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ABSTRACT waveforms span a signal space, span{sk(t)} C L2 (I), of di-
mension N. Choosing an orthonormal basis of span{sk(t))

The joint detection of all users in a multiple access (MA)The joint detection of all users in a multiple access (MA) allows for us to represent each user signature as sk, the N-
communication system in which user transmissions are cor- dimensional column vector of coefficients (with respect to

related has been shown in recent literature to enhance the
their basis) corresponding to sk(t). Note that span{sk} =

system performance relative to that achieved without joint RN. Let the kth user's bit be denoted by bk E {+1, -1},
detection. Over the past several years the area of low com- where each value occurs with equal probability. The re-
plexity joint detectors has received much attention. This ceived signal is then represented as a coefficient vector, r,
paper explains the problem of multiple access joint detec-
tion in geometrical terms. Geometric interpretation leads K

to the proposal of an alternating projection joint detection r = bksk + n = STb + n (1)
algorithm (APJD). Due to some similarities between our k=l

APJD and the multistage joint detector (MJD) of Varansi
and Aazhangd[5] the MJDtis e 1jisn diecus e1d. T ArDsis * where K is the total number of users, n is the coefficientand Aazhang [5], the MJD is also discussed. The APJD is S

guaranteed to converge and a proof is given. The geometric vector of noise', b-[bl b2... bK]T and ST-[s .s2 SK].

interpretation of the MA joint detection problem allows for The conventional approach to receiver design is to use
the exploration of determining, a priori, the error probabil- a matched filter and slicer,
ity of a joint detector and user waveform set in the absence
of noise. Simulations offer empirical characterization of the

error behavior of both detectors. where sgn represents the signum function and bk denotes the
estimated/detected bit of the kth user. The conventional
matched filter (2) represents the optimal receiver in the

1. MULTIPLE ACCESS COMMUNICATION case where the MAI is assumed normal and white. Under
AND DETECTION this assumption, as users are added to the system the MAI

raises the noise level; this, in turn, limits the matched filter
A multiple access (MA) communication system will typi- performance.
cally support a large number of users over a given channel. The MAI, however, is not an additive white Gaussian
Many users are allowed to transmit simultaneously in the noise process; it possesses a great degree of structure which
same frequency band; each user transmits a single bit by can be exploited in building receivers which have better
modulating a pre-assigned signature waveform by a +1 or performance than the conventional detector. The optimal
-1. The common MA scenario used for this paper is that of joint detector (which accounts for the MAI) maximizes the
synchronous signaling through the additive white Gaussian log-likelihood function [7] and results in
noise channel with no intersymbol interference. With no
loss of generality, we may focus our attention to one bit du- b = arg [ max 2rTSTb - (STb)TSTb ]. (3)
ration, i.e. within a single block of time all users transmit br{1,-1}K

a single bit. h This maximization is over 2K possible b vectors (a compu-
Assign the kcth user a signature waveform, sk (t), which tational complexity that is exponential in K, the number

is zero outside of an interval I. Assume that the set of user of users). 
of users). This optimal method offers substantially higher
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Recent communication literature addresses the general our understanding of the problem we examine its funda-
notion of suboptimal joint detection which offers compu- mental structure in the absence of noise. For the remainder
tational improvement relative to the optimal method while of this paper, noise is omitted.
achieving a significant improvement in performance over the Define the set of bit vectors
conventional detector. The state of the art is reviewed in
the paper by Verdu [8]. In particular, one approach that has r [bi ... bK]T I bi E {+1, -1} Vi = 1, ,.. K}.
been shown to offer good performance compared to other
methods is the multistage joint detector (MJD) developed Geometrically, r comprises the vertices of a hypercube of
by Varanasi and Aazhang in [5] and [6]. The MJD corre- dimension K. For K > N the N-dimensional signature vec-
sponding to the received signal vector of Equation (1) is tors, {Sk }K , are linearly dependent.3 This means that the

solution, x, to
b(m + 1) = sgn[Sr + (E - SST)b(m)], (4) r = STx (7)

nA is not unique. By definition of linear dependence, we have
where the energy matrix E = diag (< Sk,Sk >)k=E1 The
MJD is motivated by separating Equation (1) in the noise- STc -O (8)
less case (for each user k) into two parts, the MAI and
the signal of interest, and then applying the appropriate for any a E AJr(ST), the nullspace of ST. We may, then,
matched filter for user k to yield express the solution of Equation (7) as

T STTi T x + a, (9)s~ r = bisk si + bksk sk. (5) x=p+c>, (9)
i~k where : is the solution of Equation (7) for which P 1 a.

