g((j))
u(j)UJ ())

Then u0 = (uO(1 ), u( 2)'... u (J))is pareto optimal for (2).

The separability of f and g in this discussion has historically been

a major motivation for considering resource directive decomposition and

Lagrangian relaxation. In this case, problem (3.14) decomposes into
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several linear programs, one for each subvector u(j) of u.

3.4 Accelerating Benders Method For Network Optimization

Although solving the linear program (3.14) always generates pareto

optimal cuts whenever Benders method is applied to mixed integer programs,

it might be possible to generate strong cuts more efficiently in certain

situations. In particular, when the Benders subproblem involves network

optimization, special purpose network algorithms might be preferred to the

general purpose methodology.

In this section we describe special network algorithms for generating

strong cuts for the facility location and network design problems. We will

discuss several different algorithms, ranging from those which produce cuts

that dominate the standard Benders cut, to more elaborate algorithms that

actually produce pareto optimal cuts.

3.4.1 Strong Cuts for the Facility Location Problem

We begin by considering a facility location problem formulated as

the following mixed integer program:

n m m

v = Min I E c x + > diy
i=l j=l j=l

m

subject to: i x. > 1 (3.16)

j=1



x.. < y
IJ - J

x.. > OIj -

yj = 0 or I

(1 < i < n)

(1 < j < m)

y£Y

where

m = number of potential facilities

n = number of customers

Y = set of feasible values for y cand (0,1) n

If yj = 1, we construct facility j and incur a fixed cost of d.

If x. = 1 customer i receives service at facility j. The first constraint

requires that each customer be serviced by some facility. The second con-

straint states that no customer can be serviced at a facility unless that

facility is constructed. In chapter IV of this thesis we suggest reasons

for choosing this particular form of the problem formulation. instead of an

equivalent formulation with constraints xij < nyi for all j in place

of the constraints xij < y for all i and j.

If Y = =y yj = p , n = m, and c.. = 0 for all j, then (3.16)
j= JJ

becomes the well-known p-median location problem. If Y = 0,1}m , then (3.16)

becomes the well-known uncapacitated plant location problem. The set Y

might incorporate a number of additional conditions imposed upon the con-

figuration of open (i.e., yj = 1) facilities. Among these might be con-

tingency constraints such as "location i is opened only if location j is

-53-
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opened," multiple choice constraints such as "open at most two of the

locations i, j and k," and other conditions of this nature.

Suppose we fix y = Y; then (3.16) reduces to the following pure

linear programming subproblem:

v(y) = Min

subject to:

n m

E IC i jXIi
i- j=l IJ IJ

m

. x.. > 1
j=1 IJ -

(3.17)

0 < x.. < 

O< x.. < O
IJ

(l<i<n)

where

= {ijgj = 1}, the set

C = {igj = 0/, the set

of open facilities, and

of closed facilities.

The linear program dual of this problem is:

v(y) = Max

n

i=lI
m

- 3.19jT.
j=l -

j CO

jeC
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subject to:

X. - .. <..I IJ - IJ

X. > O
I -

(l<i<n)

(l<j<m)

(3.18)

r.. > 0.
IJ -

Any solution to this problem determines a cut of the form:

n i
i~\I

m

j=l ij

m

djyj .
j=l

(3.19)

(Note that we have appended the term djyj as well. This term was omitted

from the objective function of the subproblem because it is a constant for

any given choice of the configuration variables yj).

Both the primal and dual subproblems are solved easily by inspection.

For the primal subproblem, each customer i goes to the closest facility which

has been constructed, or

x.. I 1 where c Min c...
,J i) iJ(i ) j IJjThe dual subproblem (19) possesses the fol

The dual subproblem (19) possesses the following "natural" solution:

if jO, l<j<n

if jC, llj<n.

= cij(i )
X.

IT..
IJ

=0 

7T . max X ' c
IJ - ij)
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The optimal dual variables have a convenient interpretation in terms of

the facility location problem (see Balinski [5]). . is the cost of

servicing customer i when y=y. r..j is the reduction in the cost of ser-

vicing customer i when facility j is opened and yi=yi for all ij. So

for the dual subproblem solution, we can construct the following Benders

cut,

m m

z > w- j pjyj + d(3.20)
j-- '=~ j-1 (

n

where w = 
i=1

n

and 1 = ..
J i=l iJ

Note that w is the total servicing costs when y=y and that pj is the total

reduction in servicing costs if facility j is opened and all other facilities

retain their current, open vs. closed, status.

For reference purposes, we shall refer to the cut in (3.20) as a

type A cut.

Careful inspection of the linear program (3.17) reveals that for

most problems it will have a degenerate optimal basis. This implies that

it usually will be possible to derive more than one Benders cut. We next

describe procedures for generating alternative cuts, cuts that will usually

be superior to the "standard" cut (3.20).

In deriving the Benders cut (3.20), we only considered the savings

from opening a new facility, i.e. increasing some yj from 0 to . We did
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not, however, consider the added servicing costs produced by closing a

facility.

Let ck() = min{c : il<q<n and q j(i)4

and let . = max ck(i) - ci(i), 0.

If facility j(i) is closed, then the service cost for customer i

must be at least Cik(i) . Whenever r. > 0 customer i will suffer an in-

crease in service cost of at least a if facility j is closed, i.e., if

yj is decreased from 1 to 0. Therefore

V. = {a. : l<i<n and j=j(i)} (3.21)

is the minimum total service cost incurred from all customers by closing

facility j. So we can write a new cut, which we will refer to as a type

B cut, as the following:

m

v > w + (l-yj)v - PY + d.y. (3.22)
j O iC ' =

Notice that as long as there is a . 0 and there is a yY such that

yj # 0, the type B cut will dominate the type A cut.

This strengthening of the Benders cut by considering the penalty

of a customer being diverted to his second nearest facility has also been

described by Balinski [5].

Further improvements are also possible. In the next section we

extend these observations to derive pareto-optimal cuts for the facility
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location problem.

3.4.2 Pareto Optimal Cuts for the Facility Location Problem

In this section we derive an efficient special purpose algorithm

for solving the linear program (3.14) for generating pareto optimal cuts

for the facility location model. The algorithm invokes the decomposi-

tion property of corollary 3.1 combined with a parametric solution technique

to solve each of the subproblems.

First, we note that for any choice of yY, the linear programs

(3.17) and (3.18) decompose into separate subproblems, one for each index

i = 1,2,..., n. Also, the "natural solution"

Ai = cij(i) min cij : j O}

Ti.. = 0 if jO

and ij.. = max(O, .-cij) if jC,

to the linear programming dual problem (19) has the property that the

optimal value of the ith subproblem is v(y) = X. . Consequently,

corollary 1 with u(.) = (A' {'}ij) implies that solving for each i

the subproblem

m

Max A. - Y
j=l J '.



subject to:

m

x. - Tr

Ij=l 'j

X. - T.. < C.
i IJ - IJ

.. > 0O
IJ -

(j = 1,2,..., m)

X. > 0
I -

provides a pareto-optimal vector with components X. and w.. for

= 1,2,..., n and j = 1,2,..., m. Here, as before, y denotes the current

value of the integer variables and y belongs to the core of y, i.e.,

y s ri (YC).

Our first objective is to show that for each i, the subproblem (3.23)

is piecewise linear as a function of X.. Note that since the equality con-

straint of this problem reads

X. - -ir.. = A = (i)
jcO J ij(i)

and since

X. - < c.
i T ij(i i )- J(i)

and

Tr.. > 0 for all j,
IJ -

it must be true that

ir.. = 0 for all j j(i), jsO
IJ

= X.
I

-59-

(3.23)
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and

X. -C -X - X.
Jj(i) i ij(i) i 

Also, if we substitute for X. in the objective function of (3.23) from the

equality constraint, the objective becomes:

m

Max + . (Y y) ij

Since y = 0 if jC the coefficient cj = yj - yj of i.. is nonpositive.

Thus an optimal choice of i.. satisfying the two constraints
IJ

X. - w.. < c.. and r.. > 0
I IJ - IJ Ij -

is

.. = max O,X.-c.ij

Collecting these results, we see that the optimal value of problem

(3.23) as a function of the variable X. is:

+ .() (X. -X ) E . max {OXi-ci (3.24)
jsC JI

As an aid to optimizing (3.24), we note the following upper and

lower bounds on X.:
I

X. < X. < L.
I - I - I
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where, by definition, L = min cij :jEo and jj(i)}. The lower bound

is simply a consequence of the equality constraint of problem (3.23),

because each y > 0 and each r.. > 0. The upper bound is a consequence
J- IJ -

of our previous observation that for all jj(i) and jO, wr =0 and, there-

fore, the constraint X. -w7.. < c.. becomes X. < c...
i IJ - IJ I - IJ

Now, since the function (3.24) is piecewise linear and concave in

x , we can minimize it by considering the linear segments of the curve

in the interval X<X.<L. in order from left to right until the slope ofI-- I- I

any segment becomes nonpositive. Formally,

(1) Start with X. = X.

(2) Let T = {jeC:c.. < } and let s = e.J(i) + j :jT}.

s is the slope of the function (25) to the right of X..

(3) If s < O, then stop; X. is optimal. If s > 0 and T=C,

then stop, X. = L is optimal.

(4) Let ck = min{cij:jeC and jiT}. If L < Cik, set . = L.

and stop. Otherwise, increase Xi to c.ik Repeat steps

(2)-(4).

Once the optimal value to X. is found using this algorithm for

each i the remaining variables r.. can be set using the rules given above.

Then by virtue of corollary 1, the cut obtained by substituting these

values in (3.19) is pareto optimal.
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The above algorithm should be very efficient. For each customer

i, at most m (m=#of possible facilities) steps must be executed. So in

the worst case, the procedure is an 0 (# of customers) (# of possible

facilities) algorithm.

We might emphasize that this algorithm determined a pareto optimal

cut for any given point y in the core of Y. Also, the algorithm applies

to any of the possible modeling variations that we might capture in Y,

such as the contingency and configuration constraints mentioned in section

3.4.1.

3.4.3 Further Results Concerning Facility Location

As we noted in section 3.4.1, the standard Benders cut considers

savings in servicing costs when a new facility is opened. The improved

type B cut introduces additional servicing costs that must be incurred

whenever an open facility is closed. In this section we show that any

Benders cut generated from an optimal solution to the dual subproblem

(3.18) has a similar interpretation. We also present a new type of cut

for the p-median problem and discuss its interpretation.

