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Abstract

We propose a new value iteration method for the classical average cost Markovian Decision

problem, under the assumption that all stationary policies are unichain and furthermore there

exists a state that is recurrent under all stationary policies. This method is motivated by a

relation between the average cost problem and an associated stochastic shortest path problem.
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1. Introduction

1. INTRODUCTION

We consider a controlled discrete-time dynamic system with n states, denoted 1,..., n. At

each time, if the state is i, a control u is chosen from a given finite constraint set U(i), and the

next state is j with given probability pij(u). An admissible policy is a sequence of functions

from states to controls, ir = {/o,ful,...}, where Pk(i) E U(i) for all i and k. The average cost

corresponding to 7r and initial state i is

1 N-i
J,(i) = limsup -E E 9(Xk, k(Xk)) x

N-oo N k=O

where xk is the state at time k, and g is a given cost function. A stationary policy is an admissible

policy of the form 7r = {b, t,.... ., and its corresponding cost function is denoted by J1,(i). For

brevity, we refer to {It, , . . . as the stationary policy /t. We want to solve the classical problem

of finding an optimal policy, that is, an admissible policy 7 such that J.* (i) = min, J, (i) for all

A stationary policy is called unichain if it gives rise to a Markov chain with a single recurrent

class. Throughout the paper, we assume the following:

Assumption 1: All stationary policies are unichain. Furthermore, state n is recurrent in the

Markov chain corresponding to each stationary policy.

It is well known that under Assumption 1, the optimal cost J*(i) has a common value for

all initial states, which is denoted by A*,

J*(i) = A*, i = 1,...,n.

Furthermore, A* together with a differential cost vector h = (h(1),.. ., h(n)) satisfies Bellman's

equation

.* + h(i) = mE(i) g(i,u) -+ E ij(u) , i= 1,...,n. (1)

In addition, a stationary policy /u is optimal if and only if /i(i) attains the minimum in the above

equation for all i. These results can be shown under the assumption that all stationary policies

are unichain, without requiring the additional condition that there is a common recurrent state

to all stationary policies. However, for the methods of this paper, the existence of a common

recurrent state is essential.

Under Assumption 1 we can make an important connection of the average cost problem with

an associated stochastic shortest path problem, which has been the basis for a recent textbook
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treatment of the average cost problem ([Ber95], Vol. I, Section 7.4). This problem is obtained by

leaving unchanged all transition probabilities pij (u) for j $4 n, by setting all transition probabil-

ities Pin(u) to 0, and by introducing an artificial cost-free and absorbing termination state t to

which we move from each state i with probability Pin(u); see Fig. 1. The expected stage cost at

state i of the stochastic shortest path problem is g(i, u) - A, where A is a scalar parameter. Let

h,, A(i) be the cost of stationary policy / for this stochastic shortest path problem, starting from

state i; that is, h,, i(i) is the total expected cost incurred starting from state i up to reaching

the termination state t. We refer to this problem as A-SSP. Let hA\(i) = min hI,,, (i) be the

corresponding optimal cost of the A-SSP. Then the following can be shown (see Fig. 2):

Pij(u) Pjij(u)

pjj(u) P i p pjj(u) pP pPii(u) i pjj(u)

Pni(U) / /'Pnju (U ) 4 /f Pnj(U)

npj(U) pPin(u) / n (u)

Pnn(u)pni Pnn(U) -

Special (u)
State n

Artificial Termination State

Figure 1. Transition probabilities for an average cost problem and its associated

stochastic shortest path problem. The latter problem is obtained by introducing,

in addition to 1,...,n, an artificial termination state t to which we move from

each state i with probability Pin (u), by setting all transition probabilities Pin(u)

to 0, and by leaving unchanged all other transition probabilities.

(a) For all A and A, we have

hA, X(i) = h,, X,(i) + (A-A)N,(i), i = 1,. .n, (2)

where N, (i) is the average number of steps required to reach n under /t starting from state

(b) The functions

hA(i) = min hJ, \(i), i= 1,...,n, (3)

are concave, monotonically decreasing, and piecewise linear as functions of A, and

hA9(n) = 0 if and only if A = A*. (4)

Furthermore, the vector hA* satisfies Bellman's equation (1) together with A*.

