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ABSTRACT
The key design challenges in the construction of a SAT-based
relational engine are described, and novel techniques are
proposed to address them. An efficient engine must have a
mechanism for specifying partial solutions, an effective sym-
metry detection and breaking scheme, and an economical
translation from relational to boolean logic. These desider-
ata are addressed with three new techniques: a symmetry
detection algorithm that works in the presence of partial
solutions, a sparse-matrix representation of relations, and
a compact representation of boolean formulas inspired by
boolean expression diagrams and reduced boolean circuits.
The presented techniques have been implemented and eval-
uated, with promising results.

Keywords
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1. INTRODUCTION
Many computational problems can be expressed declara-

tively as collections of constraints, and then solved using a
general purpose constraint-solving engine. A variety of such
engines have been developed, each tailored for a particular
language: resolution engines for Prolog, Simplex for linear
inequalities, SAT solvers for boolean formulas, etc.

This paper concerns the design of a relational engine: that
is, an engine for a constraint language that is a relational
logic, consisting of the quantifiers and logical connectives of
first-order logic along with the operators of the relational
algebra. The inclusion of the transitive closure operator
makes the language strictly more expressive than first-order
logic; the presence of the other operators (especially join)
is a convenience, often allowing constraints to be written
in a more succinct and natural fashion. Constraints are
interpreted over a finite universe of uninterpreted atoms,
which may nevertheless be bound to richer objects whose
properties the relational engine does not exploit.
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Relational logic is well-suited to problems involving graph-
like configurations, static or dynamic. In the static case, the
constraints describe a particular configuration. In the dy-
namic case, they describe a pair of configurations (if a single
transition is sought), or a sequence of configurations (for a
trace), which can be expressed as a higher-arity relation.
For example, the connectivity of a network over time can
be modeled as a ternary relation containing a tuple 〈t, h1,
h2〉 when host h1 is connected to host h2 at time t. Be-
cause relational logic includes both existential and universal
quantifiers, and negation, it is more flexible than traditional
logic programming languages such as Prolog.

Examples of problems that are suitable for solving with a
relational engine include:

· Design analysis. A software design expressed as a state
machine over structured states (expressed as collec-
tions of relations) can be checked, within finite bounds,
for preservation of invariants, for refinement against a
more abstract specification, and for linear temporal
properties over traces of bounded length, by present-
ing the engine with a constraint of the form S ∧ ¬P ,
whose solutions are counterexamples satisfying the de-
scription of the system (S) but violating the expected
property (P ).

· Code analysis. A procedure can be checked against
a declarative specification using the same method, by
translating its code to a relational constraint.

· Test case generation. Unit tests for modules imple-
menting intricate datatypes, such as red-black trees,
with complex representation invariants, can be gener-
ated by a relational engine from the invariants.

· Course scheduling. Given the prerequisite dependences,
overall requirements of a degree program, information
about which terms particular courses are offered in,
and a set of courses already taken, a relational engine
can plan a student’s course schedule.

· Network configuration. The problem of configuring a
network from a collection of devices to satisfy global
connectivity goals while meeting compatibility and ar-
chitectural constraints is easily expressed relationally.

· Component assembly and installation. The impera-
tive scripts typically used for installing and configur-
ing software components are fragile, because the writer
cannot anticipate the context in which the script exe-
cutes. A declarative approach in which the system is



assembled using a relational engine would allow scripts
to be presented as goals, and would accommodate con-
textual variations automatically.

We have established the feasibility of this approach for
design analysis [19], code analysis [36, 34] and test case gen-
eration [21] in earlier work. The prototype tool that we
describe in this paper has been applied to design analysis,
code analysis [7], course scheduling [38], and network con-
figuration; it is also a mean Sudoku player.

Our earlier work involved the development of the Alloy
modeling language [19] and its analyzer. Alloy was designed
for the analysis of software models, and although applica-
ble in these other contexts, it is not ideally suited to them.
Its principal defect in this regard is that it has no notion
of partial solution. The user provides only a constraint to
be solved, and if a partial solution is available which the
obtained solution should extend, it can be provided only
in the form of an additional constraint. Because the solver
must essentially rediscover the partial solution by solving
this constraint, this strategy does not scale well.

In order to overcome this limitation, we are developing
a new tool that, unlike Alloy, will be suitable as a generic
relational engine for a wide range of applications. This pa-
per describes the key challenges in its design, and proposes
novel ways in which to address them. A prototype embody-
ing these ideas has been constructed, and is evaluated on a
variety of examples. It outperforms Alloy dramatically on
problems involving partial solutions, and, due to improve-
ments over Alloy’s technology that we describe, also out-
performs Alloy even on the problems for which Alloy was
designed. It also performs as well as other logic engines
(such as Paradox [5] and MACE [25]) on some of their own
benchmark problems.

The underlying technology involves translation from rela-
tional to boolean logic, and the application of an off-the-shelf
SAT solver on the resulting boolean formula. The contribu-
tions of this paper are:

· A new symmetry-breaking scheme that works in the
presence of partial solutions; the inability of Alloy’s
scheme to accommodate partial solutions was a key
reason for not supporting them.

· A new sparse-matrix representation of relations that
is both simpler to implement and better performing
than the ‘atomization’ used in Alloy [11].

· A new scheme for detecting opportunities for shar-
ing in the constraint abstract syntax tree inspired by
boolean expression diagrams [2] and reduced boolean
circuits [1].

Another major difference between the new tool and Alloy
is its implementation as an API rather than as a standalone
application. Alloy can in fact be accessed as an API, but
the interface is string-based and awkward to use. The new
tool is designed to be a plugin component that can easily be
incorporated as a backend of another tool. These considera-
tions, however, while crucial motivations of the project, are
not the topic of the present paper.

2. RELATED WORK
A variety of tools have been developed for finding finite

models of first order logic (FOL) formulas [5, 13, 14, 18,

25, 33, 40, 39]. Several of these [18, 33, 40, 39] implement
specialized search algorithms for exploring the space of pos-
sible interpretations of a formula. The rest [5, 13, 14, 25] are
essentially compilers. Given a FOL formula and a finite uni-
verse of uninterpreted atoms, they construct an equivalent
propositional satisfiability problem and delegate the task of
solving it to a SAT solver.

Most research on model finding has focused on producing
high-performance tools for group-theoretic investigations.
LDPP [13], MACE [25], FALCON [39], and SEM [40] have
all been used to solve open problems in abstract algebra.
Formulation of group-theoretic problems requires only ba-
sic FOL constructs. SEM and FINDER, for example, work
on a quantifier-free many-sorted logic of uninterpreted func-
tions. MACE and Paradox [5] support quantifiers, but none
of these tools handle relations or transitive closure, which
are essential for analyzing properties of graph-like configu-
rations (e.g. networks, call graphs, module dependencies).

