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1 Introduction

In this chapter we consider nonlinear systems where decisions are made in stages, as is the
usual case in feedback control. The outcome of each decision is not fully predictable but
can be anticipated to some extent before the next decision is made. Each decision results
in some immediate cost but also affects the context in which future decisions are to be
made and therefore affects the cost incurred in future stages. We are interested in decision
making policies that minimize the total cost over a number of stages. Such problems are
challenging primarily because of the trade-off between immediate and future costs.

Dynamic programming (DP for short) provides a mathematical formalization for resolving
this trade-off [4]. Numerical methods associated with DP compute the expected future
cost to be incurred as a function of the current state of the system, given that optimal
decisions will be made at every future stage. By providing a basis for efficient assessment
of alternative decisions, this optimal cost function facilitates the selection of optimal de-
cisions. It is well known, however, that for many important problems the computational
requirements involved with obtaining the optimal cost function are overwhelming, mainly
because of a very large number of states and controls (Bellman's "curse of dimensionality").
In such situations, a suboptimal solution is required. This chapter focuses on methods that
generate suboptimal control strategies through approximating the optimal cost function.

Approximations of the optimal cost function have been used in the past in a variety con-
texts. Chess playing programs represent a successful example. A key idea in these programs
is to use a position evaluator to rank different chess positions and to select at each turn
a move that results in the position with the best rank. The position evaluator assigns a
numerical value to each position, according to a heuristic formula that includes weights
for the various features of the position (material balance, piece mobility, king safety, and
other factors). Usually, the general structure of the position evaluator is selected first (this



is largely an art that has evolved over many years, based on experimentation and human
knowledge about chess), and the numerical weights are chosen by trial and error or (as in
the case of the champion program Deep Thought) by "training" using a large number of
sample grandmaster games.

As the chess program paradigm suggests, intuition about the problem, heuristics, and trial
and error are all important ingredients for constructing cost approximations. However,
it is important to supplement heuristics and intuition with more systematic techniques
that are broadly applicable and retain as much as possible the nonheuristic aspects of DP.
This chapter will describe several recent efforts to develop a methodological foundation for
combining dynamic programming, compact representations, and simulation to provide the
basis for a rational approach to complex stochastic decision problems.

1.1 Approximating the Optimal Cost

In this chapter, we focus on methods for the approximation of the optimal cost function
J*, possibly through the use of neural networks and/or simulation. Suboptimal control
strategies can be generated using these approximations in the same way that optimal
control strategies are generated using the true optimal cost function. In particular, we
replace the optimal cost J*(j) with a suitable approximation J(j, r), where r is a vector of
parameters, and we use at state i the (suboptimal) control A(i) that attains the minimum
in the (approximate) right-hand side of Bellman's equation (see Section 2)

A(i) = argmin E{g(i, u, j) + J(j,r) I i,u}, (1)

where u is the control, j is a random next state, and g(i, u, j) is the cost of a transition
from state i to state j under control u. The function J will be called the scoring function,
or cost-to-go function and the value J(j, r) will be called the score of state j. Once the
form of J is selected and the parameter vector r is determined, the evaluation of J(j, r) of
any state j is presumed to be a simple computation.

We note that in some problems the minimization over u of the expression

E(g(i, u, j) + J(j, r) I i, u} (2)

may be too complicated or too time-consuming for making decisions in real-time, even if
the scores J(j, r) are simply calculated. In such problems we may use a related technique,
whereby we approximate the expression minimized in Bellman's equation,

Q(i, u) = E{g(i, u, j) + J*(j) I i, u}, (3)

which is known as the Q-factor corresponding to (i, u). In particular, we replace Q(i, u)
with a suitable approximation Q(i, u, r), where r is a vector of parameters. W e then use
at state i the (suboptimal) control that minimizes the approximate Q-factor corresponding
to i:

,(i) = arg min Q(i, u, r). (4)
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Although our discussion focuses on approximation of the optimal cost function J*, the
same considerations also apply to the approximation of Q-factors.

We are interested in problems with a large number of states, but we want scoring functions
J that can be described with relatively few numbers (a vector r of small dimension). Scoring
functions involving few parameters will be called compact representations. In contrast, a
tabular description of J*, in which the values J*(j) are stored in a table with one entry
dedicated to each state j, is called a lookup table representation. In a typical compact
representation, only the vector r and the general structure of the scoring function J(-, r)
are stored; the scores J(j, r) are generated only when needed. For example, J(j, r) may
be the output of a neural network in response to the input state j, and r is the associated
vector of weights or parameters of the neural network. Alternatively, J(j, r) may involve
a lower dimensional description of the state j in terms of its "significant features", with r
the associated vector of relative weights of the features. Thus, generating a useful scoring
function J(j, r) requires two complementary steps:

1. deciding on the general structure of the function J(j, r), and

2. calculating the parameter vector r so as to minimize in some sense the error between
the optimal cost function J*(-) and the approximation J(., r).

In the chess example discussed earlier, the position evaluator corresponds to the scoring
function J(j, r) above, while determining the weights of the features correspond to calcu-
lating the parameter vector r.

1.2 Types of Approximation

An important issue in function approximation is the selection of architecture, that is, the
choice of a parametric class of functions J(., r) or Q(., ., r) that suits the problem at hand.
One interesting type of cost approximation is provided by feature extraction, a process that
maps the state into some vector, called the feature vector associated with the state. Feature
vectors summarize, in a heuristic sense, what is considered to be important characteristics
of the state, and they are very useful in incorporating the designer's prior knowledge or
intuition about the problem and about the structure of the optimal controller. For example
in a queueing system involving several queues, a feature vector may involve for each queue
a three-value indicator, that specifies whether the queue is "nearly empty", "moderately
busy", or "nearly full". Note that in many cases, analysis can be used to suggest the right
features for the problem at hand.