The only solutions of interest to the MA problem stated in
After rearranging and rewriting Equation (5) for all users this paper are contained in the set r. For every 3 1 Af(ST)
in vector form, we obtainin vector form, we obtain which solves Equation (7) we are interested only in the so-

Eb = Sr + (E - SST)b (6) lutions for which (3 + c) E F, where ca E g(ST).
A geometric interpretation of the above discussion fol-

the impetus for the MJD. The MJD estimates the MAI lows. We have our set of possible solutions, r, the ver-
and subtracts it from the output of the bank of matched tices of a K-dimensional hypercube. We separate our so-
filters to obtain an estimate of the desired bit. This process lution, x, into two parts, ce and 3. This corresponds to
is iterated to obtain "better" estimates of the MAI in the viewing our vector space, 1RK, as the Cartesian product
hope of improving the estimate of the desired bit. of two subspaces, N(ST) and the space which is orthog-

The problem of finding the correct bit vector from the onal to A(ST). Given the uniquely determined solution,
aggregate can be shown to be N-P complete.2 Primarily, 1 MJ(ST), the general solution must lie in the affine space
there is the problem of heuristic approaches converging to WV = A((ST) + 3. The MA joint detection problem corre-
local minima. MA joint detection, therefore, is not going sponds, geometrically, to finding the point, x, which lies in
to be solved by a simple trick. the intersection of the set r and the affine space W.

This paper looks at the problem in geometrical terms in The definition of 3 may be specified further. The set of
Section 2, revealing its structure. The structure is reminis- user signature waveform vectors, {Sk}K, comprise a frame
cent of other problems which are solved via alternating pro- for the space span{sk}.4 Let {Sk}K be the corresponding
jections. An appropriate alternating projection joint detec- dual frame, defined via the dual frame operator
tor (APJD) is deduced and shown to converge in Section 3.
The MJD, viewed as a sequence of operators within our S [1 S... SK] = S(STS) - 1.

geometry and can easily be shown (in some cases) to loop
between two incorrect bit vector estimates. The differences We may decompose r using the dual frame operator
between the MJD the APJD are discussed in Section 4. The
geometric framework allows for us to begin the character- < sk,r >= Sr, (10)
ization of errors for suboptimal joint detectors. This idea
is briefly discussed for the APJD and MJD and an empir- and we may reconstruct using the frame reconstruction for-
ical examination of the errors is done via simulations for mula K

both the APJD and the MJD in Section 5. The paper is > S = ST
concluded in Section 6.

k=l

2. GEOMETRICAL PRESENTATION OF THE Note the similarities between Equation (11) and the MA
MA DETECTION PROBLEM aggregate signal of Equation (1). Since Sr has the same

3 This is the case in which the number of users is greater than
In order to examine the MJD and develop an appropri- the dimension of the span of their signature waveforms.
ate low complexity joint detection algorithm the detection 4For our purposes it is sufficient to note that a subset of
problem is described in a geometrical framework. To begin the signature waveforms {Sk} constitute a basis of the consid-

ered space and that no sk is identically zero. See the text by
2 This issue is examined by Verdu in [4]. Daubechies for a tutorial treatment of frame theory [1].



properties that were required of /3: Sr E IZ(S) = RT(S)5 Unlike alternating projections between two intersecting
and R(S) I j\/(ST) 6, we see that the frame reconstruction convex sets, the APJD is an alternating projection between
Equation (11) corresponds to the unique portion of the so- a convex set, W, and a non-convex set, r. In such a sit-
lution of our MA joint detection problem, thus, P = Sr. uation, the alternating projection procedure may result in

a "locally best" solution. By this we mean that the APJD

3. THE ALTERNATING PROJECTION JOINT will converge to a point, b ¢ r n W, where at each step of
DETECTOR the iteration the distance between b(m) and WV decreased,

and where b is a fixed point of Equation (12).
As discussed in Section 2 the MA joint detection problem Our problem of finding the intersection between W and
reduces to finding the point r can be shown to be N-P complete. No solution which is

polynomial in complexity is known to solve the N-P com-
b E n wF . plete problem. Moreover, any approach which is polyno-