An Interpretation:

First, we introduce some new notation. The 6-neighborhood of

customer i, denoted N(6), is the set of facility locations j satisfying

c.. < X. + . The interior of the 6-neighborhood is defined as

NO?() {j:cI < +6}.
I IJ
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Recall that from the last section that X. > A. in any solutionI -- I
to the subproblem (3.18); that is, X. = A. + 6. for some 6. > 0.

I I I-

Consequently, varying 6i, and hence the size of the 6-neighborhood, is

equivalent to varying XA . The operation in the pareto-optimal cut algo-

rithm of increasing X. until s < 0 has the following interpretation: in-

crease the 6-neighborhoodabout customer i until >Iej:jeNi(6i)}< 0.

Figure 1 gives a small example of a 6-neighborhood. Assume dis-

tances in the figure are drawn to scale and that the neighborhood is con-

structed around customer i. Nodes, 2,3,7 and 9 represent possible facility

locations. Assume that only node 9 is open in the current solution y. As

indicated in the figure, the current 6-neighborhood contains nodes 3,7 and

9. If E9 + 3 + 7 = s > 0, then the pareto optimal cut algorithm would

expand the neighborhood to the next nearest facility, which is node 2.

The cut determined by the neighborhood pictured in figure 1 has

the following interpretation. For notational convenience let us assume

at this point that customer i is the only customer, and that there are no

fixed charges, i.e. d.=0 for all j. Then we can express the cut for any

optimal solution to subproblem (3.18) as:

m

v > . - T
- j=l iJ-

As we noted in deriving equation (3.24) from problem (3.23), every solution

to subproblem (3.18) can be written as

X. = A. + 6. for some 6. > 0
I I I I-
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Neighborhood About A CustomerFigure 3.1
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Xi = cj() min{cij:jCO}

X. - X. = 6. if j=j(i)

.. = X. - c. if jCnN(6i)

0 otherwise.

Consequently, the cut corresponding to figure 3.1 is:

v > X + 6 ( ) (i +6-c i3)

If we set y=O to close the facility at node 9, then customer i must be

serviced from outside the neighborhood (or on its boundary) at a cost v

of at least X.+6. unless the facility at node 3 is opened. If this faci-

lity is opened, then the servicing cost for node i becomes c 3 . The

coefficient of y3 compensates for this reduction in service cost when y3=1.

The general situation is much the same. Given any neighborhoods
n

for the customers, let w = .X. be the current routing cost, let
i=l

v. ={i:j=j(i , and let . = 7I.. . Substituting these values in the

form of the cut expressed in (3.19) gives:

n

v > w + j (l-yj) C i. i (3.25)

jeo - jEC j=l (325
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The coefficient v. accounts for the fact that the open facility j may lie

interior to several neighborhoods. Closing this facility increases routing

costs to the boundary of each of these neighborhoods unless some closed

facility within any neighborhood is opened. The coefficient pj records

the savings for opening facility j considering all the neighborhoods that

it belongs to.

Suppose, as before, that c. ik(i) denotes the cost to the closest

facility k(i)j(i) to node i. Setting X; = X. , and 6. = max(O,c k(i) -

cij (i)), expression (3.25) reduces to the type B cut introduced in section

3.4.1.

A New Cut for the p-Median Problem:

When specialized, our cut-generating techniques provide a new type

of Benders cut for the p-median problem, one that dominates the type B cut.

To simplify our development, we temporarily assume that all servicing costs

c.i are nonnegative and that c..=O for all i. Recall that every node in a
IJ II

p-median problem is both the source of a customer and a potential facility

location (thus m=n). The problem involves no fixed costs, d.=O for all j.

As we have seen, the type B cut introduces penalties for customers

forced to travel to their nearest closed facility. For the p-median pro-

blem, these penalties separate into two groups: (i) a customer and a

facility are located at the same node i. Then the servicing cost for that

customer is c.=O and the penalty in servicing cost for this customer is

cik(i) = min{cj:jvi} if the facility is closed. (ii) a customer, but

no facility, is located at node i. Then the closing of any open facility
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need not insure any servicing penalty, since the customer might conceiva-

bly be serviced by a facility at node i at cost c..=O. Stated in terms

of the neighborhood interpretation, this observation implies that the

6.-neighborhood about customer i is of minimal size, Ni(6i) = Ni(O), if

y.=O in the current solution y; if y=l, then c.j(i) mincij:jO = c..
I IIjj M IJ

and 6 i=Cik(i) is the size of the neighborhood.

Since closing a facility at node j only contributes to the penalty

in the type B cut of a customer at that node, the term v. - {6 :j=j(i)}

equals Cjk(j) , the distance to node j's second nearest neighbor and the

type B cut is written in the form of expression (3.25) as:

> w + C IJk(j) (l j y (3.26)

The terms w and pji are defined as before.

The algorithm presented in section 3.4.2 shows how to expand the

neighborhoods about every customer from the values associated with this

type B cut in order to obtain pareto-optimality. Although the new cut

must be pareto-optimal, there is no guarantee that it dominates the type Bcut.

To develop a cut that dominates the type B cut, we proceed as

follows. We maintain the neighborhood about nodes whose facilities are

closed at their minimal size 6 =0, and we increase the neighborhoods about

the other nodes all by the same amount. That is, we set 6 j=cjk(j ) + 6

for every node j with yj=l. This procedure avoids the formal slope check-

ing mechanism of the algorithm for generating pareto-optimal cuts. Although

other options are certainly possible, choosing to expand every neighborhood

equally leads to a very simple implementation.
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The choice of 6 is governed by two restrictions. First, any

value of 6 determines values X. = . + 6. = X. + c.() + 6 for iO
I I I ikOI)

and X.=j. for isC of the variables in the objective function (3.24)

of the dual linear programming subproblems (3.23). As noted in section

3.4.1, these values will be feasible only if

Ai < min{cij:jSO and jj(i) 

That is, the interior of every neighborhood may contain at most one open

facility. The second restriction is that every closed facility lie interior

to at most one neighborhood about an open facility. Although this restric-

tion is not imposed by the linear programs (3.23), later we will show by

an example that the new cut need not dominate the type B cut if this con-

dition is not fulfilled. Our choice of 6 is made as large as possible,

consonant with these two restrictions.

We will call the result of this procedure

v >w + I (cjk(j)+ )(l-y) - (Pj+)Y . (3.27)

a type C cut. Note that the coefficient of the closed facilities j must

be altered from the values pj in the type B cut (3.26). Since out restric-

tions on insure that every closed facility j lies interior to only one

neighborhood q, if any, about an open facility, as we increase 6 only
n

the term rqj in the saving expression pj r= .i changes. 6. equals the

difference between 7TW = maxi q-CqjO = max(cq (q) +6-cqj O), see section
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3.4.1,at 6=0 andat 6=6 . Note that this observation implies that .<6

for all jC.

In comparing cuts, we noted previously that type B cuts dominate

type A cuts as long as at least one vO. The following result summarizes

the relationship between type B and type C cuts.

Proposition 3.1: For a given iteration of Benders decomposition for the

p-median problem, a type C cut will either dominate or be equivalent to

a type B cut.

Proof: Let y=y be any values for the configuration variables satifying

the p-median constraint

Y + Y2 + "' + Yn p

Let R(y) and RB(y) denote the righthand sides of the type C cut (3.27) and

the type B cut (3.26). Then

DIFF(y) = R(Y) - R(y) - * (-yj) Z jYj
jeO jeC

By the p-median constraint, if K of the facilities jC are opened, then K

of the facilities jO must be closed. As we have noted just prior to the

proposition, though, 6.<S for all jC. These two facts imply that

DIFF(y) > O, so the type C cut is always at least as strong as the type
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B cut.

Reviewing the definition of the type C cut and the proof of this

proposition shows that our assumptions that service costs are nonnegative

and that c..=O for all i are dispensable. These assumptions merely lead

to more attractive interpretations and motivation.

Example 3.2

As an illustration of these strong cuts, consider a two-median

problem on the network in figure 3.2.

Figure 3.2 p-median example

The number on each arc is the distance between the nodes incident

to that arc. The cost c.. for servicing a customer at node i from a

facility at node j is computed as the shortest distance between these nodes.

Assume that the current configuration y has Y1 = 1, y5 = 1 and

Y2 = Y3 = Y4 = O. Then customers at nodes 1 through 3 will be serviced

at node 1 and the customers at nodes 4 and 5 will be serviced at node 5.

The usual application of Benders method gives the following type

A cut:

v > 7- Y2 - 5 3 - Y4
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Incorporating the penalty of closing a facility, we obtain the

following type B cut:

v>7 + (l-Yl) Y2 -5Y3 Y4 +y(Y5)

Using our 6-neighborhood concept, we find that 6 equals 4 (for

6>4, node 3 lies in the interior of the neighborhoods about node 1 and

node 5), and we obtain the following type C cut:

v >7 + (1+4) (l-y) - 5Y2 - 5Y3 - 5 4 + (1+4)(1-y5).

Note that the type C cut dominates the types A and B cuts.

If we ignored the restriction prohibiting node 3 from being in

the interior of the neighborhoods about both nodes 1 and 5, we could

expand the neighborhoods until 6=9 and the cut would become:

v >7 + 10(1-yl)- 10Y2 - 15y3 - lOY4 + 10(1-Y5)

Observe that this cut does not dominate the type B cut (take

Y2=Y 3 l1, Y1=y 4 y5=O). The difficulty is that 63=10 exceeds 6=9.
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3.4.4 Strong Cuts For Fixed Charge Network Design

Next we discuss the generation of strong cuts for the fixed

charge network design problem. This problem is formulated as:

U C. xk.. +
k 'IJ Ij

b ..y..
(i,j)EA iJ ij

subject to: Xi..j Xj

j iJ j 

0

RkZ

-RkZ

ifk, i09

i=k for all k, 

i=k

for (i,j)sA,

for (i,j)EA,

for all k, 

for all k, 

yij = O or 1i for (i,j)£A

where

i,j,k,2 are nodes indices;

is a variable denoting the amount of flow

routed over the arc (i,j) whose origin is

k and destination is ,;

Minimize
(i ,j)£A

ki
X..

IJ < Rk&Yij

x.. > 0
IJ -

kX..
IJ



-73-

yij is a 0-1 variable that will be 1 if the

arc between i and j is added to the net-

work and 0 otherwise;

A is the set of candidate arcs for the network;

R.. is the amount of flow that must be routed

between nodes i and j.

The break-bulk problem discussed in chapter I can be viewed as

a special case of this problem. To formulate the problem in this way, we

modify the network representation of the break bulk problem by splitting

every node corresponding to a break-bulk center into a "receiving node"

and a "sending node". Introducing a "throughput arc" connecting these

nodes, we then identify the construction of this throughput arc with con-

struction (or rental) of the break-bulk center. Since this construction

cost will be positive, we can formally let the candidate arcs A consist of

both throughput arcs and routing arcs, which have zero fixed costs. We

can always assume, then, that all of the routing arcs are "constructed" in

the optimal solution to the design problem.