Another interesting type of approximation, which appears to be well suited for many prac-
tical problems, is provided by neural network architectures of various types. We should
point out that we use the term "neural network" in a very broad sense, essentially as a
synonym to "approximation architecture." In particular, we do not restrict ourselves to
the classical multilayer perceptron structure with sigmoidal nonlinearities. Any type of
universal approximator of nonlinear mappings could be used in our context. The nature of
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the approximating structure is left open in our discussion, and it could involve, for example,
radial basis functions, wavelets, polynomials, splines, feature extraction mappings, etc.

Finally, one may consider approximation architectures where both features and neural
networks are used together. In particular, the state may be mapped to a feature vector,
which is then used as input to a neural network that produces the score of the state (see
Figure 1).

State i f Neural network J(ir)

Parameter r

Feature vector

State i I Neural network J(f(i), r)
Feature extraction

mapping Parameter r

Feature vector

State i f(iNeural network (i, f(i),r)Feature extraction
mapping Parameter r

Figure 1: Several approximation architectures involving feature extraction and neural net-
works

1.3 Building an Approximation

Neural networks have been applied in a variety of contexts, but their most successful appli-
cations are in the areas of pattern recognition, nonlinear regression, and nonlinear system
identification. In these applications the neural network is used as a universal approximator:
the input-output mapping of the neural network is matched to an unknown nonlinear map-
ping F of interest using least-squares optimization. This optimization is known as training
the network. To perform training, one must have some training data, that is, a set of pairs
(i, F(i)), which is representative of the mapping F that is approximated.

It is important to note that in contrast with these neural network applications, in the DP
context there is no readily available training set of input-output pairs (i, J*(i)), which can
be used to approximate J* with a least squares fit. More sophisticated algorithms, such as
those discussed later in this chapter, are required to generate approximations to J*.
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One particularly interesting possibility is to evaluate (exactly or approximately) by simu-
lation the cost functions of given (suboptimal) policies, and to try to iteratively improve
these policies based on the simulation outcomes. A rigorous analysis of such an approach
involves complexities that do not arise in classical neural network training contexts. Indeed
the use of simulation to evaluate approximately the optimal cost function is a key new idea,
that distinguishes the methodology of this chapter from earlier methods for approximate
DP.

Using simulation offers another major advantage: it allows the methods of this chapter
to be used for systems that are hard to model but easy to simulate; that is, in problems
where an explicit model is not available, and the system can only be observed, either as it
operates in real time or through a software simulator. For such problems, the traditional
DP techniques are inapplicable, and estimation of the transition probabilities to construct
a detailed mathematical model is often cumbersome or impossible.

There is a third potential advantage of simulation: it can implicitly identify the "most
important" or "most representative" states of the system. It appears plausible that if these
states are the ones most often visited during the simulation, the scoring function will tend
to approximate better the optimal cost for these states, and the suboptimal policy obtained
will perform better.

In view of the reliance on both DP and neural network concepts, we use the name neuro-
dynamic programming (NDP for short) to describe collectively the methods of this chapter.
In the artificial intelligence community, where the methods originated, the name reinforce-
ment learning is also used. In common artificial intelligence terms, the methods of this
chapter allow systems to "learn how to make good decisions by observing their own be-
havior, and use built-in mechanisms for improving their actions through a reinforcement
mechanism." In the less anthropomorphic DP terms used in this chapter, "observing their
own behavior" relates to simulation, and "improving their actions through a reinforcement
mechanism" relates to iterative schemes for improving the quality of approximation of the
optimal cost function, or the Q-factors, or the optimal policy. There has been a gradual re-
alization that reinforcement learning techniques can be fruitfully motivated and interpreted
in terms of classical DP concepts such as value and policy iteration. Werbos points out
the relationship between early reinforcement learning methods and DP in [28], spawning
a cross-fertilization of ideas. A recommended survey is [1], which explores the connec-
tions between the artificial intelligence/reinforcement learning viewpoint and the control
theory/DP viewpoint, and gives many references.

We finally mention a conceptually different approximation possibility that aims at direct
optimization over policies of a given type. Here we hypothesize a stationary policy of a
certain structural form, say A(i, r), where r is a vector of unknown parameters/weights
that is subject to optimization. We also assume that for a fixed r, the cost of starting at i
and using the stationary policy f(., r), call it J(i, r), can be evaluated by simulation. We
may then minimize over r

E{J(i, r)}, - . (5)

where the expectation is taken with respect to some probability distribution over the set
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of initial states i. Generally, the minimization of the cost function (5) tends to be quite
difficult, particularly if the dimension of the parameter vector r is large (say over 10). As a
result, this approach is typically effective only when adequate optimal policy approximation
is possible with very few parameters. However, deterministic control problems yield a
simplification; we can directly calculate optimal time-control sample pairs by solving the
(computationally expensive) problem for a number of initial conditions. A near-optimal
policy can then be obtained by using these samples and least-squares fitting. This idea will
be discussed in Section 5.

1.4 Overview

In this chapter, we attempt to clarify some aspects of the current NDP methodology. In
particular, we overview available results (including several recent ones) within a common
framework, suggest some new algorithmic approaches, and identify some open questions.
A detailed exposition can be found in [8]. Despite the great interest in NDP, there is little
solid theory at present to guide the user, and the corresponding literature is often confusing.
Yet, there have been many reports of successes with problems too large and complex to
be treated in any other way. A particularly impressive success is the development of a
backgammon playing program as reported in [22]. Here a neural network was trained to
approximate the optimal cost function of the game of backgammon by using simulation;
that is, by letting the program play against itself. After training for several months, the
program nearly defeated the human world champion.

Our own limited experience has confirmed that NDP methods can be impressively effective
in problems where traditional DP methods would be hardly applicable and other heuristic
methods would have a limited chance of success. We note, however, that the practical
application of NDP is computationally very intensive, and often requires a considerable
amount of trial and error. Furthermore, success is often obta.ned using methods whose
properties are not well understood. Fortunately, all the computation and experimentation
with different approaches can be done off-line. Once the approximation is obtained, it can
be used to generate decisions fast enough for use in real time. In this context, we mention
that in the artificial intelligence literature, reinforcement learning is often viewed as an
"on-line" method, whereby the cost approximation is improved as the system operates in
real time. This is reminiscent of the methods of traditional adaptive control. WVe will not
discuss this viewpoint in this chapter, as we prefer to focus on applications involving a
large and complex system. A lot of training data is required for such a system. These data
typically cannot be obtained in sufficient volume as the system is operating; even if they
can, the corresponding processing requirements are typically too large for effective use in
real time.