From Fig. 2, it can be seen that A* can be obtained by a one-dimensional search procedure

that brackets A* within a sequence of nested and diminishing intervals; see [Ber95], Vol. II, Fig.

3



1. Introduction

h~,A, (n) = (Ay - X )Nu

hA, A

Figure 2. Relation of the costs of stationary policies in the average cost problem

and the associated stochastic shortest path problem.

4.5.2. This method requires the (exact) solution of several A-SSPs, corresponding to several

different values of A. An alternative method, that also requires the exact solution of several

A-SSPs is to update A by an iteration of the form

Ak+1 = ±k + ykhAk(n), (5)

where 7k is a positive stepsize parameter. This iteration is motivated by Fig. 2 where it is seen

that A < A* (or A > A*) if and only if h:(n) > 0 [or hA\(n) < 0, respectively]. Indeed, it can

be seen from Fig. 2 that the sequence {(k} thus generated converges to A* provided the stepsize

y/k is the same for all iterations and does not exceed the threshold value 1/ max, N, (n). Such a

stepsize is sufficiently small to guarantee that the difference A - A* does not change sign during

the algorithm (5). Note that each A-SSP can be solved by value iteration, which has the form

n-1

hk+l(i) = u(i g(i,u) + Pij(u)hk(j) - A, i = 1,...,n, (6)

with A kept fixed throughout the value iteration method.

In this paper we propose to change A during the preceding value iteration process by using

an iteration of the form (5), but with hxk (n) replaced by an approximation, the current value

iterate hk+l(n). Such an algorithm may be viewed as a value iteration algorithm for a slowly

varying stochastic shortest path problem. It has the form

n-1

hk+l(i) = min g(iu)+ Pij(u)hk(j)- -= k i=4, (7)
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k+l = oAk + ?khk+l±(n), (8)

where ?k is a positive stepsize. We prove convergence of this method for the case where /k is

a sufficiently small constant. Convergence can also be similarly proved for a variety of other

stepsize rules.

Our method should be contrasted with the standard relative value iteration method for

average cost problems due to [Whi63], which takes the form (see e.g., [Ber95], [Put94])

Ak+1 = uU(n g(n, u) + Pnj((U)hk(j) , (9)
uCU(n) L 9

n-1

hk1+l(i) = g(i,u) + Pij(u)hk(j) Ak+ l i= 1, ..l' (10)

If we use Eq. (7) to write iteration (8) in the equivalent form

n-1

Ak+1 = (1 - yk)Ak + yk min g(nu)+ pnj(u)jhk(j) 

we see that if 7yk = 1 for all k, the new value iteration (7)-(8) becomes similar to the known value

iteration (9)-(10): the updating formulas are the same in both methods, but the order of updating

A is just reversed relatively to the order of updating h. We note that there is also a variant of

the standard method (9)-(10) that involves interpolations between hk and hk+1 according to

a stepsize parameter (see [Sch71], [Pla77], [Var78], [PBW79], [Put94], [Ber95]). However, the

new method does not seem as closely related to this variant. Despite the similarity of the new

method with the standard method (9)-(10), the proof of convergence of the latter method does

not seem to be applicable to the new method. The line of proof given in the next section is

substantially different, and makes essential use of Assumption 1 and the connection with the

stochastic shortest path problem. In particular, one can construct examples where Assumption 1

is violated because state n is transient under some stationary policy, and where the new method

(7)-(8) does not converge while the known method (9)-(10) converges. It can also be seen that

the standard aperiodicity assumption required for convergence of the known method (9)-(10) (see

e.g., [Ber95], [Put94]) is not needed for the new method.

A significant improvement in the algorithm, which guarantees that bounded iterates will be

generated for any choice of stepsize, is to calculate upper and lower bounds on A* from iteration

(7) and then modify iteration (8) to project the iterate Ak + ykhk (n) on the interval of the bounds.