In chapter II we showed that facility location models can be formu-

lated as a network design problem, though possibly with additional side

constraints on the configuration variables yij . Since this transformation

does not, however, seem to provide new insight concerning strong cuts for

the facility location models, we have treated the problems separately.

Finally, we noted that the constraints x. . < R y for all,j - k- iJ
(i,j)sA and all k,R can be compressed into constraints I kJ <(JR~y

k,, ij



for all (i,j)rA without affecting the feasible solutions to the problem.

The reasons for not doing so are similar to those for not compressing the

constraints of the facility location model (see chapter IV for a further

discussion of this issue),

Inspection of the fixed charge design problem indicates that the

selection of flow variables decomposes into a series of problems of the

following form:

Minimize

subject to:

+ _c..X..
i; j IJ IJ

Xik XPkj

i J

= Rkk

(3.28)

all hk, hZ

x.. < Rkyij

X.. > 0, y c.toi )
IJ -j

all i and j

where l<k<N and l<9<N . For notational simplicity we have subsumed the

superscripts k. and .

For any assignment of the y variables, (3.28) becomes a shortest

path problem. Let the configuration variables y be fixed at values y=y.

IX -I Xj
hj

= 0

= -RkQ
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The dual of (3.28) is:

Maximize Rk [(rr k) - Y j
J j

subject to: (r.-i) - y < c..j (3.29)

Yij > , h unrestricted.

Suppose that Qi} and ij solve (3.29); then in the context

of Benders decomposition,

v > U T P. wk i Yij
k·CCR~;T ) -k

defines a cut. (As before, we have dropped the constant term bi jyij

from the righthand side of all cuts.) In order to simplify the following

discussion let us consider only one of the problems (3.28) (i.e. let k=t

and =s) and drop the indices k and . We assume that R k=I for the pro-

blem being considered. Further assume that {ir and isolve (3.29).

So the Benders cut becomes:

v (wrt is)-Z Yijyi

Now problem (3.28) generally has a degenerate optimal basis. This

fact has a well-known network interpretation; in a network with N nodes,

the shortest path between any two nodes usually consists of fewer than the
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(N-1) arcs in a basis.

Since (3.28) is usually degenerate, its dual (3.29) will generally

have multiple optimal solutions.

With y=y, regarding (3.28) as a shortest path problem gives us one

possible interpretation of the dual variables. I. is the shortest dis-

tance between nodes s and i on the network described by y=y. Since

O if .-w. < c..
J I - IJ

w. -. -c .. if .r-w. > c.. ,
j I IJ J I IJ

yij can be interpreted as the reduction in the shortest path distance

between nodes s and t if yij=l (i.e. if arc (i,j) is added to the network

defined by y).

Let W{si, YLj} be set of optimal dual values defined by the above

procedure. We shall refer to the cut associated with this optimal dual

solution as the standard cut.

Other values of the optimal dual variables are usually possible.

We next describe a procedure that yields another optimal dual solution.

This solution has the property that the Benders cut that it defines is

2 denotes the
never weaker than the standard cut; that is, is {wi , ye} denotes the

optimal dual values produced by this new procedure, then

2 2 2 1 _ ,rrl 1
Trdij Yij > t y.yt ij Yijs i j ij j- Is ij

for all possible values of y. Usually this new set of dual values produces

a cut which dominates the standard cut.
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The new procedure uses two pices of information-shortest path

distances from node s to all other nodes and shortest path distances from

all nodes to t. Define

D = optimal value of (3.28) when y=y

I

I
= minimum distance from node s to node i on the

network defined by y=y .

and

D. = minimum distance from node i to node t on the
I

network defined by all the arcs in A [i.e. yij=l

for all (i,j)cA] .

Let

A. = D - D.
I I

2 2
7r = 0, 7r = D

. = mIn( ,')
Ii'

if T.-. 2 < c..
J I - IJ

0

2 2
'Tr .-Tr.-c..
J I Ii

2 2if 22i > c..
J Iji

and

2
Yi =
ii

all !Os, it
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Theorem 3.2: (a) The set of dual valueswi 7r ,y} is an optimal solution

to (3.29) when y=y .

(b) Yi < YitJ - ij

That is, the Benders cut generated by the dual values {i , yj will either{2 2}Y
dominate or be identical to the standard cut.

Proof [for part (b)]. By cases.

Case 1 Suppose that

2Then ir. -j

2 1
Tr. = iT.

I I

2 1 1

- _ j i

2
which implies that ij <- iij 

2
Case 2 Suppose that w. = A.

By the triangle inequality we have,

D. < D. + c..I- j ij

or D. - c.. < D..
I tJ - i

Consequently,

A. = D - D. < D - D.-c..)
J J - IIJ

= D - D. + c..
I Ij

A. < A. + c..
J-- I IJ
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and

2 2 2
7T. Tr < A. -r.= -A.
J |-- Ji I i

< A. + c.. -A.

< C..
IJ

2 2 1
which implies that yi. = 0 and that y < y.I ¥ij - Ij

[for part (a)]

2 {2 2s
The definition of y guarantees that the set {r , y is a

2 2 *
feasible solution of (3.29). By definition w =0 and rt=D Now y =1

2
implies that y i=O (See the interpretation of yij given above). Therefore

i

the value of (3.29) for the set { 2i y.} is D. So the solution is

optimal as well as feasible. C

Example 3.3 (N=4)

100

I VV

We assume s=l and t=4.
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Solid lines for arc (i,j) indicated yij=l.

Dotted lines for arc (i,j) indicates yij=0.

1 1 1
'r1 = 0 'r 2= 10 3 = 50 'n4 100

1 1 1 1 1
1 = 0 13 = 0 Y14 = Y2 3 = 30 y3 4 = 0.

In this instance,

D = 100.

In addition,

2 2

A2 --10 A3 =°i = ° 0 T min(-10,10) = -10

2 2 2 2
Y2 = 0 Y 3 = O Y14 0 = Y23 = 0

2 2 2
r3 = min(0,50) = 4 = 100 Y34 0.

The cut defined by the first set of dual variables is: v > 100 - 30Y2 3

The cut defined by the new procedure is: v > 100. So the new cut is

preferred. Notice how the new procedure has improved upon the standard

cut. Solving the shortest path problem by forming a shortest path tree

routed at node 1, we might believe that arc (2,3) would lead to a shorter

path. Looking ahead, though, from node 3 to node 4 by computing the

shortest path distances from every node to node 4, we "see" the high cost

arc (3,4). In general, the new procedure looks for additional costs that

must be incurred "further down the road".
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As stated before, the new (strong) cut just described generally

dominates (and is never worse than) the standard Benders cut. We believe

that our improved cut, though usually not pareto-optimal, represents a

substantial strengthening of the standard cut. We also feel that any

pareto-optimal cut that dominates the new cut will produce only marginal

improvements. In fact, one way to improve the new cut is to proceed as

in the development of the strong p-median cuts. That is, calculate the

increase of the flow routing cost which results from closing an arc.

3.5 COMPUTATIONAL EXPERIENCE

In this section we present some computational results for Benders

decomposition equipped with the strong cut methodology. Our tests involved

two types of network design problems: the p-median location problem dis-

cussed in sections 3.4.1-3.4.3 and the fixed charge network design problem

described in section 3.4.4.

3.5.1 The p-median Problem

For the p-median tests, an all-FORTRAN implementation of Benders

decomposition was programmed on the PRIME minicomputer system at the

Massachusetts Institute of Technology's Sloan School. To generate initial

feasible integer solutions for the first iteration of Benders procedure,

we applied a very effective heuristic procedure described by Cornuejols,

Fisher and Nemhauser [ 21]. The Benders continuous subproblems were solved

three different ways in order to compare the convergence properties of the

type A, B and C cuts (as described in the previous section). The master
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problems for these tests were solved via an exhaustive enumeration program.

Although this expedient limited the size of our computational tests, it did

permit us to readily test our conjectures about reducing the number of

iterations.

The first p-median test problem was a 10 node network taken from

Garfinkel, Neebe, and Rao [41 ]. Tables 3.1 and 3.2 show the computational

results for locating 3 and 6 medians on the 10 node network. For the 3

median problem, Benders procedure with the type B and C cuts converged to

the optimal solution in 10 iterations whereas the "standard" type cut re-

quired almost three times as many iteractions. For the 6-median problem,

the results emphatically show the superiority of the strong cuts over the

standard cut. The type B and type C cuts (which for this problem are

identical) converged very rapidly. The standard cut exhibited a pronounced

"tailing effect."

The difference in computation times for computing the three types

of cuts, when compared with the time for solving the master integer pro-

grams, is believed to be negligible, although the lack of timing facilities

did not allow us to make precise measurements.

Notice that in all of the p-median test problems considered, the

initial solution found by the heuristic algorithm was optimal. The com-

putational tests of Benders procedure are still meaningful, though. First,

the heuristic algorithm will not always generate an optimal solution (see

[21 ] for error bounds). Second, as a general rule, verifying whether or

not a given solution to an integer program is optimal can be as hard as

solving the problem from scratch.
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The computational experience for this 10 node problem conforms

with our belief that the strong cuts will be clearly preferred to the

standard cut whenever the fraction

number of medians
F-

number of nodes

is relatively large, say greater than 1/4. When this ratio is low, there

quite likely is insufficient interaction between the medians for the

penalty considerations of the strong cuts to be meaningful.

Next we tested a network of 33 nodes taken from Karg and Thompson

[ 64]. Table 3.3 and Table 3.4 display results for the location of 2

medians and 4 medians on the network. For the case of 2 medians there is

not much difference among the three cuts although all of them performed

quite well.

For the 4-median problem, the strong cuts performed somewhat

better than the standard Benders cut. At the end of 10 iterations, the

type C cut had performed about 10% better than the standard cut. The

difference in the performance of the strong cuts is less dramatic for

the 33 node tests than for the 10 node network tests. This is probably

due to the relatively small ratio of medians to nodes for the 33 node

network tests.