The chapter is organized as follows. Section 2 introduces dynamic programming as a
basis for the approximation algorithms that will be discussed later. Section 3 addresses
the use of simulation to build lookup table representations of costs. The TD(A) and Q-
learning algorithms are introduced and the issue of algorithm convergence is discussed.
Section 4 describes algorithms, issues, and results on using compact representations to
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find suboptimal control policies for problems where a lookup table is infeasible. Finally,
Section 5 describes the direct approximation of optimal control policies when the generation
of a value function can be bypassed.

2 Dynamic Programming

Out of several possible DP models, we focus our initial attention on infinite horizon finite-
state controlled Markov chains with undiscounted costs [5]. (Discounted problems can be
converted to undiscounted problems by viewing the discount factor as a probability that
the process terminates at any given time step.)

We are given a controlled discrete-time dynamic system whereby, given the state ik at time
k, the use of a control uk specifies the transition probability Pikik+l (Uk) to the next state
ik+l. Here for all k, the state ik is measured directly and is an element of a finite state space,
and the control uk is constrained to take values in a given finite constraint set U(ik), which
may depend on the current state ik [uk E U(ik), for all ik]. There is a cost g(ik, uk, ik+1)

associated with the use of control uk at state ik and a transition to state ik+l.

We are interested in admissible policies, that is, sequences ir = (0, 1, ,..}.) where each
Auk is a function mapping states into controls with [k(i) E U(i) for all states i. The total
expected cost associated with an initial state io and a policy wr = ,L0A, ,.}..) is

N-1A

J"(io) = lim E E g(ik, Ak(ik),ik+1) 
N-+oo

(If there is doubt regarding the existence of the limit, one can use "lim inf" above.) A
stationary policy is an admissible policy of the form 7r = {(/, t>,.. .), and its corresponding
cost function is denoted by J". Finally, the optimal expected cost associated with an initial
state i is the minimum J"'(i) over all policies 7r, and is denoted by J*(i).

In the absence of discounting and in order to obtain a meaningful problem, we assume that
there is a special cost-free and absorbing destination state, denoted as state 0. Once the
system reaches that state it remains there at no further cost. We are interested in problems
where either reaching the destination is inevitable or else there is an incentive to reach the
destination in a finite expected number of stages. Thus, the essence of the problem is how
to reach the destination with minimum expected cost. We call this problem the stochastic
shortest path problem. The deterministic shortest path problem is obtained as the special
case where for each state-control pair (i, u), the transition probability pij(u) is equal to 1
for a unique state j that depends on u.

The analysis of the stochastic shortest path problem requires certain assumptions that
guarantee that the problem is well-posed. We first need to define the notion of a proper
policy, that is, a stationary policy that leads to the destination with probability one,
regardless of the initial state.

Let 1,..., n denote the states other than the termination state 0.
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Definition 2.1 A stationary policy 7r = {/, A,...} is said to be proper if there exists an
integer m such that, using this policy, there is positive probability that the destination will
be reached after m stages, regardless of the initial state x0 , that is, if

p~ = max P{xm # O 0 xo = i, g} < 1. (6)
i=l,...,n

A stationary policy that is not proper is said to be improper.

We assume the following:

Assumption 2.1 (a) There exists at least one proper policy.
(b) For every improper policy {(u, /,...), the corresponding cost J"(i) is oo for at least one
state i.

Note that in many problems of interest, all policies are proper, in which case the above
assumptions are trivially satisfied. In other problems where the cost g(i, u, j) is nonnega-
tive, it may be easily verifiable that for every improper policy, there is a state with positive
expected cost that is visited infinitely often with probability 1, in which case Assump-
tion 2.1(b) holds.

Because there is only a finite number of states, functions J with components J(i), where
i is one of the states 1,..., n, will also be viewed as vectors in Rn. The basic results for
stochastic shortest path problems can be expressed in terms of the DP mapping T that
transforms vectors J 6E In into vectors TJ E ~R' and is defined by

n

TJ(i) = min Pij(u)(g(i,u,j) + J(j)), i = 1,... ,n, (7)
uEU(i) j=1

as well as the mappings T, defined for each stationary policy f by
n

TJ(i) = Epij(t(i))(g(i,/ (i), j) + J(j)), i = 1,..., n. (8)
j=l

In summary, these results are (see [6], [7], [5]):

(a) The optimal cost vector J* is the unique solution of Bellman's equation J = TJ.

(b) A stationary policy {(f, /,.. .} is optimal if and only if for every state i, /(i) attains
the minimum in the definition of TJ*(i), that is, T,J* = TJ*.

Furthermore, it is possible to show the validity of the following two main computational
methods for stochastic shortest path problems. These are:

1. Value Iteration: Given any vector J. we generate successively TJ, T 2J,.... It can
be shown that the generated sequence {TkJ} converges to the optimal cost func-
tion J*. It can also be proved that the Gauss-Seidel version of the value iteration
method works, and in fact the same is true for parallel asynchronous versions of value
iteration [3], [6].
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2. Policy Iteration: Starting with a proper policy [ 0, we generate a sequence of new
policies ,', 2, .... In the kth iteration, given the policy /Lk-1, we perform a policy
evaluation step, that computes J k-' by solving for J the equation J = Tk-1 J, which
can also be written as the system of n linear equations

J(i) = ,pij(Jt(i))(g(i,/(i),j) + J(j)), i = 1,...,n, (9)
j=1

in the n unknowns J(1),..., J(n). We then perform a policy improvement step, which
computes a new policy [1k using the equation TkJ k - = TJAk -l, or equivalently

n

ALk(i) = arg min pij(u)(g(i,u,j) + J- (j)), i=1, .. n. (10)
uEU(i) j= '

Given that the initial policy /t is proper as stated above, the policy iteration algo-
rithm terminates after a finite number of iterations with an optimal proper policy.