Nitpick [18] was the first model finder to handle binary
relations and transitive closure in addition to quantifier-free
FOL. This made it an attractive choice for analyzing small
problems that involve structured state, such as a high-level
description of the paragraph-style mechanism in Microsoft
Word [17] or the first version of the IPv6 mobile host proto-
col [28]. The usefulness of Nitpick was, however, limited by
its poor scalability and lack of support for quantifiers and
higher-arity relations.

The Alloy Analyzer [14] addressed both the scalability
and expressiveness limitations of Nitpick. It has been ap-
plied to a wide variety of problems, including the design of
an intentional naming scheme [20], the safety properties of
the beam scheduler for a proton therapy machine [8], code
analysis [36, 34], test-case generation [21], and network con-
figuration [27]. While the Alloy language and its analyzer
are good lightweight formal method [15] tools, they are not
well suited to problems with partially known solutions, such
as the network configuration problem described in [27]. Be-
cause the known aspects of a network (e.g. the exact num-
ber of routers, the protocols supported by particular routers,
etc.) can only be expressed as constraints in Alloy, the Alloy
Analyzer must re-discover the known information by sat-
isfying these constraints, in addition to solving the actual
configuration problem.

The variant of FOL presented in this paper is a super-
set of the Alloy language (Section 3). Unlike Alloy, our
logic provides a mechanism for specifying partial solutions.
Its accompanying model finder, Kodkod, takes advantage
of known information, scaling much better than the Alloy
Analyzer in the presence of partial solutions (Section 5).
Kodkod outperforms the Alloy Analyzer even on the prob-
lems without partial solutions, due to the new translation
to propositional satisfiability (Section 4.2) based on sparse
matrices and Compact Boolean Circuits.

Compact Boolean Circuits, described in Section 4.2.3, are
a hybrid between Reduced Boolean Circuits (RBCs) [1] and
Boolean Expression Diagrams (BEDs) [2]. Like RBCs, CBCs
satisfy Properties 1-2, use edge signs to encode negation, and
restrict variable vertices to the leaves of the graph. Like
BEDs, they use a more extensive set of rules than RBCs to
maximize subformula sharing. All three circuit representa-
tions can be straightforwardly converted to one another.



problem := univDecl relDecl∗ formula

univDecl := { atom[, atom]∗ }
relDecl := relVar :arity [constant, constant]
varDecl := quantVar : expr

constant := {tuple∗}
tuple := 〈atom[, atom]∗〉

arity := 1 | 2 | 3 | 4 | . . .
atom := identifier
relVar := identifier
quantVar := identifier

formula :=
expr in expr subset
| some expr non-empty
| one expr singleton
| no expr empty
| not formula negation
| formula and formula conjunction
| formula or formula disjunction
| all varDecl | formula universal
| some varDecl | formula existential

expr :=
expr + expr union
| expr & expr intersection
| expr - expr difference
| expr . expr join
| expr –> expr product
|˜expr transpose
|ˆexpr closure
| {varDecl | formula} comprehension
| relVar relation
| quantVar quantified

variable

E ` t = 〈a1, . . . , ak〉
E ` arity(t) = k

E ` arity(t1) = k,
· · ·

E ` arity(tn) = k
E ` arity({t1 . . . , tn}) = k

k > 0
E ` arity({}) = k

E ` arity(cL) = k,
E ` arity(cU ) = k,
E ` r :k [cL, cU ]
E ` arity(r) = k

E ` arity(p) = 1,
E ` v : p

E ` arity(v) = 1

E ` arity(p) = a,
E ` arity(q) = a

E ` p in q,
E ` arity(p + q) = a,
E ` arity(p - q) = a,
E ` arity(p & q) = a

E ` arity(p) = a,
E ` arity(q) = b,

a + b 〉 2
E ` arity(p . q) = a + b - 2

E ` arity(p) = a,
E ` arity(q) = b

E ` arity(p –> q) = a + b

E ` arity(p) = 2
E ` arity(˜expr) = 2,
E ` arity(ˆexpr) = 2

P : problem → binding → boolean
R : relDecl → binding → boolean
M : formula → binding → boolean
X : expr → binding → constant
binding : (quantVar ∪ relVar) → constant

P [[A d1 ... dn F]] b =
R[[d1]]b ∧ ... ∧ R[[dn]]b ∧ M[[F]]b

R [[r : [cL, cU ]]] b = cL ⊆ b(r) ⊆ cU

M [[p in q]] b = X[[p]]b ⊆ X[[q]]b
M [[some p]] b = X[[p]]b ⊃ ∅
M [[one p]] b = |X[[p]]b| = 1
M [[no p]] b = X[[p]]b ⊆ ∅
M [[not F]] b = ¬ M[[F]]b
M [[F and G]] b = M[[F]]b ∧ M[[G]]b
M [[F or G]] b = M[[F]]b ∨ M[[G]]b
M [[all v: p | F]] b =

V
(M[[F]](b⊕v7→X[[p]]b))

M [[some v: p | F]] b =
W

(M[[F]](b⊕v7→X[[p]]b))

X [[p + q]] b = X[[p]]b ∪ X[[q]]b
X [[p & q]] b = X[[p]]b ∩ X[[q]]b
X [[p - q]] b = X[[p]]b \ X[[q]]b
X [[p . q]] b = {〈p1,..., pn−1, q2,..., qm〉 |
〈p1,..., pn〉 ∈ X[[p]]b ∧ 〈q1,..., qm〉 ∈ X[[q]]b
∧ pn = q1}

X [[p –> q]] b = {〈p1,..., pn, q1,..., qm〉 |
〈p1,..., pn〉 ∈ X[[p]]b ∧ 〈q1,..., qm〉 ∈ X[[q]]b}

X [[˜p]] b = {〈p2, p1〉 | 〈p1, p2〉 ∈ X[[p]]b}
X [[ˆp]] b = {〈x, y〉 | ∃ p1,..., pn |
〈x, p1〉, 〈p1, p2〉,..., 〈pn, y〉 ∈ X[[p]]b}

X [[{v: p | F}]] b = {〈x〉 : (X[[p]]b) |
M[[F]](b⊕(v7→x))}

X [[r]] b = b(r)
X [[v]] b = b(v)

(a) (b) (c)

Figure 1: Abstract syntax, well-formedness rules, and semantics of the logic

3. MODEL FINDING BASICS
A formula in relational logic is a sentence over an alphabet

of relational variables. A model, or an instance, of a formula
is a binding of the formula’s free variables to relational con-
stants, which makes the formula true. Relational constants
are sets of tuples drawn from a universe of uninterpreted
atoms. An engine that searches for models of a formula in
a finite universe is called a finite model finder or, simply, a
model finder.

Figure 1 defines the abstract syntax, well-formedness rules,
and semantics of the relational logic used in the rest of this
paper. The definition closely corresponds to that of the Al-
loy language [10, 11], with its support for relations of arbi-
trary arity, treatment of sets as unary relations, and repre-
sentation of scalars as singleton sets. Unlike Alloy, however,
the logic in Figure 1a provides a handle to the universe of
discourse for a given formula. This is the crux of the mech-
anism for specifying partial solutions.