Further computer tests were suspended due to the excessive time

required to solve the master problem by exhaustive enumeration. Computa-

tion times for the above experiments were on the order of .1 to 3 minutes

of minicomputer time for each Benders iteration.
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ITERATION STANDARD CUT TYPE B CUT TYPE C CUT
NUMBER RATIO RATIO RATIO

1 .72 .75 .80

2 .76 .78 .83

3 .84 .86 .86

4 .88 .90 .90

5 .90 .93 .92

6 .90 .94 .93

7 .92 .94 .97

8 .94 .96 .99

9 .96 .98 .99

10 .97 .99 .99

Optimal Solution = Initial Solution = 17,474

Ratio = Lower Bound/Best Upper Bound

TABLE 3.3 33 NODE, 2 MEDIAN TEST PROBLEM

ITERATION STANDARD CUT TYPE B CUT TYPE C CUT
NUMBER RATIO RATIO RATIO

1 .52 .59 .66

2 .67 .73 .79

3 .71 .79 .83

4 .76 .84 .84

5 .78 .85 .85

6 .79 .85 .87

7 .80 .87 .88

8 .81 .87 .89

9 .81 .88 .90

10 .82 .88 .91

Optimal Solution = Initial Solution = 12363

Ratio = Lower Bound/Best Upper Bound

33 NODE, 4 MEDIAN TEST PROBLEMTABLE 3.4



-86-

3.5.2 Fixed Charge Network Design

The fixed: charge network design problem required a more elaborate

implementation of Benders decomposition. For some small problems we again

solved the master problems by exhaustive enumeration. For the larger pro-

blems we solved the master problems as linear programs via the MPSX

inear programming routine. This enabled us to compute lower bounds very

quickly by rounding.

We solved the Benders subproblems two different ways in order to

compare the standard cut with the strong cut described in the previous

section. The choice of an initial integer solution varied freatly so we

will discuss this selection for each individual test problem.

Most of our test problems were adapted from related network

design problems in the literature. In every case all required flows were

equal to one. Unless otherwise noted, the arc construction costs are

proportional to the continuous routing costs. We used a procedure given

by Biliheimerand Gray [14] to determine which arcs, if any, could be open

or closed.

Hoang [59] gives two network examples that we adapted as test

problems. Since these were small problems (7 nodes and 8 nodes), we

solved the master problem by exhaustive enumeration. Tables 3.5 and 3.6

give the results of applying Benders decomposition to these problems.

The strong cuts performed significantly better than the standard cuts and

were able to converge towards an optimal solution very quickly. Notice

that the choice of the initial integer solution (either near-optimal or

not) did not seem to effect the convergence of the strong cuts.
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ITERATION STANDARD CUTS STRONG CUTS
NUMBER UPPER BOUND RATIO UPPER BOUND RATIO

1 1737 .79 1737/2112 .90/.60

2 >1737 .79 >1737/1877 .95/.87

3 >1737 .80 >1737/1738 .95/.96

4 >1737 .80 >1737/1758 .96/.97

5 >1737 .80 >1737 .98

6 >1737 .81 >1737 .98

7 >1737 .82 >1737 .98

8 >1737 .83 >1737 .98

Second numbers are 4 iterations from a different starting
solution.

TABLE 3.5 7 NODE, 15 ARC NETWORK DESIGN PROBLEM (4 ARCS
FIXED OPEN)

ITERATION STANDARD CUTS STRONG CUTS
NUMBER UPPER BOUND RATIO UPPER BOUND RATIO

1 3021.0 .00 3021.0 .55

2 2433.5 .74 2433.5 .90

3 2770.5 .75 2560.5 .92

4 2900.0 .75 2581.5 .92

5 2594.0 .76 2569.5 .93

6 2647.0 .76 2421.0 .96

7 2615.5 .77 2402.5 .97

8 2640.5 .77 2421.5 .97

9 2525.5 .77 2368.5 .98

10 2478.0 .77 2374.5 .99

TABLE 3.6 8 NODE, 18

FIXED OPEN)
ARC NETWORK DESIGN PROBLEM (5 ARCS



-88-

ITERATION STANDARD CUTS STRONG CUTS
NUMBER UPPER BOUND RATIO UPPER BOUND RATIO

1 115063 .00 115063 .00

2 100575 .41 100575 .46

3 107910 .41 97212 .48

4 103427 .42 82746 .57

5 95198 .45 92083 .58

6 100706 .45 90813 .58

7 89486 .48 94261 .59

8 94209 .48 76341 .67

9 79096 .54 74414 .68

10 67736 76688

1 67736 .00 74414 .223

2 100575 .60 78857 .648

3 115373 .61 74124 .710

4 107349 .61 92014 .717

5 100584 .62 63469 .841

6 88299 .63 75722 .85

7 84342 .63 86112 .85

8 76824 .63 73249 .85

9 74874 .63 73091 .85

10 70732 .63 80881 .85

11 69100 66377

Rounding Threshold = .001

TABLE 3.7 10 NODE, 45
FIXED OPEN)

ARC NETWORK DESIGN PROBLEM (9 ARCS
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Rounding Threshold = .05 - Designates an Infeasible Subproblem

TABLE 3.8 10 NODE, 45 ARC NETWORK DESIGN PROBLEM (5 ARCS
FIXED OPEN)

Rounding Threshold = .001

TABLE 3.9 33 NODE, 132
FIXED OPEN)

3 INITIAL CUTS ADDED TO MASTER PROBLEM

ARC NETWORK DESIGN PROBLEM (32 ARCS

ITERATION STANDARD CUTS. STRONG CUTS

NUMBER UPPER BOUND RATIO UPPER BOUND RATIO

1 51922 .00 51922 .49

2 61281 .80 - .49

3 - .80 .50

4 - .80 - .50

5 - .80 72172 .51

6 - .80 54802 .86

7 - .80 76270 .88

8 - .80 50919 .89

9 - .80 54927 .89

10 .- 80 50851 .90

11 - 55387

ITERATION STANDARD CUTS STRONG CUTS
NUMBER UPPER BOUND RATIO UPPER BOUND RATIO

1 76348 0 76348 .51

2 107242 0 107242 .53

3 143000 .60 143000 .65

4 212652 .60 187069 .66

5 19002 .60 198055 .67

6 193393 .60 166226 .67

7 193624 .60 159241 .67

8 174928 .60 167014 .67

9 187512 .60 137205 .67

10 167334 .60 144818 .67

11 167057 160918
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For the next set of tests we solved the master problems as linear

programs and then rounding the continuous solution to obtain an integer

feasible solution. (McDaniel and Devine [ 86] have also studied this

solution strategy). After some initial tests, we decided to round to

one all variables which were greater than some small number such as .001

or .05. This threshold varied from problem to problem. Note that solving

the master problem as a linear program gives a weaker lower bound to the

optimal solution.

Table 3.8 gives the results of a 10 node-45 arc test problem

obtained by modifying an example reported by Boyce et al. [15]. The

strong cut again performs well relative to the standard cut.

Next we modified this test problem by changing the arc construc-

tion costs so that they were inversely proportional to their respective

routing costs instead of proportional to them. This was done to increase

the difficulty of the problem. We started our modified Benders procedure

with a deliberately poor initial solution. After 10 iterations we re-

started the procedure with the best feasible solution generated. Table

3.7 gives:the resultsof these tests. Although the bounds are not as tight

as those for other problems, the strong cuts are clearly superior to the

standard cuts. Also for these tests it appears that Benders algorithm

with strong cuts is much more efficient when a good initial solution is

provided.

For all of our 10 node-45 arc tests, Benders procedure required

about 1.1 seconds of IBM 370/168 computer time for each iteration. Since

our present interface with the MPSX linear programming routine (using the
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MPSX READCOM facility) is known to be very inefficient, we would expect

much faster computation times if a more suitable implementation were

available.

For our final test problem, we modified a network given by Karg

and Thompson [ 64] to create a 33 node-132 arc test problem. Three

initial cuts were specified in the master problem. The results given

in table 3.9 indicate that neither type of cut performed particularly

well. However, the strong cut still outperformed (by about 10%) the

standard cut.

For this test problem each Benders iteration required about 7

seconds of IBM 370/168 computer time.

In summary, our computational tests indicate that the strong cuts

performed noticeably better than the standard cuts on both p-median and

network design problems. The strong cuts attained a ratio of upper bound

to lower bound which was 10-33% better than the standard cuts. In addi-

tion, the network design tests indicate that the strong cuts help find

feasible solutions which are slightly better than those determined by

the standard cuts.

In our experimentation Benders decomposition was not as powerful

for the network design problem as for the p-median problem, probably due

to the more complex structure of the network design problem. Further

work is still required in order to utilize the full potential of the

algorithm for these applications. For example, strong cuts could be

generated by considering second shortest paths. Or, strong cuts might

be used in conjunction with some of the other techniques described in

section 3.3.
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CHAPTER IV

A MODEL SELECTION

CRITERIA FOR BENDERS DECOMPOSITION

4.1 Introduction

Selecting the "proper" model formulation is another important

factor that effects the computational performance of Benders decomposition

applied to network design and other mixed integer programming models.

This chapter discusses a criteria for evaluating "different" model

formulations of the same mixed integer programming problem in the con-

text of Benders decomposition.

Many network optimization problems have several "natural" mixed

integer formulations. For example, as we noted in chapter III, the

facility location problem and the fixed charge network design problem can both

be stated in several possible ways as mixed integer programs. We demon-

strate in this chapter that some of these formulations are to be preferred

to others.

Geoffrion and Graves [49] in their study of industrial distri-

bution planning found that proper model formulation was a crucial factor

in their successful use of Benders decomposition. They stated that in-

telligent model formulation is an aspect of Benders decomposition not

properly (or fully) understood and that deserves further study.

Various authors have studied alternative mathematical formulations

in other areas of combinatorial optimization. Cornuejols, Fisher and



-93-

Nemhauser [21] and Geoffrion and McBride [50] provide theoretical insight

and computational experience concerning the role of model formulation in

Lagrangian relaxation. Davis and Ray [24], Beale and Tomlin [8], and

Williams [123], in the context of linear programming relaxation for branch

and bound, show that proper model formulation can greatly improve the

computational efficiency of this procedure.

The next section of this chapter gives a small example illustra-

ting the importance of proper model selection for Benders decomposition.

The third section gives some results that allow us to compare the effec-

tiveness of various mixed integer programming formulations in the context

of Benders decomposition. The fourth section discusses the use of our

model selection criteria for network optimization and other more general

problems.

4.2 An Example

This section presents an example concerning the role of model

selection for Benders decomposition applied to the p-median facility

location problem. Recall from chapter III that the p-median problem can

be formulated as:

N N

(PA) Minimize : Ed..x..

i1 j=l 'J 'J

N

subject to: x.. = 1 V (4.1)
i=l iJ

X.j < yi v(i,j)
Ij- Yi (4.2)
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N

Y = P
i=1

x.i > 0 and y integer V(ij) (4.3)

N is the number of nodes in the problem and P is the number of facilities

to be located. yi indicated whether a facility is located at node i and

x.. indicates whether customer j is serviced at node i.
IJ

As we noted in chapter III, an equivalent formulation is:

N N

(PB) Minimize djxij
i=l j=l IJ

subject to: (4.1), (4.3) and

E x . < N . (4.2')
j=l IJ -- y

Note that (4.2') represents an aggregation of the constraints in (4.2).