Both of these methods are useful in practice; both can form the basis of computational
methods that use neural network approximations in cases where we lack an explicit system-
model.

3 Simulation Methods for a Lookup Table Represen-
tation

Classical computational methods for dynamic programming apply when there is an explicit
model of the cost structure and the transition probabilities of the system to be controlled.
In many problems, however, such a model is not available, but instead, the system can be
simulated. It is then of course possible to use repeated simulation to calculate (at least
approximately) the transition probabilities of the system and the expected costs per stage
by averaging, and then to apply the methods discussed earlier.

The methodology discussed in this section, however, is geared towards an alternative possi-
bility which is much more attractive when one contemplates approximations: the transition
probabilities are not explicitly estimated, but instead the cost-to-go function of a given
policy is progressively calculated by generating several sample system trajectories and as-
sociated costs. There are a number of possible techniques within this context, which may
be viewed as suboptimal control methods. We discuss here several possibilities, which will
be revisited in Section 4 in conjunction with approximation methods. While the methods
of this section involve a lookup table representation of the cost-to-go function, and are
practical only when the number of states is moderate, they are still of more general interest
for several reasons:

(a) Unlike the traditional computational methods, these methods are applicable even
when there is lack of an exact model.
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(b) The use of simulation to guide exploration of the state space can significantly increase
the efficiency of dynamic programming.

(c) Some approximate methods that employ compact representations can be viewed as
natural extensions of the simulation-based methods considered in this section. For
this reason, the algorithms studied in this section provide a baseline against which the
results of Section 4, where compact representations are employed, are to be compared.

(d) Finally, some of the approximate methods studied in Section 4 can be viewed as
lookup table methods (of the type considered here) for a suitable auxiliary (and usu-
ally much smaller) problem. Thus, the understanding gained here can be transferred
to ideas in Section 4.

3.1 Policy Evaluation by Monte-Carlo Simulation

Suppose that we have fixed a proper stationary policy u and that we wish to calculate by
simulation the corresponding cost vector J". One possibility is to generate, starting from
each i, many sample state trajectories, and average the corresponding costs to obtain an
approximation to JI(i). While this can be done separately for each state i, a possible
alternative is to use each trajectory to obtain cost samples for each state visited by the
trajectory. In other words, given a trajectory, the portion starting at any particular visited
state is considered to be an additional simulated trajectory. Thus, a single simulated
trajectory contributes to the cost-to-go estimates of many states, rather than only one.

One implementation of this method can be described as follows. We generate a random
trajectory (io, il,..., iN), where iN is the terminal state and define the temporal differences
dk by letting

dk = g(ik, ik+l) + J(ik+l) - J(ik)- (11)

We then update J(ik) for each state ik encountered by the trajectory by letting

J(ik) = J(ik) + 7(dk + dk+1 + - * * + dN-1), (12)

where 7 is a stepsize parameter. Note that the eth temporal difference de becomes known
as soon as the transition from it to ie+1 is simulated. This raises the possibility of carrying
out the update (12) incrementally, that is, by setting

J(ik) := J(ik) + yde, k = 0,1,...,e (13)

as soon as de becomes available.

The method based on the update rule (13) is known as TD(1). A generalization proposed
by Sutton [20] and known as TD(A), is obtained by introducing a scalar parameter A E [0, 1]
and modifying equation (13) to

J(ik) := J(ik) + 7Ae-kde, k = 0,1, ... , e, (14)

The TD(A) algorithm can be viewed as a Robbins-Monro stochastic approximation algo-
rithm for solving a certain system of equations, related to the policy evaluation equation
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JL = T,uJ. It turns out that this system of equations involves a contraction mapping
with respect to a suitable weighted maximum norm [6], and for this reason, under some
natural assumptions, the method converges with probability 1 to JI, for all values of A in
the closed interval [0, 1] [14]. However, there is currently little theoretical understanding of
how A should be chosen to make the most efficient use of simulations.

Any algorithm, like TD (A), for evaluating the vector Ju can be embedded within the policy
iteration algorithm. In a typical iteration of the algorithm, one fixes a proper policy ,u,
performs enough simulations and iterations of the TD(A) algorithm to evaluate J11 with
sufficient accuracy, and then obtains a new policy jE! according to the policy iteration update
rule T.,JI = TJP. In an alternative method, which we call optimistic policy iteration, every
TD(A) update is followed by a policy update. That is, given the current vector J we obtain
the policy /L determined by TJ = TJ and use this policy to simulate the next trajectory
(or the next transition, if policies are updated after every transition). While this method
is often used in practice, its properties were far from understood until very recently. We
have shown, however, that the following is true [8]:

(a) A somewhat restricted ("synchronous") version of the method converges with prob-
ability 1 to J*.

(b) The method does not converge in general and even if it converges, the limit can be
different than J*.

Note that performing a policy iteration update given J' requires knowledge of the transi-
tion probabilities and cost structure of the underlying system. Thus, although the policy
evaluation via TD(A) can be performed in the absence of an explicit model, the method
we have described for deriving an optimal policy can not. Nevertheless, the computational
method is of practical interest since it naturally generalizes to the context of compact repre-
sentations, which we will discuss in Section 4. In that context, this approach to computing
a cost-to-go function potentially reduces requirements on computation time, although the
necessity of an explicit model is not alleviated.

3.2 Q-Learning

We now discuss a computational method that can be used to derive an optimal policy when
there is no explicit model of the system. This method is analogous to value iteration, but
updates values called Q-factors, rather than cost-to-go values.

We define the optimal Q-factor Q*(i, u) by Q*(i, u) = 0 if i = 0 and

n

Q*(i, u) = ,pij(u)(g(i, u, j) + J*(j)), i 1,...,n, (15)
j=o

otherwise. Note that Bellman's equation can be written as

J*(i) = min Q* (i,u). (16)
uEU(i)



Using equation (16) to eliminate J*(j) from equation (15), we obtain

n
Q*(i, u) = Zpij(u) g(i, u, j) + min Q* (jv ) (17)

The optimal Q-factors Q*(i, u) are the unique solution of the system equation (17), as
long as we only consider Q-factors that obey the natural condition Q(0, u) = 0, which is
something that will be assumed throughout.