3.1 Abstract Syntax
A problem in our logic (Figure 1a) is a universe declara-

tion, a set of relation declarations, and a formula in which

the declared relations appear as free variables. Each rela-
tion declaration specifies the arity of a relation variable and
bounds on its value. The lower bound contains the tuples
which the variable’s value must include in an instance of the
formula. The upper bound holds the tuples which the vari-
able’s value may contain in an instance. The tuples of all
constants are drawn from the problem’s universe.

For example, the pigeonhole principle says that n pigeons
cannot be placed into n− 1 holes so that each pigeons has a
hole to itself. Taking n to be three, we can state the principle
as a model finding problem using the following formulation:1

{P1, P2, P3, H1, H2}
Pigeon :1 [{〈P1〉〈P2〉〈P3〉}, {〈P1〉〈P2〉〈P3〉}]
Hole :1 [{〈H1〉〈H2〉}, {〈H1〉〈H2〉}]
nest :2 [{}, {〈P1, H1〉〈P1, H2〉〈P2, H1〉〈P2, H2〉〈P3, H1〉〈P3, H2〉}]

(all p : Pigeon | one p.nest) and
(all h : Hole | one nest.h or no nest.h)

1The user of our tool actually constructs problems through an
API, which provides convenience methods for declaring bounds
on relational variables.



The first line describes a universe of five uninterpreted
atoms. We arbitrarily chose the first three of them to rep-
resent pigeons and the last two to represent holes. Be-
cause formulas cannot contain constants, a relational vari-
able v :k [C, C] with the same upper and lower bound is de-
clared for each k-arity constant C that needs to be accessed
in a problem’s formula. The variables Pigeon and Hole, for ex-
ample, serve as handles to the unary constants {〈P1〉〈P2〉〈P3〉}
and {〈H1〉〈H2〉}, which represent the sets of all pigeons and
holes respectively. The variable nest ⊆ Pigeon×Hole encodes
the placement of pigeons into holes. Its value is constrained
to be an injection by the formulas (all p : Pigeon | one p.nest)

and (all h : Hole | one nest.h or no nest.h).
The syntactic productions (Figure 1a) other than the uni-

verse and relation declarations define a standard relational
logic with transitive closure, first order quantifiers, and con-
nectives. Expressions, formulas, and declarations are con-
sidered well-formed if they adhere to the arity rules in Figure
1b. The arity of the empty set constant, {}, is polymorphic,
making it a valid bound in the context of any declaration.

3.2 Semantics
The meaning of a problem is determined by recursive ap-

plication of four meaning functions: P , R, M and X. The
functions R and M evaluate relation declarations and formu-
las with respect to a binding of variables to constants. The
function P deems a problem true with respect to a given
binding if and only if its declarations and formula are true
under that binding. The function X interprets expressions
as sets of tuples. We take the meanings of atoms, tuples,
and constants to be their standard set-theoretic interpreta-
tions. That is, the meaning of an atom is its name, the
meaning of a tuple is a sequence of atoms, and the meaning
of a constant is a set of tuples.

4. ANALYSIS
The abstract syntax presented in the previous section

should be thought of as describing a directed acyclic graph
rather than a tree. The user of our model finder constructs
the syntactic graph of a problem’s formula via API calls
instead of creating a string that is parsed into an abstract
syntax tree. The analysis of a well-formed problem graph
involves five steps.

1. Two simple analyses are performed on the problem’s
formula: detection of syntactically shared subgraphs
and detection of syntactic patterns that indicate a re-
lational variable represents an acyclic graph or a total
order.

2. The problem’s relation declarations are analyzed to
find atom symmetry classes (Section 4.1).2

3. Using the information from Step 1, the problem is
translated into a Compact Boolean Circuit (Section
4.2). The circuit is constructed in such a way that it is
satisfiable if and only if the problem itself is satisfiable.

4. The circuit is conjoined with a lex-leader symmetry
breaking predicate [6], computed using the information
from Step 2, and translated to conjunctive normal form
(Section 4.3).

2If the bounds on a total order or an acyclic relation found in Step
1 range over a symmetry class, they are minimized according to
the rules in [30] before proceeding to Step 3.

5. The CNF is handed to a SAT solver. If it is satisfi-
able, the CNF model is translated into a model of the
original problem, using the mapping from relational to
boolean variables generated in Step 3.

Step 1 of the analysis performs a depth-first search for the
shared subgraphs. This information is used to ensure that
the shared components are visited only once in the later
phases of the analysis. The second analysis done in Step 1
is a simple depth-first pattern recognizer. Steps 2 through
4 are the focus of the remainder of this section. Step 5 is
trivial.

4.1 Symmetry Detection Without Types
Many problems exhibit symmetries. For example, all Mars

bars in a vending machine are interchangeable, as are all the
white pawns in a game of chess. Such symmetries among a
problem’s atoms give rise to isomorphisms among its mod-
els [30]. Two models are considered isomorphic if one can
be obtained from the other by a relabeling of atoms. More
formally, we define the symmetries of a problem and the
isomorphisms they induce as follows.

Definition 1. Let A be a universe, D a set of declarations
over A, and F a formula over D. A permutation l : A → A
is a symmetry of the problem P = (A, D, F ) if and only if
l(M) is a model of P , written l(M) |= P , for all M |= P .
The models M and l(M) are said to be isomorphic.

The set of symmetries of P , denoted by Sym(P ), is an
equivalence relation on the bindings B that map the vari-
ables declared in D to sets of tuples drawn from A. Two
bindings bx, by ∈ B are in the same equivalence class if
bx = l(by) for some l ∈ Sym(P ). Each l ∈ Sym(P ) maps
bindings that are models of P to other models of P and
bindings that do not satisfy P to other non-models. It is
therefore sufficient to test one binding in each equivalence
class induced by Sym(P ) to find a model of P . This insight
is key to efficient model finding. In most cases, elimination
of isomorphic models, or symmetry breaking, speeds up the
search by orders of magnitude [40, 39, 31, 29, 5]. Many
problems, such as the pigeonhole problem, are intractable
without symmetry breaking [6].

There are two ways in which a model finder can exploit
symmetry information. One is to use a specialized search
algorithm that examines as few members of the same equiv-
alence class as possible. The Nitpick [18], FALCON [39],
and SEM [40] model finders use this approach. Another is
to translate the model finding problem P to conjunctive nor-
mal form CNF(P ), conjoin the translation with a symmetry
breaking predicate SBP(P ) that is true of at least one binding
per symmetry class [6], and solve the resulting propositional
formula with an off-the-shelf SAT solver. Although larger
than CNF(P ), the formula CNF(P ) ∧ SBP(P ) is solved or-
ders of magnitude faster because it is more constrained [30].
The Alloy Analyzer [31] and the Paradox [5] model finder
use the predicate approach to symmetry breaking.