In particular, based on the Odoni bounds [Odo69] for the relative value iteration method, it can

be seen that

3k < * < 5k5
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where

-k = Ak + min [min[hk+l(i)- hk(i)] hk+(n)11)

= k + max max[hk+l(i)- hk(i)], hk+l (n) (12)

Thus we may replace the iteration Ak+1 Ak + ykhk+l(n) [cf. Eq. (8)] by

k+1= [Ak +,ykhk+l(n)]+, (13)

where [c]+ denotes the projection of a scalar c on the interval

max , m n ml (14)
m=O,...,k- m=O,...,k

We note that the issue of stepsize selection is crucial for the success of our algorithm. In

particular, if ?yk is chosen constant but very small, or diminishing at the rate of 1/k (as is common

in stochastic approximation algorithms), then A changes slowly relative to h, and the iteration

(8) essentially becomes identical to iteration (5) but with a very small stepsize, which leads to

slow convergence. On the other hand, if '7k is too large, Ak will oscillate and diverge. One may

keep the stepsize ,yk constant at a value found by trial and error, but there are some better

alternatives. One possibility that has worked reliably and efficiently in our tests is to start with a

fairly large -yk and gradually diminish it if the value hk(n) changes sign frequently; for example,

we may use

yk '(15)

where mk is equal to one plus the number of times that h(n) has changed sign up to iteration

k, and 3y is the initial stepsize (a positive constant). Our experience has been that it is best to

choose the initial stepsize y in the range [1, 5]. Typically, the stepsize is reduced quickly according

to Eq. (11) to an appropriate level (which depends on the problem) and then stays constant for

the remaining iterations.

The motivation for our method is that value iteration for stochastic shortest path problems

involves a contraction. In particular, let us consider the mapping F: Rn - Rn with components

given by
n-1

Fi(h)= min g(i,u)+ E pij(u)h(j , i= 1,...,n. (16)

It is known (see e.g., [Ber89], p. 325, or [Tse90O]) that, under Assumption 1, F is a contraction

mapping with respect to some weighted sup-norm; that is, for some positive scalars v1,... v,,

and some scalar a E (0, 1), we have

max Fi(h) - Fi(h')l < max lh(i) - h'(i)l v h h' (17)
max <a max V h, h' R n. (17)

i=l,...,n Vi i=l,...,n Vi
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Note here that while, there is coupling between the iteration of h as per Eq. (7) and the iteration

for A as per Eq. (8), the latter iteration can be made much slower than the former through the

use of the stepsize -y, so that the weighted sup-norm contraction character of the iteration (7) is

preserved. By contrast, the standard relative value iteration method (9)-(10) does not involve a

weighted sup-norm contraction, and in fact it may not involve a contraction of any kind, unless

an additional aperiodicity assumption on the Markov chains corresponding to the stationary

policies is imposed. We speculate that the sup-norm contraction structure may be helpful in

some situations; for example in Q-learning (stochastic approximation) variants of the method,

and when parallel asynchronous variations are considered. In fact, an analysis of Q-learning

variants of our method that admit a parallel asynchronous implementation is the subject of a

forthcoming report [BBA95].

Regarding the relative performance of the new method and the standard method, it can be

seen with simple examples that neither method dominates the other. Suppose for instance that

there is only one policy and that the corresponding transition probability matrix is

where e is a scalar from [0, 1]. Then both methods (7)-(8) and (9)-(10) become linear iterations,

and their rate of convergence is governed by the eigenvalues of the corresponding iteration matrix.

The eigenvalues corresponding to the standard relative value iteration (9)-(10) can be shown to

be 0 and 1 - 2e, so that the method converges very fast for E - 1/2 and slowly for c - 0 or e - 1.

It can also be verified that, for a constant but well-chosen value of 7y, the eigenvalue structure of

the new value iteration method (7)-(8) is worse than the one for the standard method for e - 1/2,

more favorable for e6 0, and comparably unfavorable for c - 1.

Our limited computational experiments also indicate that the new method, when properly

implemented with the adaptive stepsize rule (15) and the projection scheme of Eqs. (11)-(14), is

at least competitive with the relative value iteration method of Eq. (9)-(10). There are problems

where one method outperforms the other and reversely. When the initial stepsize 7y in Eq. (15)

is equal to 1, the performance of the two methods is similar. However, for larger choices of 'y

(e.g., y = 5) we obtained better performance for the new method. We note, however, that much

additional testing is required to reach reliable conclusions in this regard. Both methods can be

very slow on unfavorably structured problems. This is to be expected since these methods exhibit

similar convergence rate behavior to linear iterations and are subject to ill-conditioning.
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2. CONVERGENCE ANALYSIS

We now investigate the convergence of the new value iteration algorithm. For convenience,

let us denote by 11 11 the weighted sup-norm with respect to which the contraction property of

Eq. (17) holds, that is,

llhll = max h(i)l V h E n.
=l,...,n Vi

Let us also normalize the vector v so that its last coordinate is equal to 1; that is

Vn = 1.