In terms of the Q-factors, the value iteration algorithm can be written as

Q(i, u) := op ij(U) (i, + miu (j , v)) for all (i, u). (18)

A more general version of this iteration is

Q(i, u) := (1 - y)Q(i, u) + y Epij(u) g(i, U(j)j) + min Q(j,) (19)
j=. vEU(j)

where y is a stepsize parameter with 7 E (0, 1], that may change from one iteration to'
the next. The Q-learning method is an approximate version of this iteration, whereby the
expected value is replaced by a single sample, i.e.,

Q(i, ) := (1 - )Q(i, u) + (g(i, j) + min Q(j, v)) (20)

Here j and g(i, u, j) are generated from the pair (i, u) by simulation, that is, according
to the transition probabilities pij(u). Thus, Q-learning can be viewed as a combination
of value iteration and simulation. Equivalently, Q-learning is the Robbins-Monro method
based on equation (17). The Q-learning algorithm was proposed by Watkins [26], and
its convergence was established in [27] for the case of discounted problems. In [23] the
connection with stochastic approximation was established and a convergence proof was
obtained in greater generality, including stochastic shortest path problems. (Related results
are discussed in [14].) In fact, for the case where some of the policies are allowed to be
improper, convergence has only been proved under the additional assumption that the
algorithm stays bounded, but this is a condition that is easily enforced using the common
device of projecting back into a bounded set whenever the Q-factor iterate becomes too
large [9, 16].

4 Approximate DP for a Compact Representation

In this section, we discuss several possibilities for approximate or suboptimal control. Gen-
erally we are interested in approximation of the cost function JP of a given policy ,/, the
optimal cost function J*, or the optimal Q-factors Q*(i, u). This is done using a function,
which given a state i, produces an approximation JI (i, r) of JI(i), or an approximation

12



J(i, r) of J*(i), or, given also a control u, an approximation Q(i, u, r) of Q*(i, u). The ap-

proximating function involves a parameter/weight vector r, and may be implemented using
a neural network, a feature extraction mapping, or any other suitable architecture. The

parameter/weight vector r is determined by optimization using some type of least squares
framework.

Most of the discussion in this section is geared towards the case where the set U(i) of

possible decisions at each state i has small or moderate cardinality and therefore the re-

quired minimizations do not present any intrinsic difficulties. We will occasionally discuss,

however, some issues that arise if the set U(i) is very large or infinite, even though the

choices available tend to be problem specific.

There are two main choices that have to be made in approximate dynamic programming:

the choice of approximation architecture and the choice of an algorithm used to update

the parameter vector r. Sometimes these issues are coupled because some algorithms are

guaranteed to work properly only for certain types of architectures.

4.1 Bellman Error Methods

One possibility for approximation of the optimal cost by a function J(i,r), where r is

a vector of unknown parameters/weights, is based on minimizing the error in Bellman's

equation; for example, by solving the problem

min I(i, r) - min 'pij(u)(g(i,u,j)+ J(j,r))]2 , (21)
-E uEU(i)

where S is a suitably chosen subset of "representative" states. This minimization may be

attempted by using some type of gradient or Gauss-Newton method. We observe that if S

is the entire state space and if the cost in the problem (21) can be brought down to zero,

then J(i, r) solves Bellman's equation and we have J(i, r) = J*(i) for all i. Regarding the

set S of representative states, it may be selected by means of regular or random sampling

of the state space, or by using simulation to help us focus on the more significant parts of

the state space. For the special case where we are dealing with a single policy, the gradient

of the objective function (21) can be generated by simulation, and a stochastic gradient

algorithm and stochastic approximation theory can be used to study convergence issues.

Suppose now that a model of the system is unavailable or too complex to be useful. We

then need to work in terms of approximate Q-factors. Let us introduce an approxima-

tion Q(i, u, r) to the optimal Q-factor Q*(i, u), where r is an unknown parameter vector.

Bellman's equation for the Q-factors is given by (recall equation (19))

Q*(i,u) =pij(u)(g(i,u,j) + min Q*(j,u')). (22)
U'EU(j)

In analogy with problem (21), we determine the parameter vector r by solving the least

squares problem

min E Q(i, u, r)- pij(u)(g(i, u,j)+ min Q(j', u',r)) , (23)
(i,u)EV 3
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where V is a suitably chosen subset of "representative" state-control pairs. The incremental
gradient method for this problem is given by

r '= r- yE{du(i, j, r) I i, u}E{Vdd(i, j, r) I i, u} (24)

= r -yEf{dU(i, j, r) i, u}( pij(u)VrQ(j, , r)- VrQ((i, u,r)),

where du(i, j, r) is given by

du(i, j, r) = g(i, u. j) + min Q(j, u', r) - Q(i, u, r), (25)
u'EU(i)

u is obtained by
u = arg min Q(j, r), (26)

u'EU(j)

and 7y is a stepsize parameter. A simulation-based version of this iteration is given by

r := r - yd(i, j, r)(VrQ(j, , r) - Vr(i, u, r)), (27)

where j and J are two states independently generated from i according to the transition
probabilities corresponding to u, and

= arg min Q(, u', r). (28)
u'EU(j)

The convergence of the resulting stochastic gradient algorithm can be studied using stochas-
tic approximation theory.

4.2 Approximate Policy Iteration

In approximate policy iteration, one fixes a stationary policy 7r = {,u, /, /,... and evaluates
an approximation JI(., r) of the function JP. This is followed by a policy update step
whereby one obtains a new stationary policy ir = {(,i, ,i7,...} by choosing ,i to satisfy
T7JHj '= TJA.

The above described method has been shown recently [8] to be consistent in the following
sense: if the approximation architecture is rich enough and the training information is
sufficiently rich so that J" is within e of the true function JA for all policies encountered in
the course of the algorithm, then the algorithm converges to a neighborhood of J* whose
radius is 0(e).