So that although PA and PB are equivalent mathematical descriptions,

if we relax the integrality constraint on the yi, then the feasible region

for PB will be a proper subset of the feasible region for PA 

Let us examine the following p-median problem represented in

figure 4.1:

100

00 10

100 1 I100

100 
2 

Figure 4.1 p-median Example
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N is equal to 4, P is equal to 2 and all d are 100.

The application of Benders decomposition to this example formulated

as PB yields the following set of Benders cuts:

z > 200 - 400y 1 - 400y 2 + 0y3 + OY4

z > 2 40- 0y1 + Oy2 - 4 00y3 + OY4

z > 200 - 400y 1 + Oy2 + Oy3 - 400y4

z > 200 + Oy1 - 400y2 - 4 00y3 + Oy4

z > 200 + Oy1 - 400y2 + Oy3 - 4 0 0y4

z > 200 + Oy1 + OY2 - 400y3 - 4 00y 4

This set of cuts has the property that every single one must be generated

in order for Benders algorithm to converge.

Recall from chapter III that applying Benders decomposition to

our example formulated as PA yields several different sets of cuts. The

first set, consisting of type A cuts, is identical to the above set except

that all coefficients of -400 become -200. So all six cuts are again

necessary for convergence. In contrast, generating a set of type B cuts,

requires the single cut:

z > 400 - 100y1 - 100y2 - OO1y3 - 100y 4

We can generalize this example in the following way: let P = 

and let d.. = 100 for all ij and d.. = 0 for all i=j. With this class

of examples, we have problems where the PB formulation requires N/2 cuts,

an exponential number of cuts for Benders algorithm to converge. For these

same problems, the PA formulation in every case requires only one Benders
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cut for convergence! This dramatically illustrates the importance of

intelligent model formulation for Benders decomposition.

4.3 A Criteria for Comparing Model Formulations for Benders Decomposition

First, this section presents a formal framework for comparing model

formulations for Benders decomposition. This framework is then utilized

to prove our main results.

Suppose we have two mixed integer programs P and P2 which are

represented as:

minimize P1(y)
yY

where P(y) = minimum cx + dy

subject to: Ax + By = b

x> 0O

and

minimize P2(y)

ysY

where P2(y) = minimum hw + dy

subject to: Dw + Gy = g

w> 0O

x, w, and y are column vectors of problem variables; b and g are column

vectors; c,d, and h are row vectors; A,B,D, and G are appropriately

dimensioned matrices. The set Y is a set of integer valued vectors which

encaptures the integer constraints of the problem. We assume that the set

Y is finite.

We will say that P1 and P2 are equivalent mixed integer pro-

gramming representations of the same problem if

(P 1 )

(P2)
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PI(Y) P2(y) for all yeY.

That is, the two models have the same integer variables and may have

different continuous variables and constraints, but always give the same

objective function value for any feasible assignment of the integer variables.

In the context of Benders decomposition, another possible inter-

pretation of this equivalence is that P(y) and P2(y) represent the

linear programming subproblems when Benders decomposition is applied to

Pi and P2' So the two models are equivalent if their respective Benders

subproblems always have the same optimal value.

We evaluate these two models by comparing the cuts generated from

the application of Benders decomposition to thesemodels. Following the

derivation of Benders decomposition given in chapter III, we can rewrite

P! and P as 

Minimize z

subject to: Z > Ij (b-By) + dy jcJ

y Y

where {HijeJ is the set of extreme points of the polyhedron TEA < C;

and

tAs we did before in chapter III, assume that the linear programming sub-
problems P(y) and P2(y) are feasible and have optimal solutions for

all yY. These constraints can be relaxed, but with added complications
that cloud our main development.
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Minimize z

subject to: z > yk(g-Gy) + dy keK

y Y

where yklksK is the set of extreme points of the polyhedron yD < h.

The inequalities z > j (b - By ) + dy and z > ¥k(g-Ey) + dy will

be referred to as the Benders cuts for P1 and P2 respectively. To compare

equivalent model formulations, we adapt the concept of a pareto optimal

cut, introduced in chapter 111, by saying that a Benders cut (or constraint)

z > i (b-By) + dy

for P1 dominates a Benders cut

z > yk(g-Gy) + dy

for P2 if

j (b-By) + dy > y (g-Gy) + dy

for all yY with a strict inequality for at least one point yY.

A cut z > yk(g-Gy) + dy will be called unique with respect to

the formulation P1 if there is no cut belonging for P1 that is equal to

it (in the sense that two cuts are equal if their right-hand sides are

equal for all yY) or dominates it.

A formulation P2 is superior to an equivalent formulation P1 if

P2 has at least one Benders cut that is unique with respect to P, but P1

does not have any cuts that are unique with respect to P2.
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In a very loose sense, P2 is superior to P1 if they are equivalent

formulations and the set of Benders cut for P1 is a proper subset of the

Benders cuts for P2.

With these definitions we can now prove serveral properties con-

cerning model formulation and the strength of Benders cuts.

Lemma 4.1 Let P1 and P2 be equivalent formulations of a mixed integer

programming problem. P2 has a Benders cut that is unique with respect to

P1 if and only if there exists a y yC such that P2(y) > P (y°), where yC

denotes the convex hull of the set Y.

Proof: (->) Let z > (g-Gy) + dy be a Benders cut that is unique

with respect to P. Since we are assuming that the set Y is finite, this

implies:

max [min Ij (b-By) + dy - (g-Gy) + dyl < O.
jEJ ycY j

Now observe that the above inequality still holds if we replace the set Y

by YC and the set {1T [ J by (II : A < C . Using linear programming

duality theory we can reverse the order of the max and min operation to

get

min max I(b-By) + dy - y (g-Gy) + dy < 0.

yCY c ITA<C

Linear programming duality theory allows us to rewrite the above

expression as



cx + dy - [y*(g-Gy) + dy] < 0

Ax + By = b

x > O, y YC

This implies these exists y CyC such that

Min cx + dy = P1 (yO)

subject to: Ax = b-By °

x> 0

< Y (g-Gy°) + dy°.

Another application of linear programming duality theory gives us:

P1 (y) < y*(g-GyO) + dy < Min

subject to:

hw + dy0

Dw = g-Gy0

w>0

P1 (y) < P2(O) 

( ) The reverse implication has essentially the same proof with all

the steps reversed. Explicit details will not be given here. C

This lemma leads to the following theoremabout preferred formulations:

Theorem 4.1 Let P1

programming problem.

for all yyc with a

and P2 be equivalent formulations of a mixed integer

P2 is superior to P1 if and only if P2(y) > P1(y)

strict inequality for at least one yY c .

Min

subject:

-100-

or
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Proof: (C- ) If P2(y) > P(y) for all yY , Lemma 4.1 says that P1

does not have any Benders cuts that are unique with respect to P2. Similarly,

P2 has a Benders cut that is unique with respect to P1 because there is a

yoYc such that P2 (y) > P(y). So P2 satisfies the definition of being

superior to P.

( >) If P2 is superior to P, P, by definition of superior,

does not have any cuts that are unique with respect to P2. Lemma 4.1 then

tells us that P2(y) > PI(y) for all yeYc. The definition of superior

also states that P2 has a cut that is unique with respect to P1 and using

lemma 4.1 we can say that there exists a yyC such that P2(
y °) > P1(yO°).

Theorem 4.1 has an interesting interpretation. Let the relaxed

primal problem for P1 be defined as:

minimize cx + dy

subject to: Ax + By = b

x > O, y YC

Note that the only difference between P1 and the above problem is that the

set Y has been replaced by its convex hull C

Theorem 4.1 states that for a formulation of a mixed integer pro-

gramming problem, the smallest possible feasible region (or the "tightest"

possible constraint set) for its relaxed primal problem is preferred for

generating strong Benders cuts. For any formulation P, a smaller feasible

region for its relaxed primal problem will result in large values of the

function P(y) which lemma 4.1 and theorem 4.1 indicates is desirable.
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Consequently, for any mixed integer programming formulation, the

convex hull of its feasible region will be the model formulation which is

"optimal" in terms of generating Benders cuts since it hasa modified primal

problem whose feasible region is the smallest.

Another property of the convex hull formulation of a problem is

that when Benders algorithm is applied to it, only one cut is necessary

for it to converge. However, determining the correct initial starting

point in order to generate this cut could be difficult.

4.4 Using the Benders Decomposition Model Selection Criteria

Although we have shown that a reduced feasible region for the modified

primal problem of a formulation is desirable, there are other issues which

must be considered in selecting a model for use with Benders decomposition.

First, there remains the difficulty of constructing alternative

models for mixed integer programming problems. The convex hull formulation

of a problem is optimal for generating strong Benders cuts but, in general,

it will be very difficult to build such a model. There is no efficient

procedure known for generating the constraints representing the convex hull

of a set of points. Efficient methods for generating alternative models

appears to be an area for future research.

For network optimization problems, the situation is more encouraging

in that there are usually several evident "natural" formulations. The

facility location problem and the fixed charge design problem given in

chapter III, the multicommodity distribution system problem solved by

Geoffrion and Graves [49], and the capacitated plant location problem
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described by Guignard and Spielberg [55], are all network examples that

have several easily derived formulations. For these problems, since the

alternative formulations usually have the same problem variables, we can

compare them by inspecting the size of the feasible region for their re-

spective modified primal problems.

The p-median example discussed in section 4.2 has 2 formulations

PA and P . They differ only in that PA has constraints of the form

x.. < Yi V(ij) (4.2)

wheras PB has constraints of the form

4

xj < 4y Vi (4.2')

Since (4.2') is an aggregation of the constraints in (4.2), the

feasible region for PA's modified primal problem is no larger than the one

for PB. So PA(y) > PB(y) for all yYC. A straightforward computation

shows that PA(y°) = 200 > PB(y°) = 0 for y 2 2, ', , ). So

the formulation PA is superior to PB for this example.

Due to the comparatively simple constraint sets of network problem

formulations, it may also be possible to derive additional constraints from

the current ones. In such a situation these new constraints could be

evaluated by testing if they reduce the size of the feasible region for

the modified primal problem.

Another issue that should be considered is the difficulty of

solving the Benders (linear programming) subproblems. Adding constraints
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to a formulation strengthens the Benders cuts that can be derived, but

also complicates the solution of the linear subproblems. So there is a

trade-off between the quality of Benders cuts available and the time needed

to solve the Benders subproblems.