Note that since hA is the optimal cost vector of the A-SSP, we have that hA is the unique fixed

point of the contraction mapping F(h) - Ae; that is,

hA = F(h,)- Ae, V A E R. (18)

By writing for all stationary policies /i, states i, and scalars A and A',

h,,>A(i) = h,A, ,(i) + N,(i)(A' - A),

and by using the definition h,(i) = min, h,,x(i), we obtain the following relation:

hA, (i) + N(A' - A) < h,(i) < hA,(i) + N(A' - A), V i = 1,... n, and A, A' E R, (19)

where N and N are the positive scalars

N = min min N,(i), N =max max N, (i). (20)
I i=l,...,n i i=l,...,n

We can interpret N and N as uniform lower and upper bounds on the slope of the piecewise

linear function hA(i), viewed as a function of A (see Fig. 2).

The following is our main result:

Proposition 1: There exists a positive scalar 57 such that if

y < •k < 7 (21)7<ak rr (21)

for some positive scalar -y and all k, the sequence (hk, Ak) generated by iteration (7), (8) converges

to (hA*, A*) at the rate of a geometric progression.

Proof: We will show that there exists a threshold value 7 > 0 and a continuous function c(-y)

with 0 < c(y) < 1 for all 7y (0,7 ] such that for any B > 0, the relations

B
Ihk - hxkII < B and [Ak -A*I < _ (22)
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imply that

Hllhk+l - hxk+ll _< c(yk)B and [Ak+-1 - X* < C(k)B (23)

This implies that for a stepsize sequence satisfying the assumptions of the proposition, the se-

quence IAk - A*I converges to zero at the rate of a geometric progression, and the same is true of

the sequence llhk - hAk I. Since, using Eq. (19), we have

llhk - hx*\l < _Ihk - hk 11 +- IZhxk - hX* 1 < ,lhk - hxkl + O(IXk - X*I),

we see that Illhk - hx I also converges to zero at the rate of a geometric progression.

We first show two preliminary relations. We have using Eq. (18),

Ilhk+l - hAkII = IIF(hAk+l) - Ak+le - F(hxk) + Akell

< HIF(hk+l) - F(hxk)H1 + II(Ak+1 - Ak)ell

< cflhk+l - hAkii + IAk+1 - AkI|le-II

Thus

flhxk+l - hxklI < 1 XIk+ 1 - AkI. (24)

Also, by subtracting the relations

hk+l(n) = F.(hk) - Ak,

hAk(n) = Fn(h,k) - Ak,

we have

Ihk+l(n) - hx,k(n)l = IFn(hk) - Fn(hx,k)l < oll'hk - ,XkII. (25)

Using this relation and Eq. (19), we obtain

lhk+(n)l _< Ihk+l(n) - hxk(n)l + Ihxk(n)l < clflh, - hxkll + NhIAk -I *. (26)

We will now derive functions c1(-) and c2(-) for which the first relation and the second

relation in Eq. (22), respectively, hold. We will then use c(y) = max[cl(y), c2 (Y)] in Eq. (22).

Regarding the first relation in Eq. (23), we note that

IIhk + l - hAk+lll = IIF(hk) - Ake - F(hAk+l) + Ak+lelI

< IIF(hk) - F(hk+l)11 + IAk+_l - XAl Ilell

< allhk - hAk+1 II + IXk+l _ Akl Ilell

< ollhk - h\k || + cllhAk - hAk+l | l+ Ak+1 - kl t|ell.

9
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Using the above inequality, and Eqs. (22), (24), and (26), we obtain

Ihk+1 - hAk+1 || <B ++ ( 1) k+l _AkIIlell

= oB + 1 hk+(n)l

< oB + le- (allhk - hxk i- + NIAk - A*-)

< aB + 1lejY B + N B

= cl(yk)B,

where cl(.) is the function

111e II (a + N/N)c(y) = a+
a--a

Note that if
(1 -a) 2

Ilell(o +- N/N)

we have cl(y) < 1.