mial in complexity will suffer from possible convergence to
The problem of finding the intersection between two con- local minima. With this in mind, we know that there is no
vex sets is known to be solved iteratively by alternating low complexity suboptimal joint detection procedure which
projections between the two sets. Our problem differs from converges to the solution. Instead, we strive to understand
this in that one of our sets, r, is not convex. Noting the the problem so that joint detection algorithms can be de-
similarities between the two problems, we propose the al- veloped in order to minimize the probability of converging
ternating projection approach for the MA joint detection to a local minima.
problem and prove convergence. We wish to derive the operators, Pr and Pw. It is easy

to see that Pr is the sgn function. To find Pw we begin
Theorem: We define two projection operators; Pr maps with the definition of WV
a vector in IRK to the closest vector in r, and Pw maps
a vector in RK to the closest vector in W. By closest, W ' Sr +Af(ST).
we mean shortest Euclidean distance.7 Thus, the following
alternating projection joint detector (APJD) is guaranteed The projection onto W is, therefore, the projection onto
to converge in a finite number of steps. NA(ST) translated by Sr,

b(m + 1) = PrPwbl(m) (12) Pwx = Plx + Sr, (13)

Proof: Let d(x, y) denote the Euclidean distance between where P± is the projector onto .A(ST). Using the identity
the two vectors x and y. For guaranteed convergence we Pi = (I-P) and the projector8 P = S(STS)-1ST we find
need to show that the APJD in terms of the frame and dual frame operators

which define the user signature waveforms
d(f(m + 1), Pwb(m + 1)) < d(f)(m), Pwlb(m)),

b(m + 1) = sgn[ Sr + (I - S(S T S)- ST )b(m)]. (14)
where the equality holds only for b(m + 1) = b(m). In
words, we wish to show that with every iteration of the If we initialize the iteration with b(O) = 0 then b(1) =
APJD, the estimate gets closer to the affine space W. PrSr.9

We assert the following:

d(b(m±1),Pwb(m±1)) • d(;(m~+),Pwvv(m)) 4. COMPARISON OF APJD AND MJD

< d(bf(m),Pw[b(m)). A brief comparison of the two detectors is offered. Note
the similarities between the APJD of Equation (14) and

The validity of the above equation is explained. The left the MJD of Equation (4). Below are the corresponding
comparison: by definition of Pw, we know that b(m + 1) components of each detector.
is closer to Pwb(m+l) than it is to Pwlb(m) with equality
only in the case Pwlb(m + 1) = Pwb(m). The right com-

parison: by the construction of t(m+l1) from Equation (12) decorrelator matchedfilter
and from definition of Pr, we know that Pwb(m) is closer S = S(STS)-i ST

to /(m+ 1) than it is to [b(m) with equality only in the case
when the points are the same, b(m + 1) = b(m). We have orthogonal projector o linear operator
equality in both comparisons if and only if Pwb(m + 1) = (I - S(STS)-1ST) (E - SST)
Pwbl(m) and the points are the same. Since there are a
finite number of points in r, the algorithm is guaranteed to The dual frame operator, S, applied to r gives S(STS) - 1STb,
converge in a finite number of steps. [ the orthogonal projection of b onto R(S) while the matched

filter, S, applied to r gives SSTb E R(S). The orthogonal
5It is easy to show that 1(S) = 14(S) but is not proved here.
62(S) denotes the range of S. For more details on the rela- 8The orthogonal projection operator, P which maps a vector

tions between vector spaces, see the text by Strang [3]. onto the closest point in T(A) is P = A(ATA)-1AT.
7These projectors are not required to be linear, i.e. P(a+b) : 9 This b(1) is the decorrelating linear detector of Lupas and

Pa + Pb. Verdu [2].



projector (I - S(STS)-lST) applied to 13(m) gives an "es- 07 Dimensionof signalspace: N=4

timate", & E Af(ST), of the true cz while the linear operator
(E - SST) applied to b(m) gives an estimate of the MAI
which lies in the space AJ(ST ) GR(S). Note that the APJD
consists of orthogonal projectors while the MJD does not.

The MJD has been found to have limit cycle behavior, 05

i.e. for some correlated waveform sets, the bit vector esti-
mate loops between two incorrect elements of r. For lack ~ 0.4
of space, we leave this topic for another paper.