To use either approach, however, a model finder must first
detect the symmetries of a problem. In the case of a stan-
dard typed logic such as the Alloy language or SEM’s logic,
symmetry detection in a universe of uninterpreted atoms
is straightforward: Sym(P ) is the set of all permutations
that map an atom of A to itself or to another atom of the
same type. Atoms of the same type are interchangeable



because neither logic provides a means of referring to indi-
vidual atoms. Our logic does (Figure 3.1), so even if it were
typed, atoms of the same type would not necessarily be in-
terchangeable. Below is a toy specification of a traffic lights
system showing a case where the natural typing of atoms
does not partition A into equivalence classes.

{N, E, G, Y, R}
Green :1 [{〈G〉}, {〈G〉}]
Light :1 [{〈N〉〈E〉}, {〈N〉〈E〉}]
display :2 [{}, {〈N, G〉〈N, Y〉〈N, R〉〈E, G〉〈E, Y〉〈E, R〉}]

(all light: Light | one light.display) and
(lone Light.display & Green)

The traffic-system universe consists of five atoms that are
conceptually partitioned into two ‘types’: the atoms repre-
senting the stop lights at an intersection (north-south and
east-west) and the atoms representing the colors red, green,
and yellow. The formula constrains each light to display a
color and requires that at most one of the displayed colors
be Green. The stop-light atoms form an equivalence class,
but the color atoms do not. In particular, only Y and R are
interchangeable. To see why, consider the following model
of the problem:

b = {Green7→{〈G〉}, Light7→{〈N〉〈E〉}, display 7→{〈N, Y〉〈E, G〉}}.

Applying the permutations l1 = (N E)(Y R) and l2 = (G Y R)3

to b, we get

l1(b) ={Green7→{〈G〉}, Light 7→{〈E〉〈N〉}, display7→{〈E, R〉〈N, G〉}},
l2(b) ={Green7→{〈Y〉}, Light 7→{〈N〉〈E〉}, display7→{〈N, R〉〈E, Y〉}}.

The binding l1(b) is a model of the problem, but l2(b) is
not because it violates the constraint {〈G〉} ⊆ Green ⊆ {〈G〉}
imposed by the declaration of Green.

The traffic lights example reveals two important proper-
ties of declarations and formulas. First, a permutation is
a symmetry of a set of declarations D if it maps the con-
stants occurring in D to themselves (Lemma 1). The per-
mutation l1, for example, is a symmetry of the traffic-lights
declarations (i.e. l1(b) |= D for all b |= D). Second, any
permutation is a symmetry of a formula (Lemma 2). The
permutation l2(b) is a model of the traffic-lights formula even
though it is not a model of the entire problem.

Definition 2. A permutation l : A → A fixes the atom
a ∈ A if l(a) = a. Similarly, l fixes a subset s of A if s =
l(s) = {l(a) | a ∈ s}, and l fixes the set of k-tuples c drawn
from A if c = l(c) = {〈l(e1), . . . , l(ek)〉 | 〈e1, . . . , ek〉 ∈ c}.

Lemma 1. Let D = {r1 :k1 [c1, c2], . . . , rm :km [c2m−1, c2m]}
be a set of declarations over A and l : A → A a permutation.
If l fixes c1, . . . , c2m and M |= D, then l(M) |= D.

Proof (by contradiction). Suppose that there is some
model M such that M |= D but l(M) 6|= D. Then, there
must be some rj ∈ r1, . . . , rm such that c2j−1 6⊆ l(M)(rj) or
l(M)(rj) 6⊆ c2j . Since M |= D, M must map rj to Cj such
that c2j−1 ⊆ Cj ⊆ c2j . Hence, Cj = c2j−1 ∪ x where x =
Cj − c2j−1. This gives us l(M)(rj) = l(Cj) = l(c2j−1 ∪ x) =
l(c2j−1) ∪ l(x) = c2j−1 ∪ l(x), which implies that c2j−1 ⊆
3Recall that cycle notation for permutations [3] indicates that
each element in a pair of parenthesis is mapped to the one fol-
lowing it, with the last element being mapped to the first. The
elements that are fixed under a permutation are not mentioned.

l(M)(rj). But, since l maps subsets of c2j to subsets of c2j ,
we also have (Cj ⊆ c2j) ⇒ (l(Cj) ⊆ c2j) ⇒ (l(M)(rj) ⊆
c2j), a contradiction.

Lemma 2. If l : A → A is a permutation of A and M |=
F , then l(M) |= F .

Proof. By definition (Figure 3.1), F contains no direct
references to individual atoms, tuples, or sets of tuples.
Therefore, the meaning of F depends solely on the mean-
ings of the relational variables mapped by M . Since the
application of l to the bindings in M gives an isomorphic
set of bindings, l(M) |= F .

With a bit of extra work, we can turn the observations
about the symmetries of declarations and formulas into a
simple criterion for deciding whether a permutation l is a
symmetry of a problem. Namely, l ∈ Sym(P ) for all P =
(A, D, F ) if and only if l maps each constant that occurs in
D to itself (Thm. 1).

Theorem 1 (Detection Criterion). Let A be the uni-
verse of discourse and D = {r1 :k1 [c1, c2], r2 :k2 [c3, c4], . . . ,
rm :km [c2m−1, c2m]} a set of declarations over A. The per-
mutation l : A → A is a symmetry for all problems P and
formulas F such that P = (A, D, F) if and only if l fixes
c1, c2, . . . , c2m.

Proof. According to the semantics of P , a binding M
is a model of P iff M |= D and M |= F . By Def. 1,
l ∈ Sym(P ) iff l(M) |= P . Lemmas 1 and 2 therefore prove
one half of the theorem: if l fixes c1, . . . , c2m, then l(M) |= D
and l(M) |= F for all models M of P .

We prove by contradiction that l ∈ Sym(P ) for all P =
(A, D, F ) implies that l fixes c1, . . . , c2m. Suppose l is a
symmetry for all P defined in terms of D, and there is a
c ∈ {c1, . . . , c2m} such that l(c) 6= c. Clearly, c is non-
empty and there is an ri such that ri :ki [c, c2i] ∈ D or
ri :ki [c2i−1, c] ∈ D or ri :ki [c, c] ∈ D. Let F ∗ be the
formula “some ri”, P ∗ ∈ P the problem (A, D, F ∗), and M
the binding that maps ri to c and all the other variables to
the empty set. Since M(ri) = c, l(M(ri)) = l(c). Given that
l is a permutation, l(c) 6= c ⇒ c 6⊆ l(M(ri)) ∧ l(M(ri)) 6⊆ c.
Hence, M |= P ∗ and l(M) 6|= P ∗, a contradiction.

The problem of symmetry detection as stated in Thm.
1 is equivalent to that of testing graph isomorphism. In
particular, testing if l ∈ Sym(P ) is the same as testing
if l is a symmetry, or automorphism, of the graphs G =
(V, E) that correspond to the constants used in D. The
procedure in Figure 2 demonstrates that any constant can
be turned into a graph. The illustration shows the result
of applying constant-to-graph to the ternary constant
{〈G, Y, R〉〈R, Y, G〉}.