Finally, a related issue is that adding constraints to a formulation

can cause the linear programming subproblems to become degenerate since

we are adding constraints to a linear program while keeping the number of

variables constant. Thus there may be a choice as to which cut to generate

at each iteration of Benders algorithm.

So by "tightening" the formulation of a problem we can get stronger

Benders cuts, but these stronger cuts may have to be distinguished from

other weaker cuts. The methodology described in chapter III should be

useful in such a situation.
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CHAPTER V

A MATHEMATICAL ANALYSIS OF

NETWORK DESIGN PROBLEM HEURISTICS

5.1 Introduction

This chapter concerns an issue related to the computation per-

formance of Benders decomposition for network design problems, the

generation of near-optimal solutions by heuristic methods. As Mevert

[87] and Geoffrionand Graves [49] have noted, the selection of a good

starting point for Benders decomposition is an important determinant of

computational success. The tests results given in chapter III for the

fixed charge network design problem also demonstrate this type of behavior

for Benders decomposition. So the selection of an appropriate initial

solution for Benders decomposition should greatly accelerate its conver-

gence. Heuristic techniques are frequently the most efficient ways of

generating good initial solutions for network design problems. Also these

approximate techniques can be applied to large-scale network models that

are too complicated to solve with exact solution techniques such as Benders

decomposition.

This chapter presents results concerning the use of heuristic

methods for generating solutions to some network design problems, in

particular, the "optimal" network problem [114,27] and related versions

of it. Recall from chapter II that the optimal network problem consists

of selecting a subset of arcs, subject to a budget constraints, so that
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the routing costs for required flows in the network is minimized; an

equivalent mixed integer programming formulation of this problem is:

Minimize C.. ..
(i,j)EA (k,9))e(DxD) 'J IJ

rk9 if i=k

subject to Xk xkq rk if i=Q
x.ij q = k if i

0 otherwise

kZ

ij <- k Yij

d.. yi < B
(i,j)EA ij j -

kP
x.. > 0 (i,j)EA and (k,,)c(DxD)

Yij = 0 or 1 (i,j)EA

where D is the set of nodes, A is the set possible arcs (undirected), and

kk
xI.. is the amount of commodity (k,Z) routed on arc (i,j). rkZ is the

amount of commodity (k,Z) that must be routed. d.. is the construction

cost of arc (i,j) and c is the per unit routing cost of arc (i,j). All

data d.. and c..ij are assumed to be nonnegative. yij is a binary variable

indicating whether or not arc (i,j) is to be constructed. B is the con-

struction budget.

The optimal network model has potential used in designing air,

rail or highway transportation networks. Although such systems are usually

much more complex than the above problem, this model could be useful in
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screening network configurations for more detailed study.

Our literature survey in chapter II indicated that there is both

theoretical and empirical evidence suggesting that optimal network design

is a very difficult optimization problem. Johnson et al [631 have shown

that the optimal network problem is NP-complete which means that there is

probably no efficient method for solving problems of this type. Compu-

tational studies by several authors [15,27,59] using branch and bound

techniques have shown that for optimal network problems with more than

about 75 arcs, solution times are prohibitive. So sub-optimal heuristic

methods appear to be the only methods available for generating solutions

to large-scale network design models. An important question that arises

in using heuristic techniques is the accuracy of the answers generated.

Although a great deal of effort has been applied to designing

heuristic algorithms for various network problems, comparitively little

is known about their behavior in approximating the optimal solution. The

most commonly used heuristic evaluation technique is to conduct empirical

tests by applying the heuristic to a set of "typical" problems and then

assessing the results of the sub-optimal procedure. However, it is

difficult to decide what constitutes a set of "typical" problems and

frequently the set is chosen through arbitrary means.

Another method of evaluating a heuristic algorithm is to analyze

its "average case" performance. For this technique a probability measure

is imposed on the set of possible input problems to the algorithm and the

expected value of the ratio of heuristic solution to optimal solution value

is computed. Although this method has many advantages compared to the

empirical testing technique, there are several drawbacks to its use. The
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first disadvantage is that it may be very difficult to find a probability

measure that is appropriate for the set of problems that the algorithm

will be applied to. For example, in integer programming problems, re-

searchers have found that real-world problems are generally "easier" to

solve than "randomly" generated test problems.

Another drawback to the average case method is that analyzing the

expected behavior of an algorithm is usually very difficult. Consequently,

there has not been much work in this area. See Karp [67] for one of the

few examples of average case analysis of heuristics.

Finally, another method of analyzing a heuristic is to utilize a

worst-case performance measure, that is, to compute the maximum possible

percentage deviation from the optimal solution when using the heuristic.

This type of analysis is conservative in that only the worst possible

error is computed. It has the advantage of being more analytically

tractable to perform than average-case analysis. Also the results of a

worst-case evaluation are applicable regardless of the underlying pro-

bability distribution of the input problems. However, there is no con-

clusive evidence as to whether the worst-case error bound is an appropriate

method for comparing the accuracy of various heuristics. See Rosenbrantz

et al [109] and Johnson [62] for some considerations of this last point.

Many researchers have analyzed heuristics for combinatorial pro-

blems in terms of their worst-case error performance. See Garey and

Johnson [40] for a survey of these results.

In this chapter we present some worst-case analyses of heuristics

for the optimal network problem. The next section contains a review of

some past work in designing heuristics for the optimal network problem.



-109-

Also some examples are given which demonstrate the worst-case behavior

for some of these procedures. The third section contains this chapter's

main results which concern the computational complexity of designing

heuristics with a given accuracy. These results indicate that all poly-

nomial-time heuristics for the optimal network problem probably have poor

worst-case error bounds. The fourth section describes a particular

heuristic algorithm whose worst-case error ratio for a restricted version

of the optimal network problem is bounded by a constant that does not

depend on the characteristics of the input problem.

We should note that most of the previous work in this area (see

[15,27,59]) dealt with a restricted version of the optimal network design

problem where all required flows rkR were one and every arc routing cost

c.. was equal to its construction cost d.. For the rest of this chapter,

unless otherwise noted, we assume that all required flows rkZ are one

but that an arc routing cost may be different from its construction cost.

Finally, for technical purposes only and without any loss of

generality, we assume that all c.. and d.. are integer valued and that all
IJ ij

problems under consideration have an optimal solution greater than zero.

5.2 Previous Work in Optimal Network Design Heuristics

Scott [114] and Dionne and Florian [271 have presented some optimal

network design heuristics which we consider here.

The first heuristic that we review is due to Dionne and Florian

and was stated as follows:
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(H1) 1) Construct the minimal cost spanning tree as the

initial network configuration.

2) As long as the budget constraint is not violated,

add to the network configuration the arc whose

construction cost is the least of all arcs not yet

included in the network design.

Note that if the minimal cost spanning tree is infeasible because

of the construction budget constraint then the problem is infeasible.

Dionne and Florian also presented another heuristic that is a

modified version of one described by Scott. It has the following descrip-

tion:

(H2) 0) Let M be the set of arcs in the current network design.

For keM, define Qk(M) as the increase in the total routing

cost if arc k is deleted from M.

1) Initialize M so it contains all arcs in the network.

2) Find k such that

Q (M) ak(M)
k Qk(m)

L (M) d : MIN
k dk keM k

where dk is the construction cost of arc k.

If L (M) = O, then the removal of any link will dis-
k

connect the network and computation should be restarted

using heuristic H. Otherwise, delete arc (k*) from M

and continue with step 3.
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3) If dk > B, i.e. the current network exceeds the
keM

construction budget, go to step 2; otherwise continue

with step 4.

4) If B - dk > 0, then introduce as many arcs as pos
kEM

possible so that the routing cost decrease is maximized

and the budget constraint is satisfied. END

This second heuristic is related to the "greedy" heuristic that

has been studied by Nemhauser, Wolsey and others [21,92,]. The quantity

Lk(M) can be considered as the normalized "loss" due to deleting arc k.

At each iteration we delete the arc whose loss is the minimum of all arcs;

the process continues until a feasible solution is reached. Comparing

this procedure to the "greedy" heuristic, we can see that they are very

similar.

Dionne and Florian performed computational tests to compare both

heuristics. H2 performed noticeably better than Hi. In fact, for many

test problems H2 was able to find the optimal solution.

We now consider the worst-case performance for these heuristics.

Let us define the following terms:

Vh(-) = the value of the solution computed by heuristic

h for problem ().

V() = the optimal solution value for problem ().

p(N) = the set of optimal network problems containing N nodes.

Vh(p)
Rh(N) = MAX .

pep(N)
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Rh(N) is the worst possible error ratio when heuristic h is

applied to optimal network problems consisting of N nodes. The goal of

our worst-case performance analysis is to compute Rh(N).

We show that for both of the above heuristics, the worst-case

error ratio essentially behaves as a linear function of N, the number

of nodes in the network. Therefore the error ratio is unbounded as the

size of the network increases.

Consider the following canonical example:

Figure 5.1 Optimal Network Problem Example for
Heuristic H1.

In figure 5.1, sl and s2 both represent a subnetwork consisting

of k nodes. Figure 5.2 contains a diagram of this subnetwork. Any arc

connected to s51 or s2 is considered to be connected to the center node

in the corresponding subnetwork.

The label associated with each arc in Figure 5.1 denotes the arc's

routing cost and the construction cost respectively. The construction

budget B is 13.



(0,0)

Figure 5.2

(0,0)

Star Network Representing a Node.

Using heuristic H2, we start with all arcs in the network. Then

we drop arc (sls2). Next, we drop arc (sl,b) or (s2 ,b) the analysis is

the same regardless of which are is deleted). This leaves us with the

following network depicted in figure 5.3.

(2 2-,4)

(2Z2,4) (1,5)

Figure 5.3 Solution Computed by Heuristic H2 for
the Example.

Remembering that all required flows r.. are equal to one, we compute the

cost of the above solution as

VH2 = 8 + 16 3 + 2 + + 2

-113-

1

a2
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Figure 5.4 depicts the optimal solution to the above problem.

S

(1,5)

(2

Z

Figure 5.4 Optimal Solution for Optimal Network Example.

The optimal solution has

V = 8Z3 + 8Z2 + 12Z + 6.

The total number of nodes in the network if 2Z + 2.

FH2 (2Z+2)
8Z4 + 16Z3 +

8Z3 +

4Z2 + 4 + 2

8Z2 + 12Z + 6

RH2 (2Z+2) > Z for Z > 2

This implies

RH2(N) > N - 1 for N = 6,8,10,...