0 0.3

5. PROBABILITY OF ERROR AND / -- MJD

SIMULATION RESULTS 0.2 -APJD

It is expected that these algorithms will fail for a specific
set of bit vectors. Viewing the problem and the algorithms 0. 
geometrically gives the motivation for calculating the er-
ror probability of a joint detection algorithm by finding the 04 5 6 7 I

fraction of "bad" bit vectors for a given set of user wave- number of usersK

forms. By "bad" we mean that due to the geometrical re-
lationship between Jf(ST ) and r, a subset of r will result Figure 1: Fraction of incorrect bit vectors ("bad" points)
in incorrect convergence of a joint detection algorithm. We calculated by running the APJD and the MJD with each
wish to determine the bad points for any given S and joint bit vector in I for each frame of the N = 4 FDMA-class.
detection algorithm. In general, this appears to be a diffi-
cult problem and is left for future work.

An empirical study of the "bad" points for a specific probability of converging to incorrect points in the absence
class of wavelet packet signature sets is calculated via sim- of noise is minimized. Within our geometric framework we
ulations for the APJD and the MJD. Figure 1 shows the anticipate the characterization of errors for joint detectors
fraction of bit vector errors ("bad" points in I) versus num- in general. This appears to be a difficult problem and is left
ber of users. The curve was obtained by running both al- for future work. Via a simple set of simulations for both the
gorithms for all of the 2K possible bit vectors for each user APJD and the MJD, we offered a preliminary empirical ex-
signature set (frame). The frames were constructed to be amination of the behavior of these detectors and the effect
the union of an orthogonal wavelet packet basis roughly of the degree of redundancy in the user waveform sets. As
corresponding to N FDMA10 signatures and (K - N) ran- a result of these simulations, the APJD was found to offer
domly delayed discrete Dirac functions. The number of better performance over the MJD.
users ranged from K = N to K = 2N for N = 4. As we
should expect, from this simple simulation, the fraction of 7
"bad" points increases as K goes from N to 2N.
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N(S /
8. ADDENDUM: EXAMPLES N (S R(S)

Example of the APJD: The APJD algorithm may be ex-
amined by "geometrically" walking through the first few /S
iterations of a specific example: W

b(2) = PrPw(PrSr) (15) .--------- --------- -- . -----------------

So that we may display the steps in two dimensions, let user 2
the signature waveforms be scalars, sl = 2, s2 = 4, and P
let bl = -1, b2 = 1, then ST = [2 4] and b = [-1 1]T
Figure 2 shows the geometry for this problem. R.(S) is the
line through the origin with slope 3/2 and J\(ST) is the
line through the origin with slope -2/3. The set F is the
vertices of the 2 x 2 square centered at the origin. The
figure shows the result of the application of each projector
shown in Equation (15) and is enumerated below. Each correct bit vector
intermediate result is denoted by pi.

1. Dual frame operator, S, applied to r performs orthog- Figure 2: Geometric interpretation of an example of the
onal projection of b onto 7Z(S): APJD.

pl = Sr = S(STS)-1STb
2. Project onto F: p2 = sgn[pl]

3. Project onto W: p3 = Sr + (I - S(STS)-1ST)p 2

4. Project onto F: p4 = sgn[p3]

5. We are back where we were at the end of step 2. The
algorithm has converged. user 1 R(S)

N(S)
Example of the MJD: The MJD is viewed as a sequence of
operators within our geometry and is shown, in this case,
to loop between two incorrect bit vector estimates. The
MJD is given in Equation (4) and is examined by stepping
through the first few iterations: P

b(3) = Pr[Sr + (E- SST)Pr[Sr + (E- SST)( 1 (16) . .

Initializing b(O) = 0, we have b(1) = Pr(Sr), the conven-
tional estimates from the output of the bank of matched
filters. The same S and b used for the last example of the user 2
APJD are also used here. Figure 3 and the following steps ...-. 
will lead you through the example. ..........

1. Matched filter the received signal: pi = Sr = SSTb/ 

2. Project onto F: p2 = Prpl

3. Compensate for MAI:
P3 = Sr + (E - SST)p2

4. Project onto rF: p4 = Prps correct bit vector
5. Compensate for MAI:

P5 = Sr + (E - SST)p4
s = Sr oject (En-to SSr ) = 4PFigure 3: Geometric interpretation of an example of the

6. Project onto r: P6 = Prps MJD.

7. We are back where we were at the end of step 2. The
algorithm is confined to a limit cycle.