There is no known polynomial time algorithm for decid-
ing if two graphs are isomorphic. The best known bound
on testing if an n-vertex graph G is isomorphic to l(G) (i.e.
if l is an automorphism of G) is exp(O(

√
n log n)) [4]. In

practice, however, systems like Nauty [26] can find graph
automorphisms very efficiently. Still, the cost of converting
constants to graphs and then running Nauty on them can
easily become prohibitive. For example, the graph represen-
tation of a 4-arity relation over a domain of size 10 (which
we have encountered in practice) consists of about 40,000
nodes and 70,000 edges.



constant-to-graph(A : universe, C : set of tuples)

1 V ← A
2 E ← {}
3 k ← arity(C)
4 for all 〈e1, e2, . . . , ek〉 ∈ C do
5 v ← vertex[1 . . k] � an array of k new vertices
6 for all 1 ≤ i ≤ k do
7 V ← V ∪ {v[i]}
8 E ← E ∪ {edge(v[i], ei)}
9 for all 1 ≤ i < k do

10 E ← E ∪ {edge(v[i], v[i + 1])}
11 return (V, E)

G Y R

Figure 2: Converting a Set of Tuples to a Graph

Instead of using graph algorithms to partition a prob-
lem’s universe into the optimal (coarsest) set of equivalence
classes, we use the algorithm in Figure 3 to efficiently pro-
duce a sound, locally optimal partitioning. Because the con-
stants in most declarations are not arbitrary graphs, our lo-
cal optimality condition yields the coarsest partitioning for
many problems (e.g. all problems in Section 5). In par-
ticular, most constants are expressible as unions of prod-
ucts of ‘types’ that have zero or more ‘distinguished’, non-
symmetric atoms. For example, the bounds on the variables
in the traffic lights problem can be expressed as Green =
T{G}, Light = Tlight, and display ⊆ Tlight×T{R,Y}∪Tlight×T{G},
where the ‘types’ are Tlight = {N, E} with no distinguished
atoms and Tcolor = T{R,Y} ∪ T{G} = {G, Y, R} with the distin-
guished atom G. Our algorithm essentially infers a problem’s
conceptual types while isolating the non-symmetric atoms.
Hence, the partitions inferred for the traffic lights problem
are {N, E}, {R, Y}, and {G}.

The procedure detect-symmetries works on the com-
pact representation of constants described in Section 4.2.1.
It takes as arguments a universe A and a set of declara-
tions D over that universe, and returns the coarsest base
partitioning (Def. 3) of A with respect to the constants in
D. The correctness of detect-symmetries algorithm fol-
lows easily by induction from Theorems 2 and 3. The latter
tells us that each call to refine-partitions generates the
coarsest base partitioning of A with respect to the visited
constants, and the former that a base partitioning is sound.
It is also not difficult to see that the worst case running time
of the algorithm is polynomial in the total number of nodes
required to represent the constants in D as graphs.

Definition 3. Let A be the universe of discourse, C a con-
stant (set of tuples) over A, and S = {S1, S2, . . . , Sn} a set
of sets that partition A. We say that S is a base partitioning
of A with respect to C if C can be expressed as a union of
products of elements in S ∪ {∅}, i.e.:

let k = arity(C) in ∃x ≥ 1 | ∃s1, . . . , sxk ∈ S ∪ {∅} |
C =

Sx−1
j=0 (sjk+1 × . . .× sjk+k).

Theorem 2 (Soundness). Let D = {r1 :k1 [c1, c2], . . . ,
rm :km [c2m−1, c2m]} be a set of declarations over A and

detect-symmetries(A : universe, D : declarations)

1 S ← {A} � S is the set of set A
2 for all r :k [cL, cU ] ∈ D do
3 S ← refine-partitions(cL, S)
4 S ← refine-partitions(cU , S)
5 return S

refine-partitions(C : set of tuples, S : set of sets)

6 S′ ← {}
7 k ← arity(C)
8 Cfirst ← π1(C) � projects over the 1st column of C
9 for all s ∈ S do

10 if s ⊆ Cfirst or s ∩ Cfirst = ∅
11 then S′ ← S′ ∪ {s}
12 else S′ ← S′∪{s ∩ Cfirst}∪{s−Cfirst} � splits s
13 if k > 1 then
14 Crest ← π2,...,k(C)
15 Pfirst ← {s : S′ | s ∩ Cfirst 6= ∅} � gets partitions of Cfirst

16 Prest ← {}
17 for all p ∈ Pfirst do
18 ppart ← {}
19 S′ ← S′ − p
20 while p 6= ∅ do
21 a← choose(p) � selects an atom of p
22 arest ← π2,...,k(({〈a〉} × Crest ) ∩ C)
23 aset ← {a′ :p | arest = π2,...,k(({〈a′〉} × Crest ) ∩ C)}
24 ppart ← ppart ∪ {aset}
25 Prest ← Prest ∪ {arest}
26 p ← p− aset

27 S′ ← S′ ∪ ppart

28 for all p ∈ Prest do
29 S′ ← refine-partitions(p, S′)
30 return S′

Figure 3: Symmetry Detection Algorithm

S = {S1, S2, . . . , Sn} a base partitioning of A with respect to
the constants c1, . . . , c2m. If a permutation l : A → A fixes
all Si ∈ S, then l ∈ Sym(P ) for all problems P and formulas
F such that P = (A, D, F).

Proof. Because l fixes all Si ∈ S, it maps any cross
product of the sets in S or a union of such cross products to
itself. Together with the fact that S is a base partitioning
with respect to the constants in D, this gives us l(ci) = ci

for all 1 ≤ i ≤ 2m. Hence, by Thm. 1, l ∈ Sym(P ).

Theorem 3 (Local Optimality). Let A be the uni-
verse of discourse, C a constant (set of tuples) over A, and
S = {S1, S2, . . . Sn} a set of sets that partition A. Apply-
ing refine-partitions to C and S will subdivide S into the
coarsest S′ = {S′

1, S
′
2, . . . , S

′
m} that is a base partitioning of

A with respect to C.

Proof. We proceed by induction on the arity of C.
Base case. Let arity(C) = 1. If C = ∅ or C is partitioned

by a subset of S, then the condition on line 10 is always true,
so S′ = S is returned. Suppose that C is neither empty
nor partitioned by a subset of S. Then, all s ∈ S such
that s ∩ Cfirst 6= ∅ and s 6⊆ Cfirst are split into two pieces,
s ∩ Cfirst and s − Cfirst (line 12). The remaining elements
of S are passed into S′ unchanged. When the loop exists,
C is partitioned by a subset s′ of S′, and merging any of
the split pieces back together would remove a non-empty
element from s′. Hence, S′ is the coarsest base partitioning
of A with respect to C that can be derived from S.