We now turn to the second relation in Eq. (23); that is, we show that

Ak+l_ -A*1 < C2 (?k)B
Ik+1- * N

for an appropriate continuous function c2 (y). Let A and A be the unique scalars such that

hj;(n ) = B, hx(n ) = oB, (27)

(see Fig. 3). Let also A be the midpoint between X and A:

A + A (28)

Note that from Eq. (19), we have

(1 - a)B < X _X < (1 - a)B (29)
N -- N

and that
aB aB

N - - N'

B B
- < h* -A < -.

From the last three relations, we also obtain

(1±+a)B < *i < (+)B
2N - 2N
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(1 -a)B < ( _ )B < (31)
2N - 2N

We assume that Ak < A*; the complementary case where Ak > ,A* is handled similarly. WVe

distinguish between two cases:

(a) Ak < A.

(b) A < k < A*.

In the case where Ak < A, we have using Eqs. (19) and (27)-(29),

(1 - a)BN
hlk(n) > h%(n) > hj(n) + N( - A) = aB + N( - A) > oB + 2N (32)

On the other hand, from Eqs. (22) and (25), we have Ihk+l(n) - hxk(n)l < aB so that

hk+l(n) > hk (n) - aB. (33)

By combining Eqs. (32) and (33), we obtain

hk+l(n) >(1-)B
2N2

We now have using the above equation,

B yk(I - a)BN B (1- (-(1Ga)N (34)
A* - Ak+l = A* - Ak - 7khk+l(n) < N (- (34)

N 2N N ' W

and we also have using Eqs. (25), (22), and (19)

A*-A -k+l = A* - Ak -- "khk+l(n) > X*-Xk--yk(hAk(n)+OB) > (1-y'kN)(A*-- /k) 7 k-yB. (35)

It can be seen now from Eq. (35) that for yk E (0, 1/N], we have A* - Xk+1 > --ykaB, and it

follows using also Eq. (34) that

IX* - Xk+11 < C2(-yk)B

where c2(.) is the continuous function

c2(-y) = max [1 _ (1 -aN 2

Since there exists a threshold value a > 0 such that the continuous function c2(y) satisfies

0 < c(y) < 1 for all -y E (0,- ], the desired relation (23) is proved in the case Ak < A.

In the case where A < Ak < A*, there are two possibilities:

(1) hk+1(n) > 0. Then Ak < Ak + l, and by using also Eq. (30), we have

< + (1 + )B < k +(1 + )B k + (1 + a)B 
'* < 2 + N -l (36)

2N -2 2N
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Furthermore, from Eqs. (22) and (26), we have

Ak+l = Ak + ykhk+l(n) < A* + 7k (aB + N )

Thus, by choosing 7k sufficiently small, we can guarantee that

Ak+1 < A* + )B (37)
2N

From Eqs. (36) and (37), it follows that for yk less than some positive constant, we have

(1 + a)B
2N

proving the second relation in Eq. (23), with c2 (Y) = (1 + a)/2.

(2) hk+l(n) < O0. In this case, since from Eqs. (22) and (25) we have

hAk(n) < hk+ (n) + aB < acB, (38)

and since hx(n) = aB and hA,(n) is monotonically decreasing in A, it follows that A < Ak.

Since Ak < A*, we also have 0 < hAk(n) < aB, so that by using Eq. (38) and the fact

hAk(n) > 0, we obtain Ihk+l(n)l < aB and

l/k hk+l (n) _< ykaB.

By choosing

Yk E (o, a ' (39)

the above inequality, together with Eq. (31), yields

lKkhk+l(n) < (1 - a)B < X _ < Xk - .
2N

Thus, we have

Ak+1 = Ak + ykhk+l(n) > A,

and from Eq. (30), using also the fact Ak+1 < Ak < A*, we obtain for 7k satisfying Eq. (39),

Ak+1 - A* < (1 + a)B
2N

proving the second relation in Eq. (23) for the case hk+1(n) < 0 as well.

Thus, Eq. (23) holds with c(-) given by

c(7) = max [ a q_ 7[[ell(a + /N) 1 - ( 1 - a ) N 2 N a
c(y) = max [a + -yNa/ , 1- 2N ,

I - a 2N 2

Q.E.D.
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hA (n)

Figure 3. Definition of A and A in the proof of Prop. 1.
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