So our example shows that the worst-case error ratio for H2 must

be at least essentially linear since our canonical example exhibits such

behavior for an infinite number of network sizes.

-
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Heuristic H1 behaves similarly. Consider the canonical examples

represented by figure 5.5.

(2Z2 , 8)

(222,8)

(1,8)

1,10)

Figure 5.5 Optimal Network Problem Example for
Heuristic Hi.

Let the budget B be 27. An analysis that closely follows the one given

above tells us that

1
RH (N) > N-I for N = 6,8,10,...

So the worst-case error ratio for Hi must also be at least essentially

linear.

The above results lead us to question if there are optimal net-

work design heuristics whose worst case behavior is better than the ones

given above. The next section gives a result which indicates that all

"reasonable" heuristics must probably perform nearly as badly in terms

of worst-case error margins. Also we show that the worst-error ratios

for the above heuristics is no worse than a linear function of network

size. So the examples given above show essentially the worst possible

e
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behavior of heuristics Hi and H2.

5.3 Two Theorems on the Accuracy of Optimal Network Problem Heuristics

The first result that we consider concerns the class of polynomial-

time heuristics for the optimal network problems, that is, the set of all

optimal network design heuristics whose worst-case computation time is a

polynomial function of the problem size. Usually the problem size is

represented by the number of nodes N. So any heuristic whose computation

time is bounded by a polynomial function of N belongs to the above class.

As we stated previously, Johnson et al [63] showed that the optimal

network problem is NP-complete. Next we show that the problem of finding

an optimal network design heuristic whose worst-case error ratio is less

than N , where N is the number of nodes in the network and is

between 0 and 1, is also NP-complete. So finding a polynomial-

time optimal network design heuristic that is always "close" to the optimal

solution is as hard as finding a polynomial-time procedure that is always

optimal. Sahni and Gonzales [111] demonstrated similar results for the

traveling salesman problem (without the triangle inequality restriction),

the multi-commodity network flow problem and other combinatorial problems.

Garey and Johnson [40] derived a similar result for the graph-coloring

problem.

Our first result can be stated in the following terms:

Definition 5.1 The approximate optimal network problem is the following:

let be any fixed positive constant between 0 and 1, for any optimal net-

work problem P find a solution whose value is less than or equal to N I-V(P),
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where N is the number of nodes in the problem P.

Theorem 5.1 The approximate optimal network problem is NP-complete.

Proof: Since the optimal network problem belongs to NP (see [ 63]), the

approximate optimal network problem must also belong to NP. Now we show

that if the approximate problem could be solved in polynomial-time, that

is, if there existed a polynomial-time heuristic h such that

R (N) < N , O< < 1 and for all N, then all of the NP-complete pro-
h

blems could be solved in polynomial time.

Let us define a useful auxiliary problem. The Steiner tree pro-

blem [65] has the following description: given a network (D,A) with node

set D and arc set A and the data i) {dij}(ij)c A the set of arc con-

struction costs, ii) B, the construction budget, and iii) S, a set of

nodes which is a subset of D, determine if there is a subtree of the net-

work whose construction cost is less than a given budget B and with the

property that all nodes in S are connected by the subtree. Karp [65] has

shown that the Steiner tree problem is NP-complete.

We next demonstrate that if the heuristic h defined above exists,

then the Steiner tree problem could be solved in polynomial-time. It

would then follow [65] that every NP-complete problem could be solved in

polynomial time.

Given any Steiner tree problem, transform it into an approximate

optimal network problem in the following way: replace each node in the

set S by a subnetwork of the type pictured in figure 5.2. Each of these

subnetworks should have Nk nodes, where N is the number of nodes in the
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original Steiner tree problem and k is a constant that will be specified

later. All routing and construction costs for arcs in the subnetwork

should be zero.

Attach a special node T to the Steiner problem network. Every

"special" arc between T and the set of nodes D hasa construction cost of

zero and routing cost of one. Every arc between T and a node in S, which

is represented by a star network corresponding to figure 5.2, is con-

nected to the center of the star network. All arcs originally in the

Steiner problem network have zero routing cost and retain their original

construction costs.

Figures 5.6-5.7 illustrate such a transformation. S' is the set

(N-S). The arc labels in the original Steiner tree problem network are

the arc construction costs. The arc labels in the modified optimal net-

work problem indicate the arc routing and construction costs.

The construction budget for the optimal network problem is the

same as the Steiner problem budget. As we have assumed throughout this

chapter, all required flows in the optimal network problem are equal to

one.

It is important to note that this transformation to create an

optimal network problem from a Steiner tree problem is a polynomially time

bounded procedure for any value of the parameter k.

Also note that the size M of the optimal network problem created

by our transformation is at most (Nk +l+1) nodes.

Now if one of the special arcs is utilized in the optimal network

design to connect two nodes that are in S,

2k
routing cost > N
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If all nodes in S are connected with arcs from the original

Steiner tree problem,

routing costt < Nk+2 k > 1 and N > 4.

Suppose now there is a polynomial time heuristic h such that

for some 0< <1

R (M) < M- for all M > 0.

h

k-2
Since there exists a k > 3 such that k+2 > 1-c we have

R ,(M) < M k2 < M- for some k > 3.

h k+2

Then for our transformed Steiner problems with M < Nk+l +1, where N is

the number of nodes in the original Steiner problem, we have

R (M) < M k-2 < (Nk+l k-2
h k+2 k+2

tLet RC(N1,N2) represent the cost of routing between every pair of nodes

in the set (NlxN2). Then we can say total routing cost = RC(S,S) +

2RC(S,S') + RC(S',S') + 2RC(S, {T}) + 2RC(S',{T}), where the factors of

2 are a result of the symmetry of the required flows in the network.

Since all arcs from the original Steiner tree problem have routing cost

zero, RC(S,S) = 0. We can always utilize the special arcs connecting T

to the rest of the network so we have RC(S,S') < Nk + l , RC(S',S') < 2N ,

RC(S,{T}) < Nk and RC(S',{T}) < N. Therefore,

total routing cost < 2Nk+ l + 2N2 + 2Nk + 2N < 2Nk+ 2 k > 1

and N > 4.
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So for N > 4

(Nk+ l 1 ) k-2 < Nk-2

and R (M) < N k - 2 N > 4.

h

The above inequality implies that for N > 4 the Steiner tree

problem could be solved in polynomial time by first using our polynomial

time transformation to create an optimal network problem and then applying

the heuristic h to it. The existence of a subtree satisfying the con-

ditions of the Steiner problem could be verified by examining whether the

heuristic gave a routing cost solution that was less than N2 k

Since the finite numberof cases where N<4will not effect the poly-

nomial time bound of this procedure, the above inequality implies that the

Steiner tree problem could be solved in polynomial time.

Finding a heuristic h as defined above is equivalent to solving

an NP-complete problem, so we can say that the approximate optimal net-

work problem is also NP-complete. 0
We have seen thatall polynomial-time bounded heuristics most pro-

bably have a worst-case error ratio that grows almost linearly with the

size of the network, or at a faster rate. Next we see that for reasonable

heuristics the error ratio grows no faster than linearly with the size of

the network.

Before presenting this result we introduce some additional notation.

Let T be any spanning tree of a network and arbitrarily choose a node R

with degree one from T and designate it as the root node. A node f is the
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father of node n if f lies on the (unique) path in T between n and R

and if there is an arc in T that connects f and n. Node s is the son

of node f if f is its father. Let w. be the number of nodes which are

descendants of node i (i.e. nodes other than i whose path to R in T

must pass through i). 'Des(n) is the set of nodes which are descendants

of n.

Figure 5.8 contains an example illustrating these definitions.

Node I is the root node.

Figure 5.8 Example of a Tree with Root Node 1.

In this example node 2 is the father of node 5. w2=3 and w6=0.

Theorem 5.2 For optimal network problems whose routing costs satisfy

the triangle inequality, any heuristic h which always produces a feasible

solution will have a worst case error ratio

Rh (N) < 2N for all N,

where N is the number of nodes in the input network.
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Proof: We will show that the ratio

routing cost of any spanning tree network
routing cost of the complete network

is always bounded by 2N. The theorem immediately follows from this since

the above ratio is greater than or equal to Rh(N).

Let T be any spanning tree for an optimal network problem P.

Let C denote the complete network where every arc in P is included. Let

RC(T) represent the routing cost of network design T and N be the total

number of nodes in P.

Now we compute RC(T). Choose a root node R for it. Consider an

arc (i,j) belonging to T (Since we are dealing with undirected arcs, let

us assume that for any arc (i,j) in T, i is the father of j). Its con-

tribution to the total routing cost is S(i,j) = 2(w. +1)(N- (w. +l))c..

(that is, the number of origin-destination pairs whose travel path passes

through arc (i.j) multiplied by the routing cost of arc (i,j).

Therefore,

RC(T) = S(i,j).
(i ,j)cT

Consider now the routing cost for the complete network. Since

the triangle inequality holds and all required flows are one we have

RC(C) =2 c..
(i,j)EA 'I

where A is the set of arcs in the complete network.
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Let us define the following quantity

C.(i ,j) = (c jk + ck ) > 2(w. + )c..
kEDes(j)U{j} (j

(i ,j)ET

the inequality follows from the triangle inequality for the routing

and the symmetry of the routing costs (since the arcs are undirected).

Therefore,

2(w +l)(N - (w.+l))c.

2(w.+l)c..i i j
< N (i ,j)£T.

Combining these inequalities for all

L s(ij)
(i,j)ET < N

< C(i,j)
(i ,j)ET

and since S(i,j) = RC(T)
(i ,j)ET

RC(T) < N

C(i,j) -
(i ,j)ET

Next we show that

proof.

E C(i,j) < 2RC(C)
(i ,j)ET

We argue that each arc

expressions of the form C(i,j)

node t is a descendent of node

(i,j)sT we have

and thus complete the

cost term crt appears in at most two

(without loss of generality assume that

s). cst appears in the expression C(i,j)

where

costs

S ( i, j)
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only if

1) j equals s. Recall that since i must be the father

of j, i must be the father of s.

2) i equal s and t belongs to Des(j)U{j}.

The first situation can only happen once since node s must have a unique

father. The second situation can only occur once since if it happened

twice, for example, with C(i,jl) and C(i,j2 ), jl j j2' then between s and

t there would be two distinct paths in the tree T.

Since RC(C) 2 E c.. and the term c.. occurs in at most
(i,j)sA Ij

two terms of the form C(s,t) we have

L C(i,j) < 2RC(C) .
(i,j)T -

Therefore,

RC(T) < N

2RC(C) -

or

RC(T) < 2N. 