Inductive case. Suppose that the theorem holds for all
constants of arity k. Let arity(C) = k + 1. If C = ∅, we are



done. So, assume that C 6= ∅. By the same reasoning used
in the proof of the base case, we conclude that lines 9-12
subdivide S into the minimal base partitioning with respect
to the first column of C. On line 15, we obtain Pfirst , the
subset of S′ that partitions Cfirst . Lines 17-27 process each
p ∈ Pfirst as follows. If all atoms in p are mapped to the
same set of tuples of arity k − 1, arest , by C, then aset = p,
and p makes it to S′ unchanged. If not, p is split into q
partitions such that all atoms in a new partition have the
same image under C.

Lemma 3. Let p be an element of Pfirst as defined on line
15. Let p1, . . . , pq be partitions of p such that the atoms in
each pi have the same image under C. No partitioning of p
coarser than p1, . . . , pq can exist in a base partitioning of A
with respect to C that is derived from S.

Proof (by contradiction). Suppose that there are two
pieces of p, pv and pw, that can be merged into pz to form
a coarser partitioning of p. Then, there are two cases to
consider: (1) pz is partitioned during one of the recursive
calls to refine-partitions (line 29), and (2) pz is not par-
titioned again. The first case trivially leads to a contra-
diction. The second case implies that there must be a set
X of arity k − 1 such that pz × X is a subset of C. But,
pz ×X = (pv ∪ pw)×X = pv ×X ∪ pv ×X, contradicting
the assumption that pv and pq have different images under
C.

By the inductive hypothesis, the recursive call on line 29
will subdivide S′ into the minimal number of partitions nec-
essary to turn it into a base partitioning with respect to the
images (Prest) of the new partitions of Cfirst under C. This,
together with Lemma 3, proves the theorem.

4.2 Translation to Boolean Logic
As shown in [14], a relational formula can be translated to

a boolean formula that has a model exactly when the original
formula has a model in a given universe of discourse. Using
a similar approach, we translate a problem P = (A, D, F )
to a Compact Boolean Circuit (Section 4.2.3) that has a
model exactly when P does. Here is how. Given a decla-
ration r :k [cL, cU ] over a universe A = {a0, . . . , an−1}, we
represent r as a k-dimensional boolean matrix m such that

m[i1, . . . , ik] =

8<:true ⇔ 〈ai1 , . . . , aik 〉 ∈ cL

freshVar() ⇔ 〈ai1 , . . . , aik 〉 ∈ cU−cL

false otherwise,

where i1, . . . , ik ∈ [0 . . n) and freshVar() returns a fresh
boolean variable. Expressions are then translated using ma-
trix operations, and formulas become constraints over ma-
trix entries.

Translation rules are given in Figure 4. The rules use
flat indices to access matrix entries. The flat index x for a
vector index [i1, . . . , ik] is given by

Pk
j=1(ij |A|

k−j). Both

x and [i1, . . . , ik] encode the structure of the k-tuple t =
〈ai1 , . . . , aik 〉 drawn from the universe A = {a0, . . . , an−1}
that indexes its atoms starting at 0. The presence of t in a
relation r is therefore designated by the boolean formula at
the index x (or [i1, . . . , ik]) of the matrix that represents r.
In fact, x is exactly the integer representation of t described
below.

4.2.1 Representation of Constants
A direct encoding of constants as sets of sequences of

atoms would be expensive. For example, a direct represen-
tation of a k-arity constant over a domain of size d would
take up kdk space. We avoid this cost in practice by encod-
ing tuples as integers and, having done that, representing
constants as balanced interval trees [12].

The encoding reduces the space needed to represent a k-
arity constant by a factor of k, if the universe of discourse
is given as a random sequence of atoms or if the constant
is an arbitrary graph. As noted in Section 4.1, however,
universe declarations usually group atoms according to their
conceptual types and constants are rarely arbitrary graphs.
Under these conditions, our encoding actually reduces the
space requirement from kdk to d in most cases.

The key idea behind the encoding is the following: a k-
tuple drawn from a universe of size n can be uniquely rep-
resented as a k-digit number in base n by concatenating the
indices of the tuple’s atoms within the universe. For exam-
ple, consider the universe from the traffic-lights problem, {N,
E, G, Y, R}. If we index the atoms N through R starting at 0,
the tuple 〈E, G〉 becomes the number 12 in base 5. Similarly,
the tuple 〈E, Y〉 becomes 13, and so on.

If the universe of discourse groups its atoms according to
their conceptual types, consecutive tuples such as 〈E, G〉 and
〈E, Y〉 yield consecutive numbers in base n. Since base conver-
sion preserves sequencing, we can convert all tuple represen-
tations to base 10 and encode constants as balanced interval
trees of decimal numbers. The 2×2×3-sized constant bound-
ing the display variable in the traffic-lights problem thus be-
comes a tree with two nodes: [0, 4], representing the tuples
{〈N, G〉〈N, Y〉〈N, R〉}, and [10, 14] representing {〈E, G〉〈E, Y〉〈E, R〉}.

4.2.2 Representation of Matrices
A key difference between our translation and the one pre-

sented in [14] is that the latter is based on types. The Alloy
Analyzer (AA), which implements the translation rules from
[14], encodes a k-arity relation r of type T1 → . . . → Tk as
a boolean matrix with dimensions |T1| × . . . × |Tk|. Since
operands of many matrix operators must have particular
dimensions, the operands of their corresponding relational
operators are forced to have specific types. For example, in
a world with three women and three men, AA’s translator
would reject the perfectly reasonable attempt to form the
grandmother relation by joining the relation mother: Person →
Woman with itself, because a 6× 3 matrix cannot be multi-
plied by itself. There are two ways to remedy this problem:
(1) force the type of mother up to Person → Person, doubling
the size of its boolean representation, or (2) atomize mother

into two pieces, motherw : Woman → Woman and motherm :

Man → Woman, and split the expression mother.mother into
motherw.motherw + motherm.motherw before handing it to the
translator [11]. AA takes the latter approach which, while
elegant and efficient in theory, has not worked well in prac-
tice.

We avoid the problems of a type-based translation by
encoding all k-arity relations over A as |A|1 × . . . × |A|k
sparse matrices. The matrix m created from the declara-
tion r :k [cL, cU ] is represented as a map from flat indices
of the tuples in cU to their corresponding boolean formulas.
The false entries representing the tuples outside of cU are
not explicitly stored.