The most important element of the approximate policy iteration algorithm is the way that
the approximate policy evaluation is carried out. This can be accomplished using one of
several methods.

1. We can use the Bellman error method described in the preceding section, specialized
to the case where we are dealing with a single policy.
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2. We can collect sample data pairs {(il, cl), (i 2, C2),..., (iK, CK)}, each composed of a
representative state ik and the total cost of a simulated trajectory starting at state
ik, under the current policy 7r = {u, ,/, ,....}. Then an approximate cost function
can be acquired by solving the least squares problem

K

min yZE (J (ik, r) - ck) 2. (29)
k=l

3. We can generalize TD(A) to the present context, involving compact representations
of the cost-to-go function. The following generalization has been introduced by
Sutton [20]: we sample a trajectory io,..., iK, 0, define the temporal differences
dk = 9(ik, N(ik), ik+1) + Jp(ik+l)- J(ik), and update the parameter vector r according
to

k

r := r + rydk E A k-mVrJ(im, r). (30)
m=O

This procedure might be repeated several times, using new trajectories, to improve the
accuracy of Ju prior to a policy update. For the case of a lookup table representation,
it is easy to check that this method reduces to the TD(A) method of Section 3.

The third option, which employs the TD(A) algorithm, has received wide attention. How-
ever, its convergence behavior is unclear, unless A = 1. Basically, for a compact representa-
tion, TD(A) can be viewed as a form of incremental gradient method where there are some
error terms in the gradient direction. These error terms depend on r as well as A, and do
not necessarily diminish when r is equal to the value where TD(1) converges, unless A = 1
or a lookup table representation is used. Thus, in general, the limit obtained by TD(A)
depends on A.

To enhance our understanding, let us consider in more detail the algorithm TD(O) obtained
by setting A = 0. In the on line version of the algorithm, a transition from i to j leads to
an update of the form

r := r + yd(i, j, r)Vr J(i, r), (31)

where d(i, j, r) is the temporal difference g(i, /t(i), j) + J(j, r) - J"(i, r).

For the case of a linear approximation architecture, TD(A) always converges [10]. However,
there are very few guarantees on the quality of the limit as an approximant of J". We have
shown [4] that TD(A) not only gives in the limit a vector r that depends on A, but also
that the quality of J"l(i, r(A)) as an approximation to J'(i) may get worse as A becomes
smaller than 1. In particular, the approximation provided by TD(O) can be very poor.
Thus, there are legitimate concerns regarding the suitability of TD(O) for obtaining good
approximations of the cost-to-go function.

We finally note that, similarly with the case of lookup table representations, there is an
optimistic version of approximate policy iteration whereby the policy is updated at each
step. While this method has been very successful in some applications, theoretical under-
standing is far from complete. Nevertheless, there is some preliminary theoretical evidence
suggesting that optimistic policy iteration, if it converges, may lead to policies that perform
better than those obtained from the non-optimistic variant [8].
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4.3 Approximate Value Iteration

The value iteration algorithm is of the form

J(i) min Cpij (u)(g(i, u,j)+ J(j)), (32)
uEU(i)

or, in more abstract notation, J(i) := (TJ)(i), where T is the dynamic programming
operator. In this section, we discuss a number of different ways that the value iteration
algorithm can be adapted to a setting involving compact representations of the optimal cost
function. Our discussion revolves primarily around the case where a model of the system
is available, so that the transition probabilities pij(u) and the one-step costs g(i, u, j) are
known. In the absence of such a model, one must work with the Q-factors.

The algorithm is initialized with a parameter vector r0 and a corresponding cost-to-go
function J(i, ro). At a typical iteration of the algorithm, we have a parameter vector rk, we
select a set Sk of representative states, and we compute estimates of the cost-to-go from
the states in Sk by letting

Jk+l(i) = mUi) pij(u) (g(i, u,j) + Jk(j, rk)), i E Sk. (33}
uEU(i)

We then determine a new set of parameters rk+1 by minimizing with respect to r the
quadratic cost criterion

S v(i)IJk+l(i)- Jk+i(i, r)12, (34)
iESk

where v(i) are some predefined positive weights. In the special case where the approxima-
tion architecture J is linear, we are dealing with a linear least squares problem, which can
be solved efficiently.

This method has consistency properties that are similar to those of policy iteration: if
the approximation error Jk - Jk at each iteration is small, the algorithm converges to a
neighborhood of J*. Unfortunately, a simple example from [24] shows that the algorithm
suffers, in general, from potential divergence. In particular, consider a three-state system
with the structure shown in Figure 2.

1-q

Figure 2: A Markov decision problem in which there is a single policy. The labels next to
each arc are the transition probabilities.
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State 0 is an absorbing state and all transitions are cost free. Obviously, we have J*(i) = 0
for all i. Consider a compact representation in terms of a single scalar parameter r, of
the form J(1,r) = r, J(2,r) = 2r, and J(O, r) = 0. Given a value rk of r, we obtain
J(1) = J(2) = 2qrk. We form the least squares problem

rk+1 = min (r - 2qrk)2 + (2r - 2qrk)2 , (35)

and by setting the derivative to zero, we obtain rk+1 = 6qrk/5. Hence, if q > 5/6, the
algorithm diverges.

We note that the compact representation used in our example was rich enough so as to allow
us to represent exactly the optimal cost-to-go function J*. As the example demonstrates,
this property is not enough to guarantee the soundness of the algorithm. Apparently,
a stronger condition is needed: the parametric representation must be- able to closely
represent all of the intermediate value functions obtained in the course of the value iteration
algorithm. Given that such a condition is in general very difficult to verify, one must either
accept the risk of a divergent algorithm or else restrict to particular types of compact
representations under which divergent behavior is inherently impossible.