Notice that optimal network problem used in the proof of Theorem

5.1 had routing costs which satisfy the triangle inequality. Therefore

Theorem 5.1 also holds if we impose the triangle inequality for the rout-

ing costs of the optimal network problem.

With these two theorems we have demonstrated probable lower and

upper bounds on the worst-case error ratio for all reasonable polynomial-
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time heuristics for the optimal network problem with the triangle in-

equality for all routing costs.

The above results can also be extended to situations in which the

required flows rkL are not necessarily equal to one. Suppose that all

the rkk are positive integers such that

rk[ P
max - < N for some P > 3. Then

i,j,k,Q ri -

Theorem 5.1 is modified by changing the worst-case error ratio from

N1 to (NP - 1). Theorem 5.2 is modified by changing the upper bound

of 2N to 2NP + 1 . The proofs of such generalizations are straightforward

modifications of the ones given above and will not be given here.

5.4 A Heuristic for a Special Case of the Optimal Network Problem

In this section we consider a special case of the optimal network

problem where all construction costs d.. are one. The budget constraint
iJ

for this type of problem essentially limits the number of arcs allowed in

the optimal network design. Also we will again assume that the triangle

inequality holds for the routing costs. Johnson et al [ 63 ] have also

shown that this restricted problem is NP-complete.

With these new restrictions on the problem, the result of Theorem

5.2 is no longer valid. We will describe a polynomial-time heuristic h

whose worst-case error ratio

for all N.Rh ( N ) < 2
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Let STAR(i) be a star network consisting of all arcs connecting

node i to any other node in the network. COST(I) is the sum of all the

routing costs from node i to every other node in the network.

Our third heuristic can be defined as:

(H3) 1) Find i such that

COST(i) = MIN COST(J).
jeD

2) STAR(i) is the proposed network configuration.

Theorem 5.3 For optimal network problems satifying the triangle

inequality for routing costs and having all construction costs equal

to one

RH3(N) < 2 for all N.

Proof: We demonstrate this result by proving the stronger fact that

VH3 (P)
RC (C) < 2, for all P,

where VH3(P) is the value of the solution computed by heuristic H3 for

optimal network problem P and RC(C) is the routing cost (and solution cost)

of the complete network.

The routing cost for connecting node ji to all other nodes in

the network using the network STAR(i) is 2(N-2)C.. + COST(i).

So

VH3 (P) = N COST(i) + 2(N-2) C...H3~~~~~~~ 'J
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Since

COST(i) = E 2C..
ji i'

VH3(P) = (2N-2) COST(i)

The minimum cost of servicing the traffic between node j and

every other node in the network is COST(j), since the triange inequality

holds for routing costs. Therefore,

RC(C) = A COST(j)
j D

We chose i such that COST(i) < COST(j) for all j. This implies

RC(C) > N COST(i),

and

VH3 (P) 2N-2
RC(C) - <2. 0

Note that heuristic H3 has polynomially bounded computation time

so that it is possible to have a polynomial time approximation procedure

for a restricted class of network design problems whose worst-case error

ratio is bounded by a constant. Theorem 5.1 shows that it is unlikely

that such a heuristic exists for a broader class of network design problems.

We believe that combining some local improvement heuristic (per-

haps one which added arcs in a "greedy" manner) with H3 could lead to a

useful optimal network problem heuristic. It would be necessary to perform
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additional worst-cases analyses or some computational tests in order to

verify this conjecture.

Finally, the theoretical results of section 5.3 indicate that

for the general optimal network problem it is very hard to find a poly-

nominal time heuristic whose worst-case error ratio is very small. Com-

putational tests by Dionne and Florian [27] for some simple heuristics

have indicated that their relative margins of error are quite small. So

although most heuristic probably have a bad worst-case ratio, there may

be some heuristic whose average behavior is quite good. Future work in

this area should include some probabilistic analyses of optimal network

design heuristics.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This thesis has focused on developing and analyzing new techniques

for solving network design models and other mixed integer programming pro-

blems.

Chapter II provided an overview of the current literature on net-

work design models with particular emphasis on computational methods and

results.

Chapters III and IV describe new results and methodology for

enhancing the computational performance of Benders decomposition procedure.

Chapter III concerns the proper selection of cuts to use for Benders

decomposition. The theoretical results of sections 3.3 and 3.4 and the

computational results of section3.5 demonstrate the possibility of accelera-

ting Benders decomposition by using strong or pareto optimal cuts. In

section 3.3, Theorem 3.1, and its corollary, provide a mechanism for

accelerating Benders decomposition applied to any mixed integer program.

This approach is also applicable to a broader class of relaxation algorithms

for minimax problems such as Dantzig-Wolfe decomposition for the Lagrangian

dual of a nonlinear problem. The adaption of these techniques in section

3.4.2 to facility location models yields an efficient special purpose

algorithm.

An alternate approach to pareto optimality is to generate cuts that

are insured to dominate the standard cut, but with the possible loss of
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pareto optimality. Examples are the problem dependent type C cut of

section 3.4.1 for facility location models and the strong cut of section

3.4.4 for the fixed charge network design model.

Our computational experience in section 3.5.1 for the type C cuts

indicates that they perform well particularly as the fraction of medians

to nodes increases. For p-median problems (up to 33 nodes) Benders algo-

rithm equipped with our methodology finds solutions known to be within

10 per cent of optimality in ten or fewer iterations. The standard imple-

mentation usually provides no better solution within twenty-five iterations

and solutions 10 per cent farther from optimality within ten iterations.

We might remark that Benders algorithm probably is not competitive

with specialized algorithms for the simples class of facility location

problems which includes p-median and uncapacitated plant location problems.

Recently, several researchers, Cornuejols, Fisher and Nemhauser [21],

Bilde and Krarup [12], and Erlenkotter [31], (See Marsten [81], Garfinkel

et al. [41], and Schrage [112], for linear programming approaches) have

reported very powerful heuristic algorithms for these problems.t However,

their approaches do not easily extend to more elaborate facility location

models for which Benders algorithm and our modifications are still a viable

solution technique. Additional advantages of Benders decomposition are:

tin fact, the latter two algorithms are very similar to our algorithm for
generating pareto optimal cuts for facility locations problems. These
algorithms have a similar -neighborhood interpretation. One distinguish-
ing feature of our algorithm is that it solves problem (24) exactly,
whereas, these other procedures give approximate solutions to the dual of
the linear programming relaxation of problem (17).
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i) it guarantees convergence to an optimal solution, and consequently

ii) it has the advantage of aiding in sensitivity analysis. Geoffrion [47]

argues persuasively for this capability.

Our computational experience in section 3.5.2 for the strong cut

applied to the fixed charge network design problem again demonstrates the

superior performance of the strong cuts. On the average, the strong cut

performs about 15% better than the standard cut with respect to the measure

of best lower bound divided by best upper bound. For this class of problems,

it appears that Benders algorithm is competitive with other algorithms even

for "simple" uncapacitated design problems. The test problems that we are

solving are comparable in size to the largest problems that other researchers

have solved.

Problems apparently small in terms of number of nodes and arcs

give rise to very large mixed integer programming formulations. The mixed

integer programming formulation that we stated in section 3.4.4 for the

33 node-100 arc problem of our computational experiments contains appro-

ximately 100,000 continuous variables, 100 binary variables and 133,000

constraints.

Chapter IV discusses the relationship between the proper mathematical

formulation of mixed integer programming models such as network design pro-

blems and the computational performance of Benders decomposition. Section

4.3 presents a criteria for selecting among alternate model formulations

for use with Benders decomposition. Suggestions are also made for modify-

ing mdoel formulations in order to improve the performance of Benders pro-

cedure.
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Chapter V deals with heuristic techniques for solving network design

problems, in particular, the optimal network design problem. Worst-case

error bounds are derived in order to provide more insight into the behavior

of these procedures. Section 5.2 gives examples illustrating the large

error margins that can occur when using some network design heuristics.

Theorem 5.1 indicates that most reasonable network heuristics are capable

of producing very inaccurate solutions. Theorem 5.1 provides an upper bound

on the maximum error that can occur when using these sub-optimal procedures.

Finally, section 5.4 gives a procedure whose error margin for a particular

set of optimal network problems is always bounded by a constant.

There are a number of areas for future work concerning the results

described in this thesis.

For chapter III, the following areas could be fruitful:

1) Employ the methodology implied by Theorem 3.1 and its

corollary for Benders decomposition applied to other

mixed integer programming problems. This could include

solving directly the linear program (3.14) in order to

generate pareto optimal cuts. Alternatively, special algo-

rithms such as the one described in section 3.4.2 for facility

location models could be designed to generated pareto optimal

cuts.

2) All techniques for generating pareto optimal cuts require a

core point (relative interior point of a convex set) as an

input parameter. Find effective methods for generating these

relative interior points.
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3) Test the strategy of varying the core point used to

generate a cut. Some core points may be preferable to

others in accelerating Benders decomposition.

4) The computational tests for our Benders acceleration

techniques were limited by the lack of availability of

an efficient code for solving the integer programming

master problem. Combine our strong cut techniques with

an implementation of Benders decomposition that utilizes

a powerful integer programming code. More extensive com-

putational tests should then be performed.

5) Utilize our cut generating techniques with some variations

of Benders decomposition such as the -optimal version

described by Geoffrion and Graves [49] and the branch and

bound search procedure with embedded Benders cuts (see Balas

[4], Bricker [17], Guignard and Spielberg [55], Lemke and

Spielberg [74], Rardin and Unger [102] and Unger [12] for

a discussion of this technique).

6) Apply our acceleration technique to other relaxation algorithms

such as Dantzig-Wolfe decomposition for linear and non-linear

programming problems.

For chapter IV the following areas could be interesting:

7) Extended the results concerning preferred model formulations

by designing procedures for strengthening mixed integer models

in the context of Benders decomposition.
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8) For different model formulations, explore the computational

tradeoffs between the improved Benders cuts available and

the more complicated subproblems that must be solved.

The results of chapter V are initial efforts to analyze the behavior

of network design heuristics. The mathematical analysis of these procedures

should lead to a better understanding of them and to the design of more

powerful heuristics. The following areas could be useful areas of future

research:

9) Derive worst-case and average-case error bounds for other

network design heuristics (see [14,89,117,128] for various

heuristics).

10) Explore the relationship between these theoretical per-

formance measures and computational performance on real

network design problems.

11) Most of the work in heuristics analysis has been concerned

with error margins relative to the problem size (e.g. the

number of nodes in the problem network). Explore the effect

that other parameters such as the range of network costs

have on heuristic error margins. For examples, in section

5.3 we discussed how the maximum possible error increased as

a function of the range of required flows in the optimal net-

work problem.
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