TP: problem → bool
TR: relDecl → univDecl → boolMatrix
TM: formula → env → bool
TX: expr → env → boolMatrix
env: (quantVar ∪ relVar) → boolMatrix
freshVar: boolVar

bool :=
true | false | boolVar | ¬ bool
bool ∧ bool | bool ∨ bool

boolVar := identifier

TP [A d1 ... dn F] = TM [F] (
Sm

i=1 (ri 7→ TR [di]A))

TR [r :k [cL, cU ]] A =
create(|A|k, λj. (let t = index2tuple(j, k,A) in

if t ∈ cL then true
else if t ∈ cu−cL then freshVar()
else false))

TM [p in q] e = fold(¬TX[p]e ∨ TX[q]e, ∧)
TM [some p] e = fold(TX[p]e, ∨)
TM [one p] e = let m = TX[p]e inW|m|−1

i=0 fold(¬mask(m, i)∧¬m ∨ mask(m,i)∧m, ∧)
TM [no p] e = fold(¬TX[p]e, ∧)
TM [!F] e = ¬ TM[F]e
TM [F && G] e = TM[F]e ∧ TM[G]e
TM [F || G] e = TM[F]e ∨ TM[G]e
TM [all v: p | F] e = let m = TX[p]e inV|m|−1

i=0 (m[i] ⇒ TM[F](e⊕v7→mask(m, i)))
TM [some v: p | F] e = let m = TX[p]e inW|m|−1

i=0 (m[i] ∧ TM[F](e⊕v7→mask(m, i)))

TX [p + q] e = TX[p]e ∨ TX[q]e
TX [p & q] e = TX[p]e ∧ TX[q]e
TX [p - q] e = TX[p]e ∧ ¬TX[q]e
TX [p . q] e = TX[p]e · TX[q]e
TX [p –> q] e = let mp =TX[p]e, mq =TX[q]e in

create(|mp| ∗ |mq|, λi. mp[bi/|mq|c] ∧mq[i%|mq|] }
TX [˜p ] e = let m = TX[p]e, s =

p
|m| in

create(|m|, λi. m[s ∗ (i%s) + bi/sc])
TX [ˆp ] e = let mp = TX[p]e,

f = (λm.i. if i = 0 then m else f(m ∨m ·m), di/2e)) in

f(mp, dlog2

p
|mp|e)

TX [{v: p | F}] e = let mp = TX[p]e in
create(|mp|, λi. mp[i] ∧ TM[F](e⊕v7→mask(mp, i))}

index2tuple: int → int → univDecl → tuple
index2tuple(x, k, {a0, . . . , an−1}) =

(〈ai1 , . . . , aik
〉: tuple | x =

Pk
j=1(ij ∗ nk−j))

create: int → (int → bool) → boolMatrix
create(s, f) =

(m : boolMatrix | |m| = s ∧ ∀i ∈ [0 . . s) |m[i] = f(i))

fold: boolMatrix → (bool → bool → bool) → bool
fold: boolMatrix → (bool → bool → bool) → int → bool
fold(m, f) = fold(m, f , 0)
fold(m, f , i = |m| − 1) = m[i]
fold(m, f , i ∈ [0 . . |m| − 1)) = f(m[i], fold(m, f , i + 1))

mask: boolMatrix → int → boolMatrix
mask(m, i) = create(|m|, λj. if i = j then true else false)

Figure 4: Translation Rules and Matrix Operations

4.2.3 Representation of Boolean Formulas
Formal specifications make frequent use of quantified for-

mulas whose ground form contains many identical subcom-
ponents. Detection and exploitation of this and other kinds
of structural redundancy can greatly reduce the size of a
problem’s boolean encoding, leading to a more scalable anal-
ysis. Equivalent subformulas can be detected either at the
problem level or at the boolean level. The Alloy Analyzer
takes the former approach [32]. Our implementation uses
Compact Boolean Circuits (Def. 5) to ensure that all syntac-
tically equivalent ground formulas and expressions are trans-
lated into the same circuit. Semantically equivalent nodes
are encoded using the same circuit if their equivalence can
be established in a given number of steps (Def. 5, Property
3). CBCs also end up catching structural redundancies in
the boolean representation itself that could not be detected
at the problem level. The net result is a tighter encoding
than can be generated using a problem-level detection mech-
anism.

Definition 4. A Labeled Boolean Circuit (LBC) is a di-
rected, acyclic graph (V, E). The set V is partitioned into
operator vertices Vop, variable vertices Vvar, and the constant
vertex >. Each vertex v ∈ V has an integer label label(v).
An operator vertex v ∈ Vop also has an operator attribute
op(v) ∈ {and,or} and two input edges, left(v) ∈ E and
right(v) ∈ E. An edge e ∈ E has a source source(e) ∈ V , a
target target(e) ∈ V , and a sign(e) ∈ {+,−} designating the
polarity of the source in the target formula. Vertex labels
are constrained as follows:

· label(>) = 0

· ∀v ∈ Vvar | label(v) ≥ 1

· ∀v ∈ Vop | label(v) > label(source(left(v))) ∧ label(v) >
label(source(right(v)))

· ∀v, w ∈ V | label(v) = label(w) ⇒ v = w

Definition 5. A Compact Boolean Circuit (CBC) is an
LBC with the following properties:

1. > ∈ V ⇒ V = {>}

2. ∀v ∈ Vop | label(source(left(v))) < label(source(right(v)))

3. No vertex v ∈ V can be simplified to a constant or
to a vertex w ∈ V − v by applying an equivalence law
(i.e. absorption, idempotency, commutativity, associa-
tivity, complements, or distributivity) to the top d ≥ 1
levels of the subgraph rooted at v.

An example of an LBC and its corresponding CBC for
the formula ((((v1 ∧ ¬v2) ∨ ¬v3) ∨ v4) ∧ ¬(v1 ∧ (¬v2 ∧ true)))

is given in Figure 5. A square with a label i corresponds
to the variable vi. The CBC (5b) simplifies the subcircuit
(v1 ∧ (¬v2 ∧ true)) of the LBC (5a) to (v1 ∧ ¬v2) and shares
its output between the gates 6 and 8.

Properties 1-3 of CBCs are maintained in our implemen-
tation by a factory data structure, which synthesizes and
caches CBCs. The factory creates a new circuit from given
components only if it does not find an equivalent (up to
depth d) one in its cache.
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Figure 5: A Labeled Boolean Circuit, Compacted and Flattened

4.3 Translation to CNF
Before converting a CBC to CNF, we flatten it so that

no unshared gate drives a gate of the same kind. For ex-
ample, gate 6 of the CBC in Figure 5b is eliminated from
the flattened circuit (5c), but gate 5 is not because it drives
both gates 6 and 8. Flattening usually reduces the size of
the final CNF by a couple of thousand variables and clauses.
A flattened circuit is converted to conjunctive normal form
using the standard transformation described in [37] and re-
produced below.

Sample Circuit CNF clauses

o

i1 i2 in

…− + +

(¬i1 ∨ ¬o)∧
(i2 ∨ ¬o)∧
· · ·
(in ∨ ¬o)∧
(i1 ∨ ¬i2 ∨ · · · ∨ ¬in ∨ o)

o

i1 i2 in

…− + +

(i1 ∨ o)∧
(¬i2 ∨ o)∧
· · ·
(¬in ∨ o)∧
(¬i1 ∨ i2 ∨ · · · ∨ in ∨ ¬o)

5. RESULTS
The analysis described in the previous section has been

implemented in a model finder called Kodkod (KK). We
have compared KK’s performance to that of the Alloy An-
alyzer (AA) [14], MACE4 (M4) [25], and Paradox (PX) [5]
on three sets of problems:4

· Constrained problems include a Sudoku puzzle from
the M4 website, and the Tough Nut puzzle proposed
by McCarthy [24] as a difficult problem for automated
proof procedures. The Sudoku puzzle has exactly one
solution. The Tough Nut puzzle is unsatisfiable. It

4Available at http://web.mit.edu/emina/www/problems/

proves that an 8 × 8 checkerboard with two opposite
corners deleted cannot be tiled with dominos.