There is an incremental version of approximate value iteration in which the vector r is
updated after considering a single state i. For example, if state i is chosen, we carry out
the update

r := r + yVrJ(i, r) (minE Pij(u) (g(i, u,j)+J(j, r))-J(i,r) (36)
~uEU(i) /

The sum in the preceding equation can be replaced by a single sample estimate, leading to
the update equation

r :- r + yVrJ(i, r)(g(i, u, j) + J(j, r) - J(i, r)), (37)

where j is sampled according to the probabilities pij(u). We note that this has the same
form as the update equation used in the TD(0) algorithm. The only difference is that in
TD(0), it is assumed that one generates an entire state trajectory and performs updates
along all states on the trajectory, whereas the sequence of states used for the updates in
incremental value iteration can be arbitrary.

The update equation (36) bears similarities with that of the the Bellman error method.
However, there are notable differences. In particular, unlike the Bellman error method, this
algorithm does not admit a clean interpretation in terms of minimization of some quadratic
cost criterion. Unfortunately, the incremental approximate value iteration algorithm suffers
from the same drawbacks as the original approximate value iteration algorithm. There is
no clear guarantee of convergence and reasonable accuracy, given a compact representation
that can closely approximate the optimal cost-to-go function. In the next few subsections,
we consider approximate dynamic programming methods that do deliver such promises.
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4.4 Convergent methods

We review here a few variants of approximate value iteration for which some desirable
convergence properties are guaranteed.

4.4.1 State Aggregation

Consider a partition of the set {0, 1,..., n} of states into disjoint subsets SO, Sl,..., SK,
where we assume that So = {0}. We consider a K-dimensional parameter vector r whose
kth component is meant to approximate the value function for all states i E Sk, k :- 0. In
other words, we are dealing with the compact representation

J(i, r)= rk, if i E Sk, · (38)

together with our usual convention J(O, r) = 0. This is feature-based aggregation whereby
we assign a common value rk to all states i that share a common feature vector. Note that
such a representation is able to closely approximate J* as long as J* does not vary too
much within each subset.

We start by noting that OJ(i, r)/lrk is equal to 1 if i E Sk and is equal to zero otherwise.
Thus, equation (36) becomes

rk := (1 )rk + Y (i) E pij(u) (g(i,, j)+ J(j, r))), if i E Sk. (39)

We only discuss the results that are available for the case of discounted problems. Under
minor technical conditions on the stepsizes and the mechanism for choosing at which state to
update, the algorithm converges with probability 1 to the solution of a system of nonlinear
equations. This system turns out to be the Bellman equation for a modified stochastic
shortest path problem. What is more important, if the approximation architecture is
capable of closely approximating J*, the algorithm is guaranteed to converge in the close
vicinity of J*; see [24] for precise results; related results have also been obtained in [11].

4.4.2 Compact Representations Based on Representative States

We now discuss another context in which approximate value iteration converges nicely.
Suppose that we have selected K states (K < n) considered to be sufficiently representative
of the entire state space and assume that the K representative states are states 1,..., K.
We use a K-dimensional parameter vector r, identified with the values of J(1),.. ., J(K)
and let

J(i, r) = ri, i = 1, K, (40)
K

J(i,r) = Ok (i)rk, (41)
k=1

18



where Ok(i) are some coefficients that are chosen ahead of time. For example, Ok(i) could
be some measure of similarity of state i to state k.

The natural way of carrying out approximate value iteration in this context is to let

n K

ri = J(i, r): min pij(u)(g(i,u,j) + Ok(j)(k,r)), i=1,.., K. (42)
uEUj=0 k=1l

It turns out that, under the assumption Ek=l 10k(i)l < 1, and for discounted problems,
the algorithm is guaranteed to converge and the limit is a close approximation of J*, as
long as the approximation architecture is capable of closely approximating J* [24]. The
limit obtained by the algorithm can be interpreted as the optimal cost-to-go function for a
related auxiliary problem.

4.4.3 Euclidean norm contractions

It is well known that the dynamic programming operator T often has certain contraction
properties with respect to the maximum norm or with respect to a suitably weighted
maximum norm. It turns out [25] that convergence of approximate value iteration can-
be guaranteed if one introduces some stronger contraction assumptions. In particular,
convergence is obtained if we are dealing with a linear approximation architecture and if T
is a contraction with respect to the Euclidean norm on the space of functions J(., r) that
can be represented by the chosen approximation architecture. The search for interesting
examples where this stronger contraction assumption is satisfied is a current research topic.

4.5 Applications

There are several successful applications of neuro-dynamic programming that have been
reported in the literature, the best known one being Tesauro's backgammon player. Our
own experience with applications is that while these methods may require a lot of ingenuity
in choosing a good combination of approximation architecture and algorithm, they have
great promise of delivering better performance than currently available. Some represen-
tative applications we have been investigating involve games (tic-tac-toe [21], Tetris [24]),
scheduling in queueing systems, admission control in data networks, and channel allocation
in cellular communications.

5 Learning Control Policies Directly

In previous sections, we have discussed algorithms that approximate the cost-to-go associ-
ated with states and state/action pairs. A control policy is then implemented by choosing
at each step the state/action pair with the smallest approximated cost-to-go.

The above approach to optimal control is better suited to the case where the control set is
finite and manageably small. In addition, the controller implementation requires evaluating
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the cost-to-go for every potential decision at each time step on-line. In many settings, this
may be too time consuming and unsuitable for real-time implementation. One alternative
is to select off-line a number of representative states i, and use the approximate cost-to-go
function J(i, r) to determine good decisions A(i) at the representative states. We can then
use an approximation architecture, e.g., a neural network, to generalize the policy A from
the representative states to the entire state space. Once such a generalization is available, it
can be employed on-line for the purpose of generating decisions in response to any current
state.

The key element in the above outlined approach is the generalization of the policy that has
been specified at representative states by the cost-to-go function J. This generalization
idea can also be applied when the cost-to-go approximations are replaced by other sampled
decision information. One approach that has been investigated in the artificial intelligence
literature is to use an expert's opinion to generate presumably good decisions at sample
states. A last approach, which is the subject of this section, considers cases where optimal
decisions can actually be calculated at representative states. This is possible for the special
case of deterministic control problems, as discussed below.