· Symmetric problems consist of two instances of the
pigeonhole problem and two instances of the ‘Ceilings
and Floors’ problem that comes with the AA distribu-
tion. ‘Ceilings and Floors’ is a toy problem inspired by
a Paul Simon song. Like the pigeonhole problem, it is
unsatisfiable and exhibits a high degree of symmetry.

· Design problems contain the formulations of Dijk-
stra’s algorithm for mutex ordering [9] and the ring
leader election algorithm described in [16]. We check
that Dijkstra’s algorithm prevents deadlocks, and that
the leader election algorithm elects at most one leader.
Both formulations require the use of transitive closure,
which cannot be handled by M4 or PX.

The results are shown in Table 1. For each example, we
show the size of the problem’s CNF encoding and the total
analysis time rounded to the nearest second. The Sudoku
and Tough Nut problems have fixed universes of size nine
and eight, respectively. Other problems have been analyzed
in universes of varying sizes. All analyses were performed
on a 1.33 GHz PowerPC with a 512 KB L2 cache and 1.25
GB RAM. AA and KK were instructed to use ZChaff [23] as
their SAT engine. PX is packaged with Satnik [5], and M4
uses its own internal SAT solver. M4 does not report the size
of the CNFs it generates, indicated by blank variable and
clause entries. The analyses that did not complete within
five minutes (> 300 seconds) were interrupted.

As indicated by the data in Table 1, KK significantly out-
performs AA on both the problems with partial solutions
(Sudoku and Pigeonhole) and the classic relational specifi-
cations for which Alloy was designed (Mutex Ordering for
|A| ∈ {30, 45} and Ring Leader Election for |A| ∈ {15, 30}).
The first table shows that KK solves the Sudoku and Tough-
nut problems as fast as PX and M4, and generates much
smaller CNFs for them than PX. In fact, KK’s internal sim-
plifications alone are sufficient to decide that Tough Nut is
unsatisfiable (KK’s variable and clause entries are 0 in the
first table). The data in the second and third table demon-
strate the effectiveness of our symmetry detection algorithm.



Sudoku (9× 9) Tough Nut (8× 8)

solver time vars clauses time vars clauses

AA 38 53,037 545,070 82 0 0

KK 1 1,544 9,006 1 0 0

M4 < 1 12

PX 2 6,075 20,825 < 1 749 1,212

Ceilings and Floors

5 men, 5 platforms 10 men, 10 platforms

solver time vars clauses time vars clauses

AA 1 1,737 7,220 14 9,987 46,740

KK 1 1,082 3,990 14 6,317 25,095

M4 > 300 > 300

PX > 300 1,363 8,775 > 300 5,428 61,799

Pigeonhole Problem

10 pigeons, 9 holes 20 pigeons, 19 holes

solver time vars clauses time vars clauses

AA 4 2,729 11,042 10 14,963 68,314

KK 1 1,127 3,855 2 6,937 24,855

M4 50 > 300

PX 9 1,962 12,698 > 300 7,332 15,669

Mutex Ordering (M) and Ring Leader Election (L)

AA KK

prob. time vars clauses time vars clauses

M30 112 74,818 722,236 16 20,973 154,540

M45 > 300 - - 167 70,833 661,070

L15 13 14,272 78,031 2 8,654 36,743

L30 > 300 223,582 1,866,996 23 101,399 502,953

Table 1: Results

M4 has no symmetry breaking mechanism. Although PX
performs symmetry detection and breaking, its algorithm is
limited by the fact that PX’s logic offers no variable bound-
ing scheme. All variables are assumed to range over the
entire universe, making it difficult to detect equivalence be-
tween atoms.

While we are confident that the data in Table 1 presents
a fair comparison between AA and KK, the comparison be-
tween KK and M4/PX should be taken with a grain of salt.
First, the sample size is small (four problems). Because all
four model finders have different input formats, four differ-
ent formulations of each problem had to be constructed by
hand, forcing us to choose a small set of representative exam-
ples to present in this paper. More importantly, the AA/KK
logics, translation engines, design rationales, and intended
uses are very different from those that characterize M4 and
PX. It is not clear what would constitute a fair comparison
between the AA/KK and M4/PX classes of tools. The data
shown in Table 1 should therefore not be construed as a
comparison between the AA/KK and M4/PX technologies,
but rather as an additional indicator of the feasibility of the
model finding approach embodied in KK.

We have used KK as a stand-alone model finder on these
and many other problems. Our primary design goal, how-

ever, has been to create a relational engine that is scalable,
lightweight, and easy to integrate into domain specific appli-
cations. Dennis et al [7] and Yeung [38] have used KK in this
capacity with good results. Forge [7], is a static program an-
alyzer that translates Java code into our logic and uses KK
on the resulting problem to find execution traces that vio-
late user-specified properties. It is the first static analyzer to
automatically check several popular implementations of the
java.util.List interface against its full JML specification [22].
Yeung’s tool, a course scheduler [38], will soon be available
as a web-based service for the MIT community. It takes as
input courses taken by a student, a set of degree require-
ments, and a listing of offered subjects. These constraints
are translated to our logic, and KK is used to construct the
student’s schedule for a given semester.

6. CONCLUSIONS
We have presented a collection of techniques that address

the key design challenges in the construction of an efficient
relational engine based on SAT technology. To be applica-
ble to a wide range of problems, such an engine must have
a mechanism for specifying partial solutions, an effective
symmetry detection and breaking scheme, and an economi-
cal translation from the engine’s input language to boolean
logic. We have proposed a declaration construct that bounds
the value of a relational variable by two constants as a simple
mechanism for specifying partial solutions. A new symme-
try detection and translation schemes that take advantage of
partial solutions are described. Kodkod, a prototype imple-
mentation of these ideas, has been evaluated against other
model finders based on SAT. The preliminary evaluation
indicates that Kodkod significantly outperforms its closest
relative, the Alloy Analyzer, and that it works as well as
Paradox and MACE4.

Our future plans include further evaluation of the ideas
presented here, and several improvements to our logic and
analysis. The logic currently has no support for commonly
used set operations that require integer manipulation, such
as the computation of a set’s cardinality. Our analysis rep-
resents all binary relations from a set D to a set R with
|D||R| bits. Functions, however, can be represented with
|D| log |R| bits, a saving that has been demonstrated to sig-
nificantly reduce model finding time for problems generated
by static code checkers [35].
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