5.1 Optimal Control Problem Formulation

In keeping with the traditions of optimal control theory, we consider here a continuous-time
formulation. We assume that we are given a continuous time, time invariant plant of he
form

x(t) = f(x(t), u(t)) (43)

where x(t) E Rn is the state vector and u(t) E eRm is the control vector. The goal is to
guide any initial state x(0) = x0 to the origin while minimizing:

J = L(x(t),u(t))dt (44)

where T is the (free terminal) time at which the state reaches the origin, i.e., x(T) _ 0 and
u(t) is constrained to the set of all bounded measurable piecewise-continuous functions
such that

u(t) E Q C R"

where Q is a given constraint set. There are additional technical assumptions that need to
be made in order to obtain well-posed problems [2, Ch.5] but these need not concern us
here.

Such optimal control problems can be solved with the help of Pontryagin's maximum
principle [2, Ch.5], as follows. We define the Hamiltonian

H(x, p, u) = L(x, u)+ < p, f(x, u) > (45)

as a scalar function of x(t),p(t), u(t); <, > denotes inner product. Given an initial
condition x(0) = x0 let u*(t) be an optimal control and let x*(t) denote the corresponding

20



optimal state trajectory. Then there exists a costate vector, p*(t) E Rn, such that

. OH H* H
e*= · H= HOx

x=ap P x

and
H(x* (t), p* (t), u*(t)) < H(x*(t), p* (t), u(t)) Vu(t) E Q2.

Making use of the boundary conditions x(O) = x0o, x(T) = 0, an optimal trajectory can
be found by solving a system of 2n differential equations with 2n boundary conditions.
In the general case where these equations are not readily solved in closed form, this Two
Point Boundary Value (TPBV) problem can be solved numerically using various iterative
methods [15] for any given initial condition1.

The iteration yields a table of optimal (x, u) pairs along optimal trajectories in state space.
Supervised neural network training techniques can now be used to produce a neural net-
work that directly maps plant states to controls, in contrast to reinforcement learning
algorithms that must accumulate information through rewards/penalties and repeated ex-
perimentation. The network interpolates the open-loop training information, and acts in
a "real time" context where the TPBV solvers could not. Thus, this technique bypasses
the evaluation of cost-to-go estimates that occurs in approximate dynamic programming
techniques.

In order to make a connection with approximate dynamic programming, we note that
p*(t) is known to be equal to the gradient VJ*(x*(t)) [19]. With the methods in previous
sections, we would first approximate J* and then its gradient in order to estimate the
costate, which is then used in the Hamiltonian minimization. In contrast, the method of
this section computes the costate directly.

5.2 Algorithm and Architecture

Our experimental work has focused on multilayer neural networks, e.g. with a single hidden
layer followed by an output layer, trained by incremental backpropagation [12, 13]. Recall
that the network input is the plant state x and the output is the control u. The hidden
layer typically consists of a set of sigmoidal units; the output layer might consist of a single
sigmoidal unit representing a control constraint Q limiting the single control to a range
[-1, +1]. A sigmoidal unit computes:

a(z) = -1+ 1 + z (46)

where z is the standard scalar input to the node formed by a weighted linear combination
of the previous layer. For a detailed description of multilayer neural networks see [12].

The use of sampled trajectories to learn a state feedback control mapping requires address-
ing several training issues. In particular, the number and distribution of the trajectory

1 We may treat these iterative methods as a "black box" piece of the overall learning process.
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initial conditions and the sampling frequency along trajectories each affect the quantity
and distribution of the training data and hence have significant impact on the time re-
quired for training and the quality of the trained feedback mapping [17, 18]. Below, we
briefly mention another training issue that can occur when learning feedback mappings
directly: the choice of output architecture.

5.2.1 Piecewise-Constant Optimal Control

The class of piecewise-constant (e.g. bang-bang) optimal control problems involve plant,
cost functional, and control restrictions that result in controls switching "hard" between
a discrete set of values as the plant state moves along a trajectory toward the origin.
The set of optimal control values for these problems may be evident from the form of the
Hamiltonian (5.1). For instance, consider a double integrator example of a'mass that must
be moved to the origin and zero velocity while being penalized by both travel time and
expended fuel:

J = f (1 + u(t)l)dt

xl (t) = x2 (t)

x2 (t) = u(t)

lu(t)l < 1

where T is the time at which the state reaches the origin. Then, it is an easy conse-
quence of the Maximum Principle that the optimal control need only take values in the set
{-1, 0, -1}.

The discrete set of control values found in piecewise-constant optimal control problems
indicates that the neural network is actually learning a classification task, forming a static
map between each state and a control "class". Thus, we may construct a network output
layer with one unit corresponding to each optimal control value. A network architecture
corresponding to the example would have outputs y', y', and ys corresponding to u = -1,
u = 0, and u = +1. Given the weighted input vector to the output layer:

z2 = W2a(Wix + bl) + b2 (47)

the outputs are defined as:
eZ2i

yS _(48)
i = 1E ez2r

The outputs range from zero to one, and sum to one by definition. When used to control
a plant, the units can be implemented in a "winner-take-all" fashion:

1. The current state is input to the network,

2. the network outputs are calculated,

3. the control corresponding to the unit with the largest value is applied to the plant.
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In the example, if for the current state x, ys > ys and y' > y', then the control u = 0
would be applied to the plant.

By selecting a neural network architecture that incorporates such a priori information about
the solution to the optimal control problem, experimental work has shown that we may
obtain control mappings that perform better than mappings obtained using architectures
based only on knowledge of the control set Q [17].

To summarize, in this section we have considered continuous time optimal control problems
that can have continuous state and control spaces. Optimal control theory led to the
generation of data sets suitable for use with supervised neural network training techniques.
This permitted us to generate feedback controllers with the desirable property of directly
mapping states to controls while avoiding explicit evaluation of the cost-to-go function.

While avoiding the need to generate a value function as done in earlier sections, learning
state to control policies directly retains some of the training issues associated with the other
approaches, such as a computational burden. Furthermore, the quantity and distribution
of the sampled trajectory data impacts the training time and quality of the neural network
mapping. Additionally, we note that the output architecture of the neural network, not
normally an issue in approximate dynamic programming, can have a significant effect on
the training results when learning policies directly